SECOND-ORDER SUBDIFFERENTIALS AND OPTIMALITY CONDITIONS FOR UNCONSTRAINED C^1-SMOOTH OPTIMIZATION PROBLEMS

NGUYEN HUY CHIEU, GUE MYUNG LEE*, AND NGUYEN DONG YEN

The Fréchet second-order subdifferentials and the limiting second-order subdifferentials for real-valued functions, which was defined by the Fréchet coderivatives and the limiting coderivatives for multifunctions, was studied in [2]. Recently, it has been shown in [1] that the convexity of a real-valued function can be characterized by the Fréchet and limiting second-order subdifferentials. Moreover, Poliquin and Rockafellar [3] have proved that the positive definiteness of the limiting second-order subdifferential mapping $\partial^2\varphi(x,0) : \mathbb{R}^n \to 2^{\mathbb{R}^n}$ characterizes the tilt stability of a stationary point x of a function $\varphi : \mathbb{R}^n \to \mathbb{R}$ (provided φ has some required properties).

In this talk, we extend the second-order optimality theorems for unconstrained optimization problems to nondifferentiable cases. We derive necessary second-order optimality conditions for unconstrained C^1-smooth optimization problems by using the Fréchet second-order subdifferentials. Moreover, we give two sufficient second-order optimality conditions for unconstrained C^1-smooth optimization problems which are expressed with the Fréchet second-order subdifferential and the limiting second-order subdifferential of the objective function.

REFERENCES

NGUYEN HUY CHIEU: DEPARTMENT OF MATHEMATICS, VINH UNIVERSITY, VINH, NGHE AN, VIETNAM
E-mail address: nghuychieu@gmail.com

GUE MYUNG LEE: DEPARTMENT OF APPLIED MATHEMATICS, PUKYONG NATIONAL UNIVERSITY, BUSAN 608-737, KOREA
E-mail address: gmlee@pknu.ac.kr

NGUYEN DONG YEN: INSTITUTE OF MATHEMATICS, VIETNAMESE ACADEMY OF SCIENCE AND TECHNOLOGY, 18 HOANG QUOC VUIT, HANOI 10307, VIETNAM
E-mail address: ndyen@math.ac.vn

2010 Mathematics Subject Classification. Primary 90C26, Secondary 90C46.
Key words and phrases. Fréchet second-order subdifferential, limiting second-order subdifferential, Fréchet coderivatives, limiting coderivatives necessary second-order optimality conditions for C^1-smooth optimization problems, sufficient second-order optimality conditions for unconstrained C^1-smooth optimization problems.

*Presenting author.