Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics 55 (2022), pp. 27–53

EXAMPLES OF PSEUDO-HERMITIAN SYMMETRIC SPACES SATISFYING A CERTAIN SUPPOSITION

NOBUTAKA BOUMUKI

Communicated by Jitsuro Sugie

(Received: March 9, 2020)

ABSTRACT. The main purpose of this paper is to give examples of effective semisimple pseudo-Hermitian symmetric spaces satisfying a certain supposition (S). If an effective semisimple pseudo-Hermitian symmetric space satisfies the supposition (S), then one can clarify several properties of the pseudo-Hermitian symmetric space—for example, any holomorphic function on the space is constant, the group of holomorphic automorphisms of the space is a (finite-dimensional) Lie group, and so on.

1. INTRODUCTION

For a complex manifold M we can set complex vector spaces, e.g., the complex vector space $\mathcal{O}(M)$ of holomorphic functions, the complex vector space $\mathcal{O}(T^{1,0}M)$ of holomorphic vector fields and the complex vector space $\Omega^r(M)$ of holomorphic r-forms, or more generally the complex vector space \mathcal{V}_M of holomorphic crosssections of a holomorphic vector bundle over M. These vector spaces sometimes play important roles in the study of complex manifold M. We think it is meaningful to judge whether the vector space \mathcal{V}_M is finite-dimensional or not for a given connected complex manifold M.

This paper is a sequel to the paper [4]. In [4] we have dealt with the complex vector space $\mathcal{V}_{G/L}$ of holomorphic cross-sections of a homogeneous holomorphic vector bundle over a homogeneous pseudo-Käher manifold G/L of connected semisimple Lie group G and provided a sufficient condition (S) for the vector space $\mathcal{V}_{G/L}$ to be finite-dimensional in the case where G acts effectively on G/L. When the supposition (S) holds for G/L, it follows that $\dim_{\mathbb{C}} \mathcal{O}(G/L) < \infty$, $\dim_{\mathbb{C}} \mathcal{O}(T^{1,0}(G/L)) < \infty$ and $\dim_{\mathbb{C}} \Omega^r(G/L) < \infty$; and furthermore, one can assert that any holomorphic function on G/L is constant, the group $\operatorname{Hol}(G/L)$ of holomorphic automorphisms is a Lie group and so on. Then we want to give concrete examples of homogeneous

²⁰¹⁰ Mathematics Subject Classification. 32M10, 17B22.

Key words and phrases. effective semisimple pseudo-Hermitian symmetric space, canonical central element, fundamental root system, supposition (S).

This work was supported by JSPS KAKENHI Grant Number JP 17K05229.

pseudo-Käher manifolds G/L satisfying the supposition (S). Now, the open unit disk D in \mathbb{C} , the upper half-plane H in \mathbb{C} and the Riemann sphere $\mathbb{C} \cup \{\infty\}$ are effective semisimple Hermitian symmetric spaces. Any effective semisimple Hermitian symmetric space is one of the effective semisimple pseudo-Hermitian symmetric spaces. These imply that the set of effective semisimple pseudo-Hermitian symmetric spaces includes significant connected complex manifolds. Fortunately, an effective semisimple pseudo-Hermitian symmetric space is a homogeneous pseudo-Käher manifold G/L of connected semisimple Lie group G such that G acts effectively on G/L.

The main purpose of this paper is to give examples of effective semisimple pseudo-Hermitian symmetric spaces satisfying the supposition (S). See Theorem 3.25.

This paper consists of three sections. In Section 2 we recall fundamental facts about pseudo-Hermitian symmetric spaces and explain the supposition (S) more precisely (cf. Proposition 2.7). In Section 3 we devote ourselves to finding out pseudo-Hermitian symmetric spaces satisfying (S).

Notation. For a Lie group G, we denote its Lie algebra by the corresponding Fraktur small letter \mathfrak{g} and utilize the following notation:

- (n1) Ad, ad : the adjoint representations of G and \mathfrak{g} , respectively,
- (n2) $C_G(T) := \{g \in G \mid \operatorname{Ad} g(T) = T\}$ for an element $T \in \mathfrak{g}$,
- (n3) Z(G): the center of G,
- (n4) $\mathfrak{m} \oplus \mathfrak{n}$: the direct sum of vector spaces \mathfrak{m} and \mathfrak{n} ,
- (n5) $i := \sqrt{-1}$,

(n6) $f|_A$: the restriction of a mapping f to a set A,

- (n7) ϕ_* : the differential homomorphism of a Lie group homomorphism ϕ ,
- (n8) I_n : the unit matrix of degree n,
- (n9) $E_{i,j}$: the matrix whose (i, j)-element is 1 and whose other elements are all 0.

2. Preliminaries

This section consists of two subsections. In Subsection 2.1 we recall that (a) an effective semisimple pseudo-Hermitian symmetric space G/L is an elliptic adjoint orbit,¹ (b) G/L can be embedded into a complex flag manifold $G_{\mathbb{C}}/Q^-$ via ι : $G/L \to G_{\mathbb{C}}/Q^-$, $gL \mapsto gQ^-$, and (c) its image $\iota(G/L)$ is a simply connected domain in $G_{\mathbb{C}}/Q^-$. In Subsection 2.2 we take the complex vector space $\mathcal{V}_{G/L}$ of holomorphic cross-sections of a holomorphic vector bundle $\iota^{\sharp}(G_{\mathbb{C}} \times_{\rho} \mathsf{V})$ and provide a sufficient condition for the vector space $\mathcal{V}_{G/L}$ to be finite-dimensional.

2.1. **Pseudo-Hermitian symmetric spaces.** In this subsection we recall fundamental facts about pseudo-Hermitian symmetric spaces. A pseudo-Hermitian symmetric space is one of the affine symmetric spaces. First of all, let us recall the definition of affine symmetric space.

Definition 2.1 (cf. Nomizu [10, p.52, p.56]).

 $^{^{1}}$ We refer to Kobayashi [9] for the definitions of elliptic element and elliptic (adjoint) orbit.

(i) Let G be a connected (real) Lie group, and let L be a closed subgroup of G. Then the homogeneous space G/L is called an *affine symmetric space*, if there exists an involutive automorphism σ of G satisfying

$$(G^{\sigma})_0 \subset L \subset G^{\sigma}$$

where $(G^{\sigma})_0$ stands for the identity component of $G^{\sigma} := \{x \in G \mid \sigma(x) = x\}.$

- (ii) An affine symmetric space G/L is said to be *effective* (resp. *almost effective*), if G is effective (resp. almost effective) on G/L as a transformation group.
- (iii) An affine symmetric space G/L is said to be *semisimple* (resp. *simple*), if the Lie algebra \mathfrak{g} of G is semisimple (resp. simple).
- (iv) An almost effective, semisimple affine symmetric space $(G/L, \sigma)$ is said to be *irreducible*, if ad \mathfrak{l} in \mathfrak{u} is irreducible. Here, $\mathfrak{l} = \{X \in \mathfrak{g} | \sigma_*(X) = X\}$ and $\mathfrak{u} = \{Y \in \mathfrak{g} | \sigma_*(Y) = -Y\}.$

Here is the definition of pseudo-Hermitian symmetric space:

Definition 2.2 (cf. Berger [1, p.94]).

- (1) An affine symmetric space G/L is said to be *pseudo-Hermitian*, if it admits a G-invariant complex structure J and a G-invariant pseudo-Hermitian metric \mathbf{g} with respect to J.
- (2) A symmetric Lie algebra $(\mathfrak{g}, \mathfrak{l}, \sigma)$ is said to be *pseudo-Hermitian*, if there exist an ad \mathfrak{l} -invariant complex structure j on \mathfrak{u} and an ad \mathfrak{l} -invariant pseudo-Hermitian form $\langle \cdot, \cdot \rangle$ (with respect to j) on \mathfrak{u} . Here $\mathfrak{u} = \{Y \in \mathfrak{g} \mid \sigma(Y) = -Y\}$.

One knows the following fact:

Proposition 2.3 (cf. Shapiro [11, pp.533–534]). Let $(G/L, \sigma, J, \mathbf{g})$ be any almost effective, semisimple pseudo-Hermitian symmetric space, and let $\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{u}$ be the decomposition of \mathfrak{g} with respect to σ_* . Then, there exists a unique $T \in \mathfrak{l}$ satisfying

(i) $L = C_G(T) = (G^{\sigma})_0$, (ii) $\sigma(g) = (\exp \pi T)g \exp(-\pi T)$ for all $g \in G$,

(iii)
$$J_o = \operatorname{ad} T$$
 on $T_o(G/L) = \mathfrak{u}$.

Here \mathfrak{u} is identified with the tangent space $T_o(G/L)$ of G/L at the origin o.

Remark 2.4. Let us comment on the element T in Proposition 2.3.

- (1) T is called the *canonical central element* of \mathfrak{l} . cf. Shapiro [11, p.533].
- (2) T is a non-zero element of \mathfrak{g} such that the linear transformation ad $T : \mathfrak{g} \to \mathfrak{g}, X \mapsto [T, X]$, is semisimple and its eigenvalue is $\pm i$ or zero. Thus T is a non-zero elliptic element of \mathfrak{g} .
- (3) Proposition 2.3-(i) tells us that the pseudo-Hermitian symmetric space G/L is the adjoint orbit of G through T, so that G/L is an elliptic adjoint orbit.

From now on, we are going to set the generalized Borel embedding by means of Shapiro [11] (see Proposition 2.5-(v) below). Let $G/L = (G/L, \sigma, J, \mathbf{g})$ be an effective semisimple pseudo-Hermitian symmetric space, and let T be the canonical central element of \mathfrak{l} . Proposition 2.3-(i) implies that $L = C_G(T)$ includes the center Z(G) of G, and therefore Z(G) is trivial because G acts effectively on G/L. That

is to say, the connected semisimple Lie group G is isomorphic to the adjoint group of \mathfrak{g} . Consequently there exists a connected complex semisimple Lie group $G_{\mathbb{C}}$ so that

- (1) $Z(G_{\mathbb{C}})$ is trivial,
- (2) G is a connected closed subgroup of $G_{\mathbb{C}}$,
- (3) \mathfrak{g} is a real form of $\mathfrak{g}_{\mathbb{C}}$.

In this setting we put

(2.1)
$$\begin{aligned} \mathfrak{g}^0 &:= \{ Z \in \mathfrak{g}_{\mathbb{C}} \mid \operatorname{ad} T(Z) = 0 \}, \quad \mathfrak{g}^{-1} &:= \{ W \in \mathfrak{g}_{\mathbb{C}} \mid \operatorname{ad} T(W) = -iW \}, \\ Q^- &:= \{ q \in G_{\mathbb{C}} \mid \operatorname{Ad} q(\mathfrak{g}^0 \oplus \mathfrak{g}^{-1}) \subset \mathfrak{g}^0 \oplus \mathfrak{g}^{-1} \}. \end{aligned}$$

In addition, let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition such that $T \in \mathfrak{k}$, let G_u be the connected Lie subgroup of $G_{\mathbb{C}}$ corresponding to a (maximal compact) subalgebra $\mathfrak{g}_u := \mathfrak{k} \oplus i \mathfrak{p}$ of $\mathfrak{g}_{\mathbb{C}}$, and let $L_u := C_{G_u}(T)$. Define an inner automorphism σ_u of G_u by $\sigma_u(y) := (\exp \pi T) y \exp(-\pi T)$ for $y \in G_u$. Then, σ_u is involutive and $(G_u/L_u, \sigma_u)$ is an affine symmetric space. In view of the decomposition $\mathfrak{g}_u = \mathfrak{l}_u \oplus \mathfrak{u}_u$ of \mathfrak{g}_u with respect to $(\sigma_u)_*$, one can construct a G_u -invariant complex structure J_u on G_u/L_u and a G_u -invariant Hermitian metric \mathfrak{g}_u on G_u/L_u from

$$(J_u)_o X := \operatorname{ad} T(X), \quad (\mathsf{g}_u)_o(Y,Z) := -B_{\mathfrak{g}_u}(Y,Z)$$

for $X, Y, Z \in \mathfrak{u}_u$, respectively, where we identify the vector space \mathfrak{u}_u with the tangent space $T_o(G_u/L_u)$ at the origin $o \in G_u/L_u$ and denote by $B_{\mathfrak{g}_u}$ the Killing form of \mathfrak{g}_u .

Proposition 2.5 (cf. Shapiro $[11]^2$). In the setting above;

- (i) $G_u/L_u = (G_u/L_u, \sigma_u, J_u, \mathbf{g}_u)$ is an effective semisimple Hermitian symmetric space of the compact type,
- (ii) $L_u = G_u \cap Q^-$ and $L = G \cap Q^-$,
- (iii) Q^- is a connected, closed complex parabolic subgroup of $G_{\mathbb{C}}$,
- (iv) $\iota_u : G_u/L_u \to G_{\mathbb{C}}/Q^-$, $yL_u \mapsto yQ^-$, is a G_u -equivariant biholomorphism of G_u/L_u onto $G_{\mathbb{C}}/Q^-$,
- (v) $\iota: G/L \to G_{\mathbb{C}}/Q^-, gL \mapsto gQ^-$, is a G-equivariant biholomorphism of G/Lonto a simply connected domain in $G_{\mathbb{C}}/Q^-$,
- (vi) $G_u Q^- = G_{\mathbb{C}}$, and GQ^- is a domain in $G_{\mathbb{C}}$.

Remark 2.6. Here are comments on the mapping $\iota: G/L \to G_{\mathbb{C}}/Q^-, gL \mapsto gQ^-$, in Proposition 2.5-(v).

- (1) ι is called the *generalized Borel embedding*. cf. Shapiro [11, p.535].
- (2) One can regard G/L as a simply connected domain in $G_{\mathbb{C}}/Q^-$ via ι .

2.2. Homogeneous holomorphic vector bundles and a certain supposition. In this subsection we take the complex vector space $\mathcal{V}_{G/L}$ of holomorphic cross-sections of a holomorphic vector bundle $\iota^{\sharp}(G_{\mathbb{C}} \times_{\rho} \mathsf{V})$ and provide a sufficient condition for the vector space $\mathcal{V}_{G/L}$ to be finite-dimensional (see Proposition 2.7).

²We slightly modify Theorem 3.1 in Shapiro [11, p.535]. See Lemma 8.1.11-(1), Proposition 8.2.1-(ii), (iii), (v) and Lemma 11.1.2 in [5] if necessary.

Let $G/L = (G/L, \sigma, J, \mathbf{g})$ be an effective semisimple pseudo-Hermitian symmetric space, and let T be the canonical central element of \mathfrak{l} . We construct a complex flag manifold $G_{\mathbb{C}}/Q^-$ from (2.1), fix the generalized Borel embedding $\iota : G/L \to G_{\mathbb{C}}/Q^-$, $gL \mapsto gQ^-$, and identify G/L with $\iota(G/L)$.

Take a finite-dimensional complex vector space V and a holomorphic homomorphism $\rho: Q^- \to GL(\mathsf{V}), q \mapsto \rho(q)$, where $GL(\mathsf{V})$ is the general linear group on V. Denote by $G_{\mathbb{C}} \times_{\rho} \mathsf{V}$ the homogeneous holomorphic vector bundle over $G_{\mathbb{C}}/Q^-$ associated with ρ , and by $\iota^{\sharp}(G_{\mathbb{C}} \times_{\rho} \mathsf{V})$ the restriction of $G_{\mathbb{C}} \times_{\rho} \mathsf{V}$ to $G/L \subset G_{\mathbb{C}}/Q^-$. Let

(2.2)

$$\begin{aligned}
\mathcal{V}_{G_{\mathbb{C}}/Q^{-}} &:= \left\{ h: G_{\mathbb{C}} \to \mathsf{V} \middle| \begin{array}{l} \text{(i) } h \text{ is holomorphic,} \\ \text{(ii) } h(aq) &= \rho(q)^{-1}(h(a)) \text{ for all } (a,q) \in G_{\mathbb{C}} \times Q^{-} \right\}, \\
\mathcal{V}_{G/L} &:= \left\{ \psi: GQ^{-} \to \mathsf{V} \middle| \begin{array}{l} \text{(i) } \psi \text{ is holomorphic,} \\ \text{(ii) } \psi(xq) &= \rho(q)^{-1}(\psi(x)) \text{ for all } (x,q) \in GQ^{-} \times Q^{-} \right\}.
\end{aligned}$$

Then one may assume that $\mathcal{V}_{G_{\mathbb{C}}/Q^{-}}$ and $\mathcal{V}_{G/L}$ are the complex vector spaces of holomorphic cross-sections of the bundles $G_{\mathbb{C}} \times_{\rho} \mathsf{V}$ and $\iota^{\sharp}(G_{\mathbb{C}} \times_{\rho} \mathsf{V})$, respectively.

In general, the vector space $\mathcal{V}_{G_{\mathbb{C}}/Q^{-}}$ is finite-dimensional (because $G_{\mathbb{C}}/Q^{-}$ is a connected compact complex manifold), but, in contrast, $\mathcal{V}_{G/L}$ is not always finitedimensional. From now on, we are going to provide a sufficient condition for $\mathcal{V}_{G/L}$ to be finite-dimensional. Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of \mathfrak{g} with $T \in \mathfrak{k}$, and a maximal torus $i\mathfrak{h}_{\mathbb{R}}$ of $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ containing T. Let $\mathfrak{h}_{\mathbb{C}}$ be the complex vector subspace of $\mathfrak{g}_{\mathbb{C}}$ generated by $i\mathfrak{h}_{\mathbb{R}}$, let $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ be the root system of $\mathfrak{g}_{\mathbb{C}}$ relative to $\mathfrak{h}_{\mathbb{C}}$, let \mathfrak{g}_{α} be the root subspace of $\mathfrak{g}_{\mathbb{C}}$ for $\alpha \in \Delta$, and let $\mathfrak{k}_{\mathbb{C}}$ be the complex subalgebra of $\mathfrak{g}_{\mathbb{C}}$ generated by \mathfrak{k} . Then one has

Proposition 2.7. In the setting of Subsection 2.2; suppose that (S) there exists a fundamental root system Π_{Δ} of $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ satisfying two conditions

- (s1) $\alpha(-iT) \geq 0$ for all $\alpha \in \Pi_{\wedge}$, and
- (s2) $\mathfrak{g}_{\beta} \subset \mathfrak{k}_{\mathbb{C}}$ for every $\beta \in \Pi_{\Delta}$ with $\beta(T) \neq 0$.

Then, the complex vector space $\mathcal{V}_{G_{\mathbb{C}}/Q^{-}}$ is linear isomorphic to $\mathcal{V}_{G/L}$ via

$$F: \mathcal{V}_{G_{\mathbb{C}}/Q^{-}} \to \mathcal{V}_{G/L}, \ h \mapsto h|_{GQ^{-}};$$

and therefore $\dim_{\mathbb{C}} \mathcal{V}_{G/L} = \dim_{\mathbb{C}} \mathcal{V}_{G_{\mathbb{C}}/Q^{-}} < \infty$.

Proof. At this stage, our setting is as follows:

- $G_{\mathbb{C}}$ is a connected complex semisimple Lie group with the trivial center,
- G is a connected closed subgroup of $G_{\mathbb{C}}$ such that \mathfrak{g} is a real form of $\mathfrak{g}_{\mathbb{C}}$,
- T is a non-zero elliptic element of \mathfrak{g} ,
- $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} with $T \in \mathfrak{k}$,
- $i\mathfrak{h}_{\mathbb{R}}$ is a maximal torus of $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ containing T,

- $\triangle = \triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ is the root system of $\mathfrak{g}_{\mathbb{C}}$ relative to $\mathfrak{h}_{\mathbb{C}}$, where $\mathfrak{h}_{\mathbb{C}}$ is the complex vector subspace of $\mathfrak{g}_{\mathbb{C}}$ generated by $i\mathfrak{h}_{\mathbb{R}}$,
- \mathfrak{g}_{α} is the root subspace of $\mathfrak{g}_{\mathbb{C}}$ for $\alpha \in \Delta$,
- $L = C_G(T),$
- Q^- is the closed complex subgroup of $G_{\mathbb{C}}$ defined by (2.1),
- $\mathfrak{k}_{\mathbb{C}}$ is the complex subalgebra of $\mathfrak{g}_{\mathbb{C}}$ generated by \mathfrak{k} ,
- V is a finite-dimensional complex vector space,
- $\rho: Q^- \to GL(\mathsf{V}), q \mapsto \rho(q)$, is a holomorphic homomorphism,
- $\mathcal{V}_{G_{\mathbb{C}}/Q^{-}}$ and $\mathcal{V}_{G/L}$ are the complex vector spaces defined by (2.2).

Since we conform to the setting of Subsection 3.1 in [4], we can apply Theorem 3.1 in [4] to this proposition. Thus we can get the conclusion. \Box

Remark 2.8. Here are comments on Proposition 2.7.

- (1) One can always take a fundamental root system $\Pi_{\triangle} \subset \triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ with (s1), by considering the lexicographic linear ordering on the dual space $(\mathfrak{h}_{\mathbb{R}})^*$ associated with an ordered real basis $-iT =: A_1, A_2, \ldots, A_\ell$ of $\mathfrak{h}_{\mathbb{R}}$.
- (2) If G is compact, then the pseudo-Hermitian symmetric space G/L always satisfies the supposition (S) because of $\mathfrak{k}_{\mathbb{C}} = \mathfrak{g}_{\mathbb{C}}$.
- (3) If G/L is a symmetric bounded domain in \mathbb{C}^n , then it cannot satisfy the supposition (S) at all. cf. Example 4.2 in [4].
- 3. Examples of pseudo-Hermitian symmetric spaces satisfying (S)

Our aim is to find out effective semisimple pseudo-Hermitian symmetric spaces which satisfy the supposition (S) in Proposition 2.7.

3.1. **Reduction.** An effective semisimple pseudo-Hermitian symmetric space is biholomorphic to the direct product $G_1/L_1 \times G_2/L_2 \times \cdots \times G_r/L_r$, where all $G_1/L_1, \ldots, G_r/L_r$ are effective simple pseudo-Hermitian symmetric spaces. There are four types of simple pseudo-Hermitian symmetric spaces:

Table A: four types of simple pseudo-Hermitian symmetric spaces		
(I)	an irreducible Hermitian symmetric space of the compact type	
(II)	an irreducible Hermitian symmetric space of the non-compact type	
(III)	a simple irreducible pseudo-Hermitian (non-Hermitian) symmetric space	
(IV)	a simple reducible pseudo-Hermitian symmetric space	

Here a simple pseudo-Hermitian symmetric space G/L is *reducible* if and only if the Lie algebra \mathfrak{g} is complex (cf. Shapiro [11, p.532]). From the next subsection we will mainly deal with (III) effective simple irreducible pseudo-Hermitian (non-Hermitian) symmetric spaces; due to Remark 2.8-(2), (3) and

Proposition 3.1. (IV) Any effective simple reducible pseudo-Hermitian symmetric space G/L cannot satisfy the supposition (S) in Proposition 2.7 at all.

Proof. Let $\overline{\mathfrak{g}}$ be the complex conjugate Lie algebra to \mathfrak{g} . Then, the complexification $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g} \oplus i\mathfrak{g}$ of \mathfrak{g} is complex Lie algebra isomorphic to the direct product $\mathfrak{g} \times \overline{\mathfrak{g}}$ via

$$\phi: \mathfrak{g}_{\mathbb{C}} \to \mathfrak{g} \times \overline{\mathfrak{g}}, X + iY \mapsto (X + iY, X - iY)$$

 $(X, Y \in \mathfrak{g})$ since $\lambda(A, B) = (\lambda A, \lambda B)$ for all $\lambda \in \mathbb{C}$ and $(A, B) \in \mathfrak{g} \times \overline{\mathfrak{g}}$. Moreover, the real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ corresponds to $\{(X, X) \mid X \in \mathfrak{g}\} = \phi(\mathfrak{g}) \subset \mathfrak{g} \times \overline{\mathfrak{g}}$. Identifying $\mathfrak{g}_{\mathbb{C}}$ with $\mathfrak{g} \times \overline{\mathfrak{g}}$ via ϕ , we will explain the reason why G/L cannot satisfy the condition (s2) $\mathfrak{g}_{\beta} \subset \mathfrak{k}_{\mathbb{C}}$ in Proposition 2.7.

Let T be the canonical central element of \mathfrak{l} , let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} with $T \in \mathfrak{k}$, and let $i\mathfrak{h}_{\mathbb{R}}$ be a maximal torus of $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ containing T. Besides, let $\mathfrak{h}_{\mathbb{C}}$ and $\mathfrak{k}_{\mathbb{C}}$ be the complex vector subspace and subalgebra of $\mathfrak{g}_{\mathbb{C}}$ generated by $i\mathfrak{h}_{\mathbb{R}}$ and \mathfrak{k} , respectively. Then $\mathfrak{k}_{\mathbb{C}}$ corresponds to

(3.1)
$$\{(K_1 + iK_2, K_1 - iK_2) \mid K_1, K_2 \in \mathfrak{k}\} = \phi(\mathfrak{k}_{\mathbb{C}}).$$

Since \mathfrak{g} is complex (semi)simple, it follows that $\mathfrak{p} = i\mathfrak{k}$, so that \mathfrak{g}_u corresponds to

$$\mathfrak{k} \times \mathfrak{k} = \phi(\mathfrak{g}_u).$$

Consequently there exist maximal tori $\mathfrak{t}_1, \mathfrak{t}_2 \subset \mathfrak{k}$ such that $T \in \mathfrak{t}_1 \cap \mathfrak{t}_2$ and $\mathfrak{t}_1 \times \mathfrak{t}_2 = \phi(i\mathfrak{h}_{\mathbb{R}})$. Letting \mathfrak{c}_1 and $\overline{\mathfrak{c}}_2$ be the complex vector subspaces of \mathfrak{g} and $\overline{\mathfrak{g}}$ generated by \mathfrak{t}_1 and \mathfrak{t}_2 , respectively, one can conclude that

$$\mathfrak{c}_1 \times \overline{\mathfrak{c}}_2 = \phi(\mathfrak{h}_\mathbb{C}).$$

From now on, we are going to confirm that G/L cannot satisfy the (s2). Let us use proof by contradiction. Suppose a root $\beta \in \triangle(\mathfrak{g} \times \overline{\mathfrak{g}}, \mathfrak{c}_1 \times \overline{\mathfrak{c}}_2)$ and a non-zero vector $E_\beta \in \mathfrak{g} \times \overline{\mathfrak{g}}$ to satisfy $[C, E_\beta] = \beta(C)E_\beta$ for all $C \in \mathfrak{c}_1 \times \overline{\mathfrak{c}}_2$ and $E_\beta \in \phi(\mathfrak{k}_{\mathbb{C}})$. Then, $\triangle(\mathfrak{g} \times \overline{\mathfrak{g}}, \mathfrak{c}_1 \times \overline{\mathfrak{c}}_2) \cong \triangle(\mathfrak{g}, \mathfrak{c}_1) \cup \triangle(\overline{\mathfrak{g}}, \overline{\mathfrak{c}}_2)$ implies that one of the following two cases only occurs:

- (1) $\beta(C_1, C_2) = \beta(C_1, 0)$ for all $(C_1, C_2) \in \mathfrak{c}_1 \times \overline{\mathfrak{c}}_2$ and there exists a non-zero vector $E_1 \in \mathfrak{g}$ such that $E_\beta = (E_1, 0)$;
- (2) $\beta(C_1, C_2) = \beta(0, C_2)$ for all $(C_1, C_2) \in \mathfrak{c}_1 \times \overline{\mathfrak{c}}_2$ and there exists a non-zero vector $E_2 \in \overline{\mathfrak{g}}$ such that $E_\beta = (0, E_2)$.

However, in any cases (1) $E_{\beta} = (E_1, 0)$ and (2) $E_{\beta} = (0, E_2)$ we obtain $E_{\beta} \notin \phi(\mathfrak{k}_{\mathbb{C}})$ from (3.1), which is a contradiction to $E_{\beta} \in \phi(\mathfrak{k}_{\mathbb{C}})$. For this reason G/L cannot satisfy (s2) at all.

Table B			
type	the supposition (S) in Proposition 2.7		
(I)	O.K.		
(II)	N.G.		
(III)	?		
(IV)	N.G.		

(Here (I), (II), (III) and (IV) correspond to those in Table A (p.32), respectively).

3.2. Type (III). The main purpose of this subsection is to give examples of simple irreducible pseudo-Hermitian (non-Hermitian) symmetric Lie algebras $(\mathfrak{g}, \mathfrak{l})$ satisfying the supposition (S) in Proposition 2.7.

Remark 3.2. From a simple irreducible pseudo-Hermitian symmetric Lie algebra $(\mathfrak{g}, \mathfrak{l})$, one can easily construct an effective simple irreducible pseudo-Hermitian symmetric space G/L. Indeed; for a given simple irreducible pseudo-Hermitian symmetric Lie algebra $(\mathfrak{g}, \mathfrak{l})$, let us take the canonical central element $T \in \mathfrak{l}$ and a connected Lie group G whose center Z(G) is trivial and whose Lie algebra is \mathfrak{g} . Then $(G, C_G(T))$ is an effective simple irreducible pseudo-Hermitian symmetric space.

3.2.1. AII. Let
$$\mathfrak{g}_{\mathbb{C}} := \mathfrak{sl}(2n, \mathbb{C}) = \{A \in \mathfrak{gl}(2n, \mathbb{C}) \mid \operatorname{tr} A = 0\},$$

 $\mathfrak{g} := \mathfrak{su}^{*}(2n) = \left\{ \begin{pmatrix} X & Y \\ -\overline{Y} & \overline{X} \end{pmatrix} \middle| \begin{array}{c} X, Y \in \mathfrak{gl}(n, \mathbb{C}), \\ \operatorname{tr} X + \operatorname{tr} \overline{X} = 0 \end{array} \right\},$
 $\mathfrak{k} := \left\{ \begin{pmatrix} K_{1} & K_{2} \\ -\overline{K}_{2} & \overline{K}_{1} \end{pmatrix} \middle| \begin{array}{c} K_{1}, K_{2} \in \mathfrak{gl}(n, \mathbb{C}), \\ {}^{t}\overline{K}_{1} = -K_{1}, {}^{t}K_{2} = K_{2} \end{array} \right\},$
 $\mathfrak{p} := \left\{ \begin{pmatrix} P_{1} & P_{2} \\ -\overline{P}_{2} & \overline{P}_{1} \end{pmatrix} \middle| \begin{array}{c} P_{1}, P_{2} \in \mathfrak{gl}(n, \mathbb{C}), \\ {}^{t}\overline{P}_{1} = P_{1}, \operatorname{tr} P_{1} + \operatorname{tr} \overline{P}_{1} = 0, {}^{t}P_{2} = -P_{2} \end{array} \right\},$
 $\mathfrak{h}_{\mathbb{R}} := \left\{ \begin{pmatrix} x_{1} & O \\ & \ddots \\ O & x_{2n} \end{pmatrix} \middle| \begin{array}{c} x_{1}, x_{2}, \dots, x_{2n} \in \mathbb{R}, \\ \sum_{i=1}^{2n} x_{i} = 0 \end{array} \right\},$

where $n \geq 2$. Then it follows that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} , that $i\mathfrak{h}_{\mathbb{R}}$ is a maximal torus of $\mathfrak{g}_u := \mathfrak{k} \oplus i\mathfrak{p}$, and that

(aii.1)
$$\mathbf{\mathfrak{t}}_{\mathbb{C}} = \left\{ \begin{pmatrix} A & B \\ C & -{}^{t}A \end{pmatrix} \middle| \begin{array}{c} A, B, C \in \mathfrak{gl}(n, \mathbb{C}), \\ {}^{t}B = B, \, {}^{t}C = C \end{array} \right\}$$

By setting a linear mapping $\alpha_j : \mathfrak{h}_{\mathbb{C}} \to \mathbb{C}$ as

$$\alpha_j \begin{pmatrix} z_1 & O \\ \ddots \\ O & z_{2n} \end{pmatrix} := z_j - z_{j+1} \text{ for } 1 \le j \le 2n - 1,$$

one can get a fundamental root system $\Pi_{\triangle} := \{\alpha_j\}_{j=1}^{2n-1}$ of $\triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$.

$$\Pi_{\Delta}: \quad \underset{\alpha_1}{\circ} \underbrace{\alpha_1}^{1} \quad \underset{\alpha_2}{\circ} \underbrace{\alpha_2}^{1} \cdots \underbrace{\alpha_{2n-1}}^{n}.$$

Now, let us put

(aii.2)
$$T := \frac{i}{2} \begin{pmatrix} I_n & O \\ O & -I_n \end{pmatrix}.$$

In this setting, we have $T \in (\mathfrak{k} \cap i\mathfrak{h}_{\mathbb{R}}) \subset \mathfrak{g}$ and $\alpha_j(-iT) = \delta_{j,n}$ for all $1 \leq j \leq 2n-1$. Hence the linear transformation ad $T : \mathfrak{g} \to \mathfrak{g}$ is semisimple and its eigenvalue is $\pm i$ or zero, so $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$ is a pseudo-Hermitian (non-Hermitian) symmetric Lie algebra and T is the canonical central element of $\mathfrak{c}_{\mathfrak{g}}(T)$. cf. Lemma 3.1.1 in [3, pp.22–23]. By a direct computation we obtain $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{sl}(n, \mathbb{C}) \oplus \mathfrak{t}$. Furthermore, **Proposition 3.3** (AII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{su}^*(2n), \mathfrak{sl}(n, \mathbb{C}) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here $n \geq 2$ and we refer to (aii.2) for T.

Remark 3.4 (AII). If n = 1, then $(\mathfrak{su}^*(2n), \mathfrak{sl}(n, \mathbb{C}) \oplus \mathfrak{t})$ is an irreducible Hermitian symmetric Lie algebra of the compact type.

Proof of Proposition 3.3. Let

$$\beta_k := \alpha_k \text{ for } 1 \le k \le n - 1,$$

$$\beta_n := \sum_{p=n}^{2n-1} \alpha_p,$$

$$\beta_{n+k} := -\alpha_{2n-k} \text{ for } 1 \le k \le n - 1.$$

Then $\Pi' := \{\beta_j\}_{j=1}^{2n-1}$ is a fundamental root system of $\triangle(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ whose Dynkin diagram is

$$\Pi': \quad \underset{\beta_1}{\circ} \underbrace{\overset{1}{} \overset{0}{} \cdots \overset{1}{\phantom{\beta_{2n-1}}} \cdots \underbrace{\overset{1}{\phantom{\beta_{2n-1}}}}_{\beta_{2n-1}}$$

From (aii.2) we obtain $\beta_j(-iT) = \delta_{j,n} \ge 0$ for all $1 \le j \le 2n - 1$, and the (s1) in Proposition 2.7 holds for this Π' . Moreover, (aii.1) implies that

$$\mathfrak{g}_{\beta_n} = \mathfrak{g}_{\alpha_n + \dots + \alpha_{2n-1}} = \operatorname{span}_{\mathbb{C}} \{ E_{n,2n} \} \subset \mathfrak{k}_{\mathbb{C}},$$

so that the (s2) in Proposition 2.7 also holds for Π' .

3.2.2. AIII. Let
$$\mathfrak{g}_{\mathbb{C}} := \mathfrak{sl}(p+q,\mathbb{C}) = \{A \in \mathfrak{gl}(p+q,\mathbb{C}) \mid \operatorname{tr} A = 0\},\$$

$$\begin{split} \mathfrak{g} &:= \mathfrak{su}(p,q) = \left\{ \begin{pmatrix} K_1 & Z \\ t\overline{Z} & K_2 \end{pmatrix} \middle| \begin{array}{l} K_1 \in \mathfrak{u}(p), \ Z : p \times q \text{ complex matrix}, \\ K_2 \in \mathfrak{u}(q), \ \mathrm{tr} & K_1 + \mathrm{tr} & K_2 = 0 \\ \end{array} \right\}, \\ \mathfrak{k} &:= \left\{ \begin{pmatrix} K_1 & O \\ O & K_2 \end{pmatrix} \middle| \begin{array}{l} K_1 \in \mathfrak{u}(p), \ K_2 \in \mathfrak{u}(q), \\ \mathrm{tr} & K_1 + \mathrm{tr} & K_2 = 0 \\ \end{array} \right\}, \\ \mathfrak{p} &:= \left\{ \begin{pmatrix} O & Z \\ t\overline{Z} & O \\ \end{array} \right) \middle| \begin{array}{l} Z : p \times q \text{ complex matrix} \\ S & \mathfrak{m}_{\mathbb{R}} := \left\{ \begin{pmatrix} x_1 & O \\ \ddots \\ O & x_{p+q} \end{pmatrix} \middle| \begin{array}{l} x_1, x_2, \dots, x_{p+q} \in \mathbb{R}, \\ \sum_{i=1}^{p+q} x_i = 0 \\ \end{array} \right\}, \end{split}$$

where $p, q \geq 1$ and $\mathfrak{u}(n) = \{K \in \mathfrak{gl}(n, \mathbb{C}) \mid {}^t\overline{K} = -K\}$. Then it turns out that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition, $i\mathfrak{h}_{\mathbb{R}}$ is a maximal torus of $\mathfrak{g}_u := \mathfrak{k} \oplus i\mathfrak{p}$ and $i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k}$; besides,

(aiii.1)
$$\mathfrak{k}_{\mathbb{C}} = \left\{ \begin{pmatrix} B_1 & O \\ O & B_2 \end{pmatrix} \middle| \begin{array}{c} B_1 \in \mathfrak{gl}(p, \mathbb{C}), B_2 \in \mathfrak{gl}(q, \mathbb{C}), \\ \operatorname{tr} B_1 + \operatorname{tr} B_2 = 0 \end{array} \right\}.$$

We define a linear mapping $\alpha_j : \mathfrak{h}_{\mathbb{C}} \to \mathbb{C}$ by

$$\alpha_j \begin{pmatrix} z_1 & O \\ \ddots \\ O & z_{p+q} \end{pmatrix} := z_j - z_{j+1} \text{ for } 1 \le j \le p+q-1$$

and obtain a fundamental root system $\Pi_{\triangle} := \{\alpha_j\}_{j=1}^{p+q-1}$ of $\triangle(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$.

$$\Pi_{\Delta}: \quad \underbrace{\alpha_1}^{1} \quad \alpha_2 \\ \alpha_1 \\ \alpha_2 \\ \cdots \\ \alpha_{n+q-1} \\ \alpha_{n+q-1$$

Here, the dual basis $\{Z_j\}_{j=1}^{p+q-1}$ ($\subset \mathfrak{h}_{\mathbb{R}}$) of $\Pi_{\triangle} = \{\alpha_j\}_{j=1}^{p+q-1}$ is as follows:

(aiii.2)
$$Z_j = \frac{1}{p+q} \begin{pmatrix} (p+q-j)I_j & O\\ O & -jI_{p+q-j} \end{pmatrix} \quad (1 \le j \le p+q-1).$$

From now on, we are going to investigate the following three cases individually:

(1)
$$T = iZ_a$$
, (2) $T = iZ_{p+b}$, (3) $T = i(Z_a - Z_p + Z_{p+b})$,

where $1 \leq a \leq p-1$, $1 \leq b \leq q-1$. Remark that for each of the elements T above, we obtain $T \in i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k} = (\mathfrak{g}_u \cap \mathfrak{g})$, the linear transformation ad $T : \mathfrak{g} \to \mathfrak{g}$ is semisimple and its eigenvalue is $\pm i$ or zero; consequently, $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$ is a simple irreducible pseudo-Hermitian symmetric Lie algebra and T is the canonical central element of $\mathfrak{c}_{\mathfrak{g}}(T)$, cf. [3, pp.22–23].

Case (1). Let $T := iZ_a$ $(1 \le a \le p-1)$. Then one has $\alpha_j(-iT) = \alpha_j(Z_a) = \delta_{j,a} \ge 0$ for all $1 \le j \le p+q-1$, and the (s1) in Proposition 2.7 holds for $\Pi_{\triangle} = \{\alpha_j\}_{j=1}^{p+q-1}$. Furthermore, it follows from $1 \le a \le p-1$ and (aiii.1) that

$$\mathfrak{g}_{\alpha_a} = \operatorname{span}_{\mathbb{C}} \{ E_{a,a+1} \} \subset \mathfrak{k}_{\mathbb{C}},$$

so that the (s2) in Proposition 2.7 holds for $\Pi_{\triangle} = \{\alpha_j\}_{j=1}^{p+q-1}$, also. Hence

Lemma 3.5 (AIII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{su}(p, q), \mathfrak{su}(a) \oplus \mathfrak{su}(p-a, q) \oplus \mathfrak{t})$ satisfies the (S) in Proposition 2.7. Here $1 \leq a \leq p-1, 1 \leq q$ and $T = iZ_a$.

Case (2). In case of $T := iZ_{p+b}$ $(1 \le b \le q-1)$ one can demonstrate the following lemma by arguments similar to those in the case (1) above:

Lemma 3.6 (AIII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{su}(p, q), \mathfrak{su}(p, b) \oplus \mathfrak{su}(q-b) \oplus \mathfrak{t})$ satisfies the (S) in Proposition 2.7. Here $1 \leq p, 1 \leq b \leq q-1$ and $T = iZ_{p+b}$.

Case (3). Now, let $T := i(Z_a - Z_p + Z_{p+b})$ $(1 \le a \le p - 1, 1 \le b \le q - 1)$, and set

$$\begin{split} \beta_k &:= \alpha_k \text{ for } 1 \leq k \leq a-1, \\ \beta_a &:= \sum_{n=a}^p \alpha_n, \\ \beta_h &:= \alpha_{h-a+p} \text{ for } a+1 \leq h \leq a+q-1, \\ \beta_{q+a} &:= -\sum_{m=a+1}^{p+q-1} \alpha_m, \\ \beta_\ell &:= \alpha_{\ell-q} \text{ for } q+a+1 \leq \ell \leq p+q-1. \end{split}$$

Then we see that $\Pi' := \{\beta_j\}_{j=1}^{p+q-1}$ is a fundamental root system of $\triangle(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$.

$$\Pi': \quad \underset{\beta_1}{\circ} \underbrace{\beta_1}^{-1} \underbrace{\beta_2}^{-1} \cdots \underbrace{\beta_{p+q-1}}^{-1}$$

Moreover, $\beta_j(-iT) = \delta_{j,a+b} \ge 0$ for all $1 \le j \le p+q-1$, and we deduce $\mathfrak{g}_{\beta_{a+b}} = \mathfrak{g}_{\alpha_{p+b}} = \operatorname{span}_{\mathbb{C}} \{E_{p+b,p+b+1}\} \subset \mathfrak{k}_{\mathbb{C}}$ from $1 \le b \le q-1$ and (aiii.1). Therefore the (s1) and (s2) in Proposition 2.7 hold for $\Pi' = \{\beta_j\}_{j=1}^{p+q-1}$.

Lemma 3.7 (AIII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{su}(p, q), \mathfrak{su}(a, b) \oplus \mathfrak{su}(p-a, q-b) \oplus \mathfrak{t})$ satisfies the (S) in Proposition 2.7. Here $1 \leq a \leq p-1, 1 \leq b \leq q-1$ and $T = i(Z_a - Z_p + Z_{p+b})$.

Three Lemmas 3.5, 3.6 and 3.7 provide us with

Proposition 3.8 (AIII). The supposition (S) in Proposition 2.7 holds for the following pseudo-Hermitian symmetric Lie algebras $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$:

- (1) $(\mathfrak{su}(p,q),\mathfrak{su}(a)\oplus\mathfrak{su}(p-a,q)\oplus\mathfrak{t}), 1 \leq a \leq p-1, 1 \leq q \text{ and } T=iZ_a.$
- (2) $(\mathfrak{su}(p,q),\mathfrak{su}(p,b)\oplus\mathfrak{su}(q-b)\oplus\mathfrak{t}), 1 \leq p, 1 \leq b \leq q-1 \text{ and } T = iZ_{p+b}.$ (3) $(\mathfrak{su}(p,q),\mathfrak{su}(a,b)\oplus\mathfrak{su}(p-a,q-b)\oplus\mathfrak{t}), 1 \leq a \leq p-1, 1 \leq b \leq q-1 \text{ and}$
- $T = i(Z_a Z_p + Z_{p+b}).$

Here we refer to (aiii.2) for Z_j $(1 \le j \le p+q-1)$.

3.2.3. BI. Let $\mathfrak{g}_{\mathbb{C}}$ be the classical complex simple Lie algebra of the type B_n $(n \geq 3)$. Assume that the Dynkin diagram of $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ is as follows:

(b.1)
$$\Pi_{\triangle}: \begin{array}{c} \bigcirc 1 \\ \alpha_1 \end{array} \xrightarrow{2} \alpha_2 \end{array} \xrightarrow{2} \alpha_3 \end{array} \cdots \xrightarrow{2} \alpha_{n-1} \xrightarrow{2} \alpha_n$$

(cf. Bourbaki [7, p.267]). Taking Chevalley's canonical basis $\{H_{\alpha_{\ell}}^*\}_{\ell=1}^n \cup \{E_{\alpha} \mid \alpha \in \Delta\}$ of $\mathfrak{g}_{\mathbb{C}}$, we construct a compact real form $\mathfrak{g}_u \subset \mathfrak{g}_{\mathbb{C}}$ from

(b.2)
$$\begin{cases} \mathfrak{h}_{\mathbb{R}} := \operatorname{span}_{\mathbb{R}} \{ H^*_{\alpha_{\ell}} \}_{\ell=1}^n, \\ \mathfrak{g}_u := i \mathfrak{h}_{\mathbb{R}} \oplus \bigoplus_{\alpha \in \Delta} \operatorname{span}_{\mathbb{R}} \{ E_{\alpha} - E_{-\alpha} \} \oplus \operatorname{span}_{\mathbb{R}} \{ i(E_{\alpha} + E_{-\alpha}) \}. \end{cases}$$

Denote by $\{Z_\ell\}_{\ell=1}^n \ (\subset \mathfrak{h}_{\mathbb{R}})$ the dual basis of $\Pi_{\triangle} = \{\alpha_\ell\}_{\ell=1}^n$ and set an inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ as

(bi.1)
$$\theta := \exp \pi \operatorname{ad} i Z_k,$$

where $1 \leq k \leq n$. Then θ is involutive, and (b.2) yields $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$, so we can consider the decomposition $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ of \mathfrak{g}_u with respect to θ and construct a noncompact real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ from $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$. Here we remark that $\mathfrak{g}_{\mathbb{C}} = \mathfrak{so}(2n+1,\mathbb{C})$, $\mathfrak{g}_u = \mathfrak{so}(2n+1), \mathfrak{g} = \mathfrak{so}(2k, 2n-2k+1)$ and $i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k}$, and that

$$\{ \alpha_q \}_{q=2}^n \ (k=1), \\ \{ \alpha_a \}_{a=1}^{k-1} \cup \{ \alpha_b \}_{b=k+1}^n \cup \{ -\tilde{\alpha} \} \ (2 \le k \le n-1) \text{ and } \\ \{ \alpha_p \}_{p=1}^{n-1} \cup \{ -\tilde{\alpha} \} \ (k=n)$$

are fundamental root systems of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ whose Dynkin diagrams are

respectively, where $\tilde{\alpha} := \alpha_1 + 2 \sum_{q=2}^n \alpha_q$ and $\mathfrak{k}_{\mathbb{C}} = \{X \in \mathfrak{g}_{\mathbb{C}} | \theta(X) = X\}$. In this setting we prove

Proposition 3.9 (BI). The supposition (S) in Proposition 2.7 holds for the following pseudo-Hermitian symmetric Lie algebras $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$:

- (1) $(\mathfrak{so}(2k, 2n-2k+1), \mathfrak{so}(2k-2, 2n-2k+1) \oplus \mathfrak{t}), n \ge 3, 2 \le k \le n$ and $T = i(Z_{k-1} Z_k).$
- (2) $(\mathfrak{so}(2k, 2n-2k+1), \mathfrak{so}(2k, 2n-2k-1) \oplus \mathfrak{t}), 1 \leq k \leq n-2 \text{ and } T = i(-Z_k + Z_{k+1}).$

Here $\{Z_{\ell}\}_{\ell=1}^{n}$ stands for the dual basis of $\{\alpha_{\ell}\}_{\ell=1}^{n}$ in (b.1) and we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{so}(2k, 2n - 2k + 1)$ from (b.2) and (bi.1).

Remark 3.10 (BI). In case of (2) with k = n - 1, we do not know whether $(\mathfrak{so}(2k, 2n - 2k + 1), \mathfrak{so}(2k, 2n - 2k - 1) \oplus \mathfrak{t}) = (\mathfrak{so}(2n - 2, 3), \mathfrak{so}(2n - 2, 1) \oplus \mathfrak{t})$ satisfies the supposition (S) or not.

Proof of Proposition 3.9. (1). Let

$$\beta_a := \alpha_{k-a} \text{ for } 1 \le a \le k-1,$$

$$\beta_k := -\sum_{c=1}^k \alpha_c - 2\sum_{b=k+1}^n \alpha_b,$$

$$\beta_b := \alpha_b \text{ for } k+1 \le b \le n,$$

where the above implies $\beta_a = \alpha_{n-a}$ $(1 \le a \le n-1)$ and $\beta_n = -\sum_{c=1}^n \alpha_c$ in case of k = n. Then it turns out that $\Pi_1 := \{\beta_\ell\}_{\ell=1}^n$ is a fundamental root system of Δ whose Dynkin diagram is

(bi-1)
$$\Pi_1: \begin{array}{c} 0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_3 \\ \beta_3 \\ \beta_3 \\ 0 \\ \beta_n \\ \beta_n$$

Besides, $\alpha_a(Z_b) = \delta_{a,b}$ yields $\beta_\ell(-iT) = \beta_\ell(Z_{k-1} - Z_k) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le n$, and thus the (s1) in Proposition 2.7 holds for the $\Pi_1 = \{\beta_\ell\}_{\ell=1}^n$. It follows from (bi.1) and $\alpha_a(Z_b) = \delta_{a,b}$ that $\theta(E_{\alpha_{k-1}}) = E_{\alpha_{k-1}}$, which enables us to obtain

$$\mathfrak{g}_{\beta_1} = \mathfrak{g}_{\alpha_{k-1}} = \operatorname{span}_{\mathbb{C}} \{ E_{\alpha_{k-1}} \} \subset \{ X \in \mathfrak{g}_{\mathbb{C}} \, | \, \theta(X) = X \} = \mathfrak{k}_{\mathbb{C}}.$$

This assures that the (s2) in Proposition 2.7 also holds for Π_1 . Incidentally, (bi-1), (bi.2), $T = i(Z_{k-1} - Z_k)$ and $\alpha_a(Z_b) = \delta_{a,b}$ give rise to $\mathfrak{c}_{\mathfrak{g}_u}(T) = \mathfrak{so}(2n-1) \oplus \mathfrak{t}$, $\mathfrak{c}_{\mathfrak{t}}(T) = \mathfrak{so}(2k-2) \oplus \mathfrak{so}(2n-2k+1) \oplus \mathfrak{t}$, and $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{so}(2k-2, 2n-2k+1) \oplus \mathfrak{t}$. cf. Corollary 3.6 in [2, p.1142].

(2). Setting

$$\beta_s := \alpha_{k+s} \text{ for } 1 \le s \le n-k-1,$$

$$\beta_{n-k} := -\sum_{p=1}^{n-1} \alpha_p,$$

$$\beta_t := \alpha_{t-n+k} \text{ for } n-k+1 \le t \le n-1,$$

$$\beta_n := \sum_{d=k}^n \alpha_d,$$

we deduce that $\Pi_2 := \{\beta_\ell\}_{\ell=1}^n$ is a fundamental root system of \triangle whose Dynkin diagram is

(bi-2)
$$\Pi_2: \quad \underset{\beta_1}{\circ} \frac{1}{\beta_2} \underbrace{\beta_2}{\beta_3} \frac{2}{\beta_3} \cdots \underbrace{\beta_{n-1}}{\beta_{n-1}} \underbrace{\beta_n}{\beta_n}^2$$

By $\alpha_a(Z_b) = \delta_{a,b}$ and $T = i(-Z_k + Z_{k+1})$ we conclude $\beta_\ell(-iT) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le n$. One can complete the rest of proof, in a similar way to (1).³

3.2.4. *CII*. Denote by $\mathfrak{g}_{\mathbb{C}}$ the classical complex simple Lie algebra of the type C_{p+q} $(p,q \geq 1)$, and assume that the Dynkin diagram of $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ is as follows:

(c.1)
$$\Pi_{\Delta}: \begin{array}{c} \bigcirc^2 & \bigcirc^2 & \bigcirc^2 & \cdots & & \swarrow^2 & \bigcirc^1 \\ \alpha_1 & \alpha_2 & \alpha_3 & \cdots & & \alpha_{p+q-1} & \alpha_{p+q} \end{array}$$

(cf. Bourbaki [7, p.269]). We take Chevalley's canonical basis $\{H_{\alpha_{\ell}}^*\}_{\ell=1}^{p+q} \cup \{E_{\alpha} \mid \alpha \in \Delta\}$ of $\mathfrak{g}_{\mathbb{C}}$ and construct a compact real form $\mathfrak{g}_u \subset \mathfrak{g}_{\mathbb{C}}$ from

(c.2)
$$\begin{cases} \mathfrak{h}_{\mathbb{R}} := \operatorname{span}_{\mathbb{R}} \{ H^*_{\alpha_{\ell}} \}_{\ell=1}^{p+q}, \\ \mathfrak{g}_u := i \mathfrak{h}_{\mathbb{R}} \oplus \bigoplus_{\alpha \in \Delta} \operatorname{span}_{\mathbb{R}} \{ E_{\alpha} - E_{-\alpha} \} \oplus \operatorname{span}_{\mathbb{R}} \{ i (E_{\alpha} + E_{-\alpha}) \}. \end{cases}$$

In addition, let us take the dual basis $\{Z_\ell\}_{\ell=1}^{p+q}$ of $\Pi_{\triangle} = \{\alpha_\ell\}_{\ell=1}^{p+q}$ and define an involutive inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by

(cii.1)
$$\theta := \exp \pi \operatorname{ad} i Z_p.$$

Since $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$, one has the decomposition $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ of \mathfrak{g}_u with respect to θ and a non-compact real form $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g}_{\mathbb{C}}$. Then it follows that $\mathfrak{g}_{\mathbb{C}} = \mathfrak{sp}(p+q,\mathbb{C})$, $\mathfrak{g}_u = \mathfrak{sp}(p+q), \ \mathfrak{g} = \mathfrak{sp}(p,q)$ and $i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k}$, and that $\{\alpha_a\}_{a=1}^{p-1} \cup \{\alpha_b\}_{b=p+1}^{p+q} \cup \{-\tilde{\alpha}\}$ is a fundamental root system of $\Delta(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ and its Dynkin diagram is

(cii.2)
$$(\alpha_{n-1})^{\underline{2}} \cdots (\alpha_{p-2})^{\underline{2}} \alpha_{p-1}^{\underline{2}} \alpha_{p+1}^{\underline{2}} \alpha_{p+2}^{\underline{2}} \cdots (\alpha_{p+q-1})^{\underline{2}} \alpha_{p+q}^{\underline{2}},$$

where $\tilde{\alpha} := \alpha_{p+q} + 2 \sum_{c=1}^{p+q-1} \alpha_c$. Now, we are in a position to demonstrate

³Remark. If k = n - 1, then the system Π_2 consists of $\beta_1 = -\sum_{p=1}^{n-1} \alpha_p$, $\beta_t = \alpha_{t-1}$ $(2 \le t \le n-1)$ and $\beta_n = \alpha_{n-1} + \alpha_n$; thus the (s2) in Proposition 2.7 cannot hold for Π_2 .

Proposition 3.11 (CII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{sp}(p,q), \mathfrak{su}(p,q) \oplus \mathfrak{t})$ satisfies the (S) in Proposition 2.7. Here $p, q \geq 1$, we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{sp}(p,q)$ from (c.2) and (cii.1), and put $T = i(-Z_p + Z_{p+q})$, where $\{Z_\ell\}_{\ell=1}^{p+q}$ is the dual basis of $\{\alpha_\ell\}_{\ell=1}^{p+q}$ in (c.1).

Proof. Let

$$\begin{split} \beta_j &:= \alpha_{p+j} \text{ for } 1 \leq j \leq q-1, \\ \beta_q &:= \sum_{k=p}^{p+q} \alpha_k, \\ \beta_h &:= \alpha_{p+q-h} \text{ for } q+1 \leq h \leq p+q-1, \\ \beta_{p+q} &:= -\alpha_{p+q} - 2 \sum_{c=1}^{p+q-1} \alpha_c. \end{split}$$

Then $\Pi' := \{\beta_\ell\}_{\ell=1}^{p+q}$ is a fundamental root system of \triangle ,

(cii)
$$\Pi': \quad \beta_1 \stackrel{2}{\longrightarrow} \beta_2 \stackrel{2}{\longrightarrow} \beta_3 \stackrel{2}{\longrightarrow} \cdots \quad - \stackrel{2}{\longrightarrow} \beta_{p+q-1} \stackrel{1}{\longrightarrow} \beta_{p+q} \stackrel{1}{\longrightarrow} \beta_{p+q-1} \stackrel{1}{\longrightarrow} \beta_{p$$

and it follows from $\alpha_a(Z_b) = \delta_{a,b}$ that $\beta_\ell(-iT) = \beta_\ell(-Z_p + Z_{p+q}) = \delta_{\ell,p+q} \ge 0$ for all $1 \le \ell \le p+q$, so that the (s1) in Proposition 2.7 holds for $\Pi' = \{\beta_\ell\}_{\ell=1}^{p+q}$. Furthermore, it follows from (cii.1) and $1 \le p \le p+q-1$ that

$$\mathfrak{g}_{\beta_{p+q}} = \mathfrak{g}_{-2\alpha_1 - \dots - 2\alpha_{p+q-1} - \alpha_{p+q}} = \operatorname{span}_{\mathbb{C}} \{ E_{-2\alpha_1 - \dots - 2\alpha_{p+q-1} - \alpha_{p+q}} \} \subset \mathfrak{k}_{\mathbb{C}}.$$

Thus the (s2) in Proposition 2.7 also holds for Π' . From (cii), (cii.2), $T = i(-Z_p + Z_{p+q})$ and $\alpha_a(Z_b) = \delta_{a,b}$ we obtain $\mathfrak{c}_{\mathfrak{g}_u}(T) = \mathfrak{su}(p+q) \oplus \mathfrak{t}$, $\mathfrak{c}_{\mathfrak{k}}(T) = \mathfrak{su}(p) \oplus \mathfrak{su}(q) \oplus \mathfrak{t}^2$, and $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{su}(p,q) \oplus \mathfrak{t}$.

Remark 3.12 (CII). $(\mathfrak{sp}(1,1),\mathfrak{su}(1,1)\oplus\mathfrak{t}) = (\mathfrak{so}(4,1),\mathfrak{so}(2,1)\oplus\mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. cf. Proposition 3.9-(1).

3.2.5. *DI*. Let
$$\mathfrak{g}_{\mathbb{C}} := \mathfrak{so}(2n, \mathbb{C}) = \{A \in \mathfrak{gl}(2n, \mathbb{C}) \mid {}^tA = -A\},$$

$$\begin{split} \mathfrak{g} &:= \mathfrak{so}(p, 2n-p) = \left\{ \begin{pmatrix} K_1 & iD \\ -i^t D & K_2 \end{pmatrix} \middle| \begin{array}{l} K_1 \in \mathfrak{so}(p), D : p \times (2n-p) \text{ real matrix}, \\ K_2 \in \mathfrak{so}(2n-p) \end{pmatrix} \right\}, \\ \mathfrak{k} &:= \left\{ \begin{pmatrix} K_1 & O \\ O & K_2 \end{pmatrix} \middle| \begin{array}{l} K_1 \in \mathfrak{so}(p), K_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \end{pmatrix} \right\}, \\ \mathfrak{p} &:= \left\{ \begin{pmatrix} O & iD \\ -i^t D & O \end{pmatrix} \middle| \begin{array}{l} D : p \times (2n-p) \text{ real matrix} \\ R_1 \in \mathfrak{so}(p), K_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \end{pmatrix} \right\}, \\ i\mathfrak{h}_{\mathbb{R}} &:= \left\{ \begin{pmatrix} O & iD \\ -i^t D & O \\ -x_1 & 0 \\ 0 & -x_1 & 0 \\ 0 & -x_n & 0 \end{pmatrix} \middle| \begin{array}{l} x_1, x_2, \dots, x_n \in \mathbb{R} \\ R_1 \in \mathbb{R} \\ R_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_2 \in \mathfrak{so}(2n-p) \\ R_1 \in \mathfrak{so}(2n-p) \\ R_2 \in$$

where $n \ge 4$, $p \ge 1$ and $2n-p \ge 1$, and we note that the above notation $\mathfrak{so}(p, 2n-p)$ is different from Helgason's [8, p.446], but our Lie algebra $\mathfrak{so}(p, 2n-p)$ is isomorphic

to Helgason's one. Here it follows that $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g} , that $i\mathfrak{h}_{\mathbb{R}}$ is a maximal torus of $\mathfrak{g}_u := \mathfrak{k} \oplus i\mathfrak{p}$, and that

(di.1)
$$\mathfrak{t}_{\mathbb{C}} = \left\{ \begin{pmatrix} B_1 & O \\ O & B_2 \end{pmatrix} \middle| B_1 \in \mathfrak{so}(p, \mathbb{C}), B_2 \in \mathfrak{so}(2n-p, \mathbb{C}) \right\}.$$

Following the notation in Helgason [8, p.187] we put

$$(\text{di.2}) \quad \begin{cases} H_{\ell} := E_{2\ell-1,2\ell} - E_{2\ell,2\ell-1} \text{ for } 1 \leq \ell \leq n, \\ F_{a,b} := E_{a,b} - E_{b,a} \text{ for } 1 \leq a \neq b \leq 2n, \\ G_{k,j}^+ := F_{2k-1,2j-1} + F_{2k,2j} + i(F_{2k-1,2j} - F_{2k,2j-1}) \text{ for } 1 \leq k \neq j \leq n, \\ G_{k,j}^- := F_{2k-1,2j-1} - F_{2k,2j} + i(F_{2k-1,2j} + F_{2k,2j-1}) \text{ for } 1 \leq k < j \leq n, \\ G_{j,k}^- := F_{2k-1,2j-1} - F_{2k,2j} - i(F_{2k-1,2j} + F_{2k,2j-1}) \text{ for } 1 \leq k < j \leq n. \end{cases}$$

Since $\mathfrak{h}_{\mathbb{C}} = \operatorname{span}_{\mathbb{C}} \{H_{\ell}\}_{\ell=1}^n$ one can define linear mappings $\alpha_r, \alpha_n : \mathfrak{h}_{\mathbb{C}} \to \mathbb{C}$ by

$$\alpha_r \left(\sum_{\ell=1}^n z_\ell H_\ell \right) := -i(z_r - z_{r+1}) \text{ for } 1 \le r \le n-1, \\ \alpha_n \left(\sum_{\ell=1}^n z_\ell H_\ell \right) := -i(z_{n-1} + z_n),$$

respectively. Then it turns out that $[H, G_{r,r+1}^+] = \alpha_r(H)G_{r,r+1}^+$ $(1 \le r \le n-1)$, $[H, G_{n,n-1}^-] = \alpha_n(H)G_{n,n-1}^-$ for all $H \in \mathfrak{h}_{\mathbb{C}}$, and that $\Pi_{\Delta} := \{\alpha_\ell\}_{\ell=1}^n$ is a fundamental root system of $\Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ and its dual basis $\{Z_\ell\}_{\ell=1}^n$ ($\subset \mathfrak{h}_{\mathbb{R}}$) is as follows:

(di.3)
$$\begin{cases} Z_s = i(H_1 + H_2 + \dots + H_s) \text{ for } 1 \le s \le n-2, \\ Z_{n-1} = (i/2)(-H_n + \sum_{r=1}^{n-1} H_r), \quad Z_n = (i/2) \sum_{\ell=1}^n H_\ell \end{cases}$$

Remark that the Dynkin diagram of $\Pi_{\triangle} = \{\alpha_{\ell}\}_{\ell=1}^{n}$ is $\alpha_{n-1} \cap 1$

$$\Pi_{\triangle}: \begin{array}{c} \bigcirc 1 \\ \alpha_1 \end{array} \begin{array}{c} 2 \\ \alpha_2 \end{array} \begin{array}{c} \bigcirc 2 \\ \alpha_3 \end{array} \begin{array}{c} \ddots \\ \ddots \\ \end{array} \begin{array}{c} \frown \\ \alpha_{n-2} \end{array} \begin{array}{c} 2 \\ \alpha_n \end{array} \begin{array}{c} 1 \\ \alpha_{n-2} \end{array} \begin{array}{c} 1 \\ \alpha_n \end{array}$$

In this setting we establish

Proposition 3.13 (DI-1). The supposition (S) in Proposition 2.7 holds for the following pseudo-Hermitian, non-Hermitian symmetric Lie algebras $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$:

- (1) $(\mathfrak{so}(p, 2n p), \mathfrak{so}(p 2, 2n p) \oplus \mathfrak{t}), n \ge 4, p \ge 4, 2n p \ge 1$ and $T = iZ_1 = -H_1.$
- (2) $(\mathfrak{so}(p, 2n p), \mathfrak{so}(p, 2n p 2) \oplus \mathfrak{t}), n \ge 4, p \ge 1, 2n p \ge 4$ and $T = i(Z_{n-1} Z_n) = H_n.$

Here we refer to (di.3), (di.2) for Z_{ℓ} , H_{ℓ} $(1 \leq \ell \leq n)$.

Remark 3.14 (DI-1). We do not know whether the following two pseudo-Hermitian symmetric Lie algebras satisfy the supposition (S) or not:

- $(\mathfrak{so}(p,2n-p),\mathfrak{so}(p-2,2n-p)\oplus\mathfrak{t}) = (\mathfrak{so}(3,2n-3),\mathfrak{so}(1,2n-3)\oplus\mathfrak{t})$ in case of (1) with p=3,
- $(\mathfrak{so}(p,2n-p),\mathfrak{so}(p,2n-p-2)\oplus\mathfrak{t}) = (\mathfrak{so}(2n-3,3),\mathfrak{so}(2n-3,1)\oplus\mathfrak{t})$ in case of (2) with 2n-p=3.

Poof of Proposition 3.13. (1). In view of $\alpha_a(Z_b) = \delta_{a,b}$ we see that $\alpha_\ell(-iT) = \alpha_\ell(Z_1) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le n$. Furthermore, (di.1) and $p \ge 4$ give rise to

$$\mathfrak{g}_{\alpha_1} = \operatorname{span}_{\mathbb{C}} \{ G_{1,2}^+ \} \subset \mathfrak{k}_{\mathbb{C}}.$$

Therefore the (s1) and (s2) in Proposition 2.7 hold for the $\Pi_{\triangle} = \{\alpha_{\ell}\}_{\ell=1}^{n}$. By a direct computation with $T = -H_1$, one obtains $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{so}(p-2, 2n-p) \oplus \mathfrak{t}$, where we remark that $H_1 \in (\mathfrak{k} \cap i\mathfrak{h}_{\mathbb{R}}) \subset \mathfrak{g}$ comes from $p \geq 2$.

(2). Set

$$\beta_r := \alpha_{n-r} \text{ for } 1 \le r \le n-1,$$

$$\beta_n := -\alpha_1 - 2\sum_{c=2}^{n-2} \alpha_c - \alpha_{n-1} - \alpha_n$$

Then, $\Pi' := \{\beta_\ell\}_{\ell=1}^n$ is a fundamental root system of $\triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ whose Dynkin diagram is

$$\Pi': \quad \underset{\beta_1}{\circ} \underbrace{\overset{1}{\underset{\beta_2}{\circ}} \underbrace{\overset{2}{\underset{\beta_3}{\circ}} \underbrace{\overset{2}{\underset{\beta_3}{\circ}} \underbrace{\overset{2}{\underset{\beta_3}{\circ}} \ldots \underbrace{\overset{\beta_{n-1}}{\underset{\beta_{n-2}}{\circ}} \underbrace{\overset{1}{\underset{\beta_n}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\circ}} \underbrace{\overset{1}{\underset{\beta_n}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\circ}} \underbrace{\overset{2}{\underset{\beta_n}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\ldots{\beta_{n-2}}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\ldots{\beta_{n-2}}{\circ}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\ldots{\beta_{n-2}}{\ldots{\beta_{n-2}}{\ldots{\beta_{n-2}}}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\ldots{\beta_{n-2}}{\ldots{\beta_{n-2}}} \underbrace{\overset{2}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}{\ldots{\beta_{n-2}}{\ldots{\beta_{n-2}}}} \underbrace{1}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}}} \underbrace{1}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}}} \underbrace{1}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}{\underset{\beta_{n-2}}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}} \underbrace{1}{\underset{\beta_{n-2}}}$$

and it follows from $T = i(Z_{n-1} - Z_n)$ and $\alpha_a(Z_b) = \delta_{a,b}$ that $\beta_\ell(-iT) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le n$, so that the (s1) in Proposition 2.7 holds for the $\Pi' = \{\beta_\ell\}_{\ell=1}^n$. Moreover, (di.1) and $2n - p \ge 4$ yield $\mathfrak{g}_{\beta_1} = \mathfrak{g}_{\alpha_{n-1}} = \operatorname{span}_{\mathbb{C}}\{G_{n-1,n}^+\} \subset \mathfrak{k}_{\mathbb{C}}$. Thus the (s2) in Proposition 2.7 also holds for $\Pi' = \{\beta_\ell\}_{\ell=1}^n$.

Now, let p = 2m. Then we have $\mathfrak{g} = \mathfrak{so}(2m, 2n - 2m)$ and

Proposition 3.15 (DI-2). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{so}(2m, 2n-2m), \mathfrak{su}(m, n-m) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7, where $n \geq 4$, $m \geq 1$, $n-m \geq 2$ and $T = iZ_n = (-1/2) \sum_{\ell=1}^n H_\ell$. Here we refer to (di.3), (di.2) for Z_ℓ , H_ℓ $(1 \leq \ell \leq n)$.

Proof. By a direct computation one obtains $\alpha_{\ell}(-iT) = \alpha_{\ell}(Z_n) = \delta_{\ell,n} \ge 0$ for all $1 \le \ell \le n$, and it follows from (di.2), $2n - 2m \ge 4$ and (di.1) with p = 2m that

$$\mathfrak{g}_{\alpha_n} = \operatorname{span}_{\mathbb{C}} \{ G_{n,n-1}^{-} \} \subset \mathfrak{k}_{\mathbb{C}}.$$

Therefore the (s1) and (s2) in Proposition 2.7 hold for $\Pi_{\triangle} = \{\alpha_{\ell}\}_{\ell=1}^{n}$.

3.2.6. DIII. Let $\mathfrak{g}_{\mathbb{C}}$ be the classical complex simple Lie algebra of the type D_n $(n \geq 3)$. Let us assume that the Dynkin diagram of $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ is

(diii.1)
$$\Pi_{\Delta}: \begin{array}{c} \underset{\alpha_{1}}{\underset{\alpha_{2}}{\overset{\circ}{\longrightarrow}}} \\ \end{array} \\ \begin{array}{c} \alpha_{2} \\ \alpha_{3} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \alpha_{n-1} \\ \alpha_{n-2} \\ \end{array} \\ \begin{array}{c} \alpha_{n-2} \\ \alpha_{n-2} \\ \alpha_{n-2} \end{array} \\ \begin{array}{c} \alpha_{n-2} \\ \alpha_{n-2} \\ \alpha_{n-2} \\ \end{array} \\ \begin{array}{c} \alpha_{n-2} \\ \alpha_{n-2} \\ \alpha_{n-2} \\ \end{array} \\ \begin{array}{c} \alpha_{n-2} \\ \alpha$$

(cf. Bourbaki [7, p.271]), take Chevalley's canonical basis $\{H_{\alpha_{\ell}}^*\}_{\ell=1}^n \cup \{E_{\alpha} \mid \alpha \in \Delta\}$ of $\mathfrak{g}_{\mathbb{C}}$ and define a compact real form $\mathfrak{g}_u \subset \mathfrak{g}$ by

(diii.2)
$$\begin{cases} \mathfrak{h}_{\mathbb{R}} := \operatorname{span}_{\mathbb{R}} \{H_{\alpha_{\ell}}^{*}\}_{\ell=1}^{n}, \\ \mathfrak{g}_{u} := i\mathfrak{h}_{\mathbb{R}} \oplus \bigoplus_{\alpha \in \Delta} \operatorname{span}_{\mathbb{R}} \{E_{\alpha} - E_{-\alpha}\} \oplus \operatorname{span}_{\mathbb{R}} \{i(E_{\alpha} + E_{-\alpha})\}; \end{cases}$$

in addition, denote by $\{Z_\ell\}_{\ell=1}^n \ (\subset \mathfrak{h}_{\mathbb{R}})$ the dual basis of $\Pi_{\Delta} = \{\alpha_\ell\}_{\ell=1}^n$. We are going to set a non-compact real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$. In order to do so, we first construct an involutive inner automorphism θ of \mathfrak{g} from

(diii.3)
$$\theta := \exp \pi \operatorname{ad} i Z_n.$$

Then (diii.2) tells us that \mathfrak{g}_u is stable under θ , so one can obtain the decomposition $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ of \mathfrak{g}_u with respect to θ and set a non-compact real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ as follows: $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$. Here it turns out that

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{so}(2n,\mathbb{C}), \quad \mathfrak{g}_u = \mathfrak{so}(2n), \quad \mathfrak{k} = \mathfrak{u}(n), \quad \mathfrak{g} = \mathfrak{so}^*(2n), \quad i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k} = (\mathfrak{g}_u \cap \mathfrak{g}),$$

and that $\{\alpha_j\}_{j=1}^{n-1}$ is a fundamental root system of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ whose Dynkin diagram is

(diii.4)
$$\underbrace{\alpha_{1}}^{\alpha_{1}} \underbrace{\alpha_{2}}^{\alpha_{2}} \underbrace{\alpha_{3}}^{\alpha_{3}} \cdots \underbrace{\alpha_{n-1}}^{\alpha_{n-1}}_{\alpha_{n-2}} 1$$

where $\mathfrak{k}_{\mathbb{C}} = \{X \in \mathfrak{g}_{\mathbb{C}} \mid \theta(X) = X\}$. Now, let us demonstrate

Proposition 3.16 (DIII). The supposition (S) in Proposition 2.7 holds for the following pseudo-Hermitian, non-Hermitian symmetric Lie algebras $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$:

- (1) $(\mathfrak{so}^*(2n), \mathfrak{su}(k, n-k) \oplus \mathfrak{t}), 1 \le k \le n-2 \text{ and } T = i(Z_k Z_n).$ (2) $(\mathfrak{so}^*(2n), \mathfrak{so}^*(2n-2) \oplus \mathfrak{t}), n \ge 3 \text{ and } T = iZ_1.$

Here $\{Z_\ell\}_{\ell=1}^n$ is the dual basis of $\{\alpha_\ell\}_{\ell=1}^n$ in (diii.1) and we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{so}^*(2n)$ from (diii.2) and (diii.3).

Proof. (1). We set

$$\beta_a := -\alpha_{k+1+a} \text{ for } 1 \le a \le n-k-2,$$

$$\beta_{n-k-1} := -\sum_{s=1}^{n-2} \alpha_s - \alpha_n,$$

$$\beta_b := \alpha_{b-n+k+1} \text{ for } n-k \le b \le n-1,$$

$$\beta_n := \alpha_k + 2\sum_{c=k+1}^{n-2} \alpha_c + \alpha_{n-1} + \alpha_n,$$

where the above implies $\beta_1 = -\sum_{s=1}^{n-2} \alpha_s - \alpha_n$, $\beta_b = \alpha_{b-1}$ $(2 \leq b \leq n-1)$, $\beta_n = \alpha_{n-2} + \alpha_{n-1} + \alpha_n$ in case of k = n-2. Then $\Pi_1 := \{\beta_\ell\}_{\ell=1}^n$ is a fundamental root system of \triangle whose Dynkin diagram is

In view of $\alpha_a(Z_b) = \delta_{a,b}$ we see that $\beta_\ell(-iT) = \beta_\ell(Z_k - Z_n) = \delta_{\ell,n-1} \ge 0$ for all $1 \leq \ell \leq n$. Accordingly the (s1) in Proposition 2.7 holds for the $\Pi_1 = \{\beta_\ell\}_{\ell=1}^n$. From (diii.3) and $k \neq n$ we deduce that

$$\mathfrak{g}_{\beta_{n-1}}=\mathfrak{g}_{\alpha_k}\subset\mathfrak{k}_{\mathbb{C}},$$

and therefore the (s2) in Proposition 2.7 also holds for $\Pi_1 = \{\beta_\ell\}_{\ell=1}^n$. It is easy to see that $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{su}(k, n-k) \oplus \mathfrak{t}$ by virtue of $\alpha_a(Z_b) = \delta_{a,b}, T = i(Z_k - Z_n)$, (diii-1) and (diii.4).

(2). One can show (2) by fixing the $\Pi_{\triangle} = \{\alpha_{\ell}\}_{\ell=1}^{n}$ in (diii.1).

3.2.7. *EII* & *EIII*. Let us denote by $\mathfrak{g}_{\mathbb{C}}$ the exceptional complex simple Lie algebra of the type E_6 , and assume that the Dynkin diagram of $\triangle = \triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ is as follows (cf. Bourbaki [7, p.276]):

(e6.1)
$$\Pi_{\triangle}: \begin{array}{c} \alpha_{2} \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{2} \\ \alpha_{2} \\ \alpha_{5} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{5} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{5} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{5} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \\ \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{1} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \\ \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \begin{array}{c} \alpha_{2} \end{array} \end{array} \begin{array}{c} \alpha_{2} \end{array}$$

Taking Chevalley's canonical basis $\{H_{\alpha_{\ell}}^*\}_{\ell=1}^6 \cup \{E_{\alpha} \mid \alpha \in \Delta\}$ of $\mathfrak{g}_{\mathbb{C}}$ into account, one can construct a compact real form $\mathfrak{g}_u \subset \mathfrak{g}_{\mathbb{C}}$ from

(e6.2)
$$\begin{cases} \mathfrak{h}_{\mathbb{R}} := \operatorname{span}_{\mathbb{R}} \{H_{\alpha_{\ell}}^{*}\}_{\ell=1}^{6}, \\ \mathfrak{g}_{u} := i\mathfrak{h}_{\mathbb{R}} \oplus \bigoplus_{\alpha \in \Delta} \operatorname{span}_{\mathbb{R}} \{E_{\alpha} - E_{-\alpha}\} \oplus \operatorname{span}_{\mathbb{R}} \{i(E_{\alpha} + E_{-\alpha})\}; \end{cases}$$

and then we denote by $\{Z_\ell\}_{\ell=1}^6 \ (\subset \mathfrak{h}_{\mathbb{R}})$ the dual basis of $\Pi_{\Delta} = \{\alpha_\ell\}_{\ell=1}^6$. In this setting, we are going to consider the following four simple irreducible pseudo-Hermitian (non-Hermitian) symmetric Lie algebras:

(EII-1) $(\mathfrak{e}_{6(2)}, \mathfrak{so}(6, 4) \oplus \mathfrak{t}),$ (EII-2) $(\mathfrak{e}_{6(2)}, \mathfrak{so}^*(10) \oplus \mathfrak{t}),$ (EIII-1) $(\mathfrak{e}_{6(-14)}, \mathfrak{so}^*(10) \oplus \mathfrak{t}),$ (EIII-2) $(\mathfrak{e}_{6(-14)}, \mathfrak{so}(8, 2) \oplus \mathfrak{t}).$

• Case (EII-1). Define an inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by

(eii.1)
$$\theta := \exp \pi \operatorname{ad} i(Z_2 + Z_3 + Z_5).$$

Then it turns out that θ is involutive and $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$. Let $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ denote the decomposition of \mathfrak{g}_u with respect to θ , and let $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$. Setting

$$\gamma_1 := \alpha_2 + \alpha_3 + \alpha_4,$$

$$\gamma_2 := \alpha_1,$$

$$\gamma_3 := \alpha_3 + \alpha_4 + \alpha_5,$$

$$\gamma_4 := \alpha_6,$$

$$\gamma_5 := \alpha_2 + \alpha_4 + \alpha_5,$$

$$\gamma_6 := \alpha_4,$$

we deduce that $\{\gamma_{\ell}\}_{\ell=1}^{6}$ is a fundamental root system of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ and its Dynkin diagram is

(eii.2)
$$\begin{array}{c} \circ \overset{1}{\gamma_{1}} \circ \overset{1}{\gamma_{2}} \circ \overset{1}{\gamma_{3}} \circ \overset{1}{\gamma_{4}} \circ \overset{1}{\gamma_{5}} \circ \overset{1}{\gamma_{6}}, \end{array}$$

where $\mathfrak{k}_{\mathbb{C}} = \{X \in \mathfrak{g}_{\mathbb{C}} | \theta(X) = X\}$. Therefore it follows that $\mathfrak{k} = \mathfrak{su}(6) \oplus \mathfrak{su}(2)$ and $\mathfrak{g} = \mathfrak{e}_{6(2)}$. Now, put

$$T := iZ_1.$$

Then $T \in i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k} = (\mathfrak{g}_u \cap \mathfrak{g})$, and $\alpha_{\ell}(-iT) = \alpha_{\ell}(Z_1) = \delta_{\ell,1} \geq 0$ for all $1 \leq \ell \leq 6$. This assures that $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$ is a pseudo-Hermitian symmetric Lie algebra, and that T is the canonical central element of $\mathfrak{c}_{\mathfrak{g}}(T)$. Moreover, the (s1) in Proposition 2.7 holds for $\Pi_{\triangle} = \{\alpha_{\ell}\}_{\ell=1}^{6}$. From (eii.1) and $\alpha_{a}(Z_{b}) = \delta_{a,b}$ we see that $\theta(E_{\alpha_{1}}) = E_{\alpha_{1}}$, so that $\mathfrak{g}_{\alpha_1} \subset \mathfrak{k}_{\mathbb{C}}$. Hence, the (s2) in Proposition 2.7 also holds for $\Pi_{\triangle} = \{\alpha_\ell\}_{\ell=1}^6$.

Proposition 3.17 (EII-1). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{q}}(T)) = (\mathfrak{e}_{6(2)}, \mathfrak{so}(6, 4) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{6(2)}$ from (e6.2) and (eii.1), and put $T = iZ_1$, where $\{Z_\ell\}_{\ell=1}^6$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^6$ in (e6.1).

Proof. The rest of proof is confirm that $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{so}(6,4) \oplus \mathfrak{t}$. However, that is immediate from (e6.1), (eii.2), $T = iZ_1$ and $\alpha_a(Z_b) = \delta_{a,b}$.

• Case (EII-2). By arguments similar to those in Case (EII-1), one can assert

Proposition 3.18 (EII-2). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{e}_{6(2)}, \mathfrak{so}^*(10) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{6(2)}$ from (e6.2) and (eii.1), and put $T = i(-Z_4 + Z_5)$, where $\{Z_\ell\}_{\ell=1}^6$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^6$ in (e6.1).

Proof. Setting

$$\begin{split} \beta_{1} &:= -\alpha_{1} - 2\alpha_{2} - 2\alpha_{3} - 3\alpha_{4} - 2\alpha_{5} - \alpha_{6}, \\ \beta_{2} &:= \alpha_{6}, \\ \beta_{3} &:= \alpha_{2}, \\ \beta_{4} &:= \alpha_{4} + \alpha_{5}, \\ \beta_{5} &:= \alpha_{3}, \\ \beta_{6} &:= \alpha_{1} \end{split}$$

and $\Pi' := \{\beta_{\ell}\}_{\ell=1}^{6}$, one has

(eii-2)
$$\Pi': \begin{array}{c} \beta_2 & 2 \\ \beta_1 & \beta_3 & \beta_4 & \beta_5 & \beta_6 \end{array} \\ \Pi': \begin{array}{c} \beta_1 & \beta_2 & \beta_4 & \beta_5 & \beta_6 \end{array}$$

Then, it follows that $\Pi' = \{\beta_\ell\}_{\ell=1}^6$ is a fundamental root system of Δ , and that $\beta_{\ell}(-iT) = \beta_{\ell}(-Z_4 + Z_5) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le 6$. Furthermore, we see that

 ρ

$$\mathfrak{g}_{\beta_1} = \mathfrak{g}_{-\alpha_1 - 2\alpha_2 - 2\alpha_3 - 3\alpha_4 - 2\alpha_5 - \alpha_6} \subset \mathfrak{k}_{\mathbb{C}}$$

in view of (eii.1) and $\alpha_a(Z_b) = \delta_{a,b}$. Consequently the (s1) and (s2) in Proposition 2.7 hold for the $\Pi' = \{\beta_\ell\}_{\ell=1}^6$. We obtain $\mathfrak{c}_\mathfrak{g}(T) = \mathfrak{so}^*(10) \oplus \mathfrak{t}$ from (eii-2), (eii.2), $T = i(-Z_4 + Z_5)$ and $\alpha_a(Z_b) = \delta_{a,b}$.

• Cases (EIII-1) & (EIII-2). Let us define an involutive inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by

(eiii.1)
$$\theta := \exp \pi \operatorname{ad} i(Z_1 - Z_6),$$

denote by $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ the decomposition of \mathfrak{g}_u with respect to θ , and construct a non-compact real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ from $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$, where we note that \mathfrak{g}_u is stable under θ (recall (e6.2) for \mathfrak{g}_u). Setting

$$\begin{split} \gamma_1 &:= -\alpha_1 - 2\alpha_2 - 2\alpha_3 - 3\alpha_4 - 2\alpha_5 - \alpha_6, \\ \gamma_2 &:= \alpha_2, \\ \gamma_3 &:= \alpha_4, \\ \gamma_4 &:= \alpha_3, \\ \gamma_5 &:= \alpha_5, \end{split}$$

we deduce that $\{\gamma_k\}_{k=1}^5$ is a fundamental root system of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ and its Dynkin diagram is

(eiii.2)
$$\begin{array}{c} \gamma_5 & 1\\ \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \end{array}$$

This shows that $\mathfrak{k} = \mathfrak{so}(10) \oplus \mathfrak{t}$, and $\mathfrak{g} = \mathfrak{e}_{6(-14)}$. In this setting we demonstrate two propositions.

Proposition 3.19 (EIII-1). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{e}_{6(-14)}, \mathfrak{so}^*(10) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{6(-14)}$ from (e6.2) and (eiii.1), and put $T = i(Z_1 - Z_3)$, where $\{Z_\ell\}_{\ell=1}^6$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^6$ in (e6.1).

Proof. Set β_{ℓ} $(1 \leq \ell \leq 6)$ as follows:

$$\begin{aligned} \beta_{1} &:= -\alpha_{1} - 2\alpha_{2} - 2\alpha_{3} - 3\alpha_{4} - 2\alpha_{5} - \alpha_{6}, \\ \beta_{2} &:= \alpha_{1} + \alpha_{3}, \\ \beta_{3} &:= \alpha_{2}, \\ \beta_{4} &:= \alpha_{4}, \\ \beta_{5} &:= \alpha_{5}, \\ \beta_{6} &:= \alpha_{6}. \end{aligned}$$

Then we see that $\Pi_1 := \{\beta_\ell\}_{\ell=1}^6$ is a fundamental root system of \triangle , its Dynkin diagram is $\beta_2 \circ 2$

(eiii-1)
$$\Pi_{1}: \begin{array}{c} \beta_{1} & \beta_{3} \\ \beta_{1} & \beta_{3} \end{array} \xrightarrow{\beta_{2}} \beta_{4} \\ \beta_{5} & \beta_{5} \end{array} \xrightarrow{\beta_{6}} \beta_{6} \end{array}$$

and $\beta_{\ell}(-iT) = \beta_{\ell}(Z_1 - Z_3) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le 6$. Moreover, we conclude

$$\mathfrak{g}_{\beta_1} = \mathfrak{g}_{-\alpha_1 - 2\alpha_2 - 2\alpha_3 - 3\alpha_4 - 2\alpha_5 - \alpha_6} \subset \{X \in \mathfrak{g}_{\mathbb{C}} \,|\, \theta(X) = X\} = \mathfrak{k}_{\mathbb{C}}$$

by (eiii.1) and $\alpha_a(Z_b) = \delta_{a,b}$. Therefore the (s1) and (s2) in Proposition 2.7 hold for this $\Pi_1 = \{\beta_\ell\}_{\ell=1}^6$.

Proposition 3.20 (EIII-2). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{e}_{6(-14)}, \mathfrak{so}(8, 2) \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{6(-14)}$ from (e6.2) and (eiii.1), and put $T = i(-Z_3 + Z_5)$, where $\{Z_\ell\}_{\ell=1}^6$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^6$ in (e6.1).

Proof. Setting

$$\begin{split} \beta_1 &:= \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6, \\ \beta_2 &:= \alpha_4, \\ \beta_3 &:= -\alpha_1 - 2\alpha_2 - 2\alpha_3 - 3\alpha_4 - 2\alpha_5 - \alpha_6, \\ \beta_4 &:= \alpha_2, \\ \beta_5 &:= \alpha_3 + \alpha_4 + \alpha_5, \\ \beta_6 &:= \alpha_6, \end{split}$$

we deduce that $\Pi_2 := \{\beta_\ell\}_{\ell=1}^6$ is a fundamental root system of Δ and $\beta_\ell(-iT) = \beta_\ell(-Z_3 + Z_5) = \delta_{\ell,1} \ge 0$ for all $1 \le \ell \le 6$.

 $\beta_2 \cap 2$

(eiii-2)
$$\Pi_{2}: \quad \beta_{1}^{\circ} \xrightarrow{\beta_{1}^{\circ}} \beta_{3}^{\circ} \xrightarrow{\beta_{4}^{\circ}} \beta_{5}^{\circ} \xrightarrow{\beta_{6}^{\circ}} \beta_{6}^{\circ}.$$

In addition, $\mathfrak{g}_{\beta_1} = \mathfrak{g}_{\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6} \subset \mathfrak{k}_{\mathbb{C}}$ due to (eiii.1). Therefore the (s1) and (s2) in Proposition 2.7 hold for $\Pi_2 = \{\beta_\ell\}_{\ell=1}^6$.

3.2.8. EV, EVI & EVII. Denote by $\mathfrak{g}_{\mathbb{C}}$ the exceptional complex simple Lie algebra of the type E_7 , and assume that the Dynkin diagram of $\triangle = \triangle(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{\mathbb{C}})$ is

(e7.1)
$$\Pi_{\triangle}: \begin{array}{c} \alpha_{2} \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{6} \\ \alpha_{7} \end{array} = \begin{array}{c} \alpha_{2} \\ \alpha_{7} \\ \alpha_$$

(cf. Bourbaki [7, p.280]). Taking Chevalley's canonical basis $\{H_{\alpha_{\ell}}^*\}_{\ell=1}^7 \cup \{E_{\alpha} \mid \alpha \in \Delta\}$ of $\mathfrak{g}_{\mathbb{C}}$, we construct a compact real form $\mathfrak{g}_u \subset \mathfrak{g}_{\mathbb{C}}$ from

(e7.2)
$$\begin{cases} \mathfrak{h}_{\mathbb{R}} := \operatorname{span}_{\mathbb{R}} \{H_{\alpha_{\ell}}^{*}\}_{\ell=1}^{7}, \\ \mathfrak{g}_{u} := i\mathfrak{h}_{\mathbb{R}} \oplus \bigoplus_{\alpha \in \Delta} \operatorname{span}_{\mathbb{R}} \{E_{\alpha} - E_{-\alpha}\} \oplus \operatorname{span}_{\mathbb{R}} \{i(E_{\alpha} + E_{-\alpha})\}. \end{cases}$$

Let $\{Z_{\ell}\}_{\ell=1}^{7} (\subset \mathfrak{h}_{\mathbb{R}})$ be the dual basis of $\Pi_{\Delta} = \{\alpha_{\ell}\}_{\ell=1}^{7}$. From now on, we are going to consider the following four simple irreducible pseudo-Hermitian (non-Hermitian) symmetric Lie algebras:

$$\begin{array}{l} (\mathrm{EV}) \ (\mathfrak{e}_{7(7)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t}), \\ (\mathrm{EVI-1}) \ (\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t}), \\ (\mathrm{EVI-2}) \ (\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t}), \\ (\mathrm{EVII}) \ (\mathfrak{e}_{7(-25)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t}). \end{array}$$

• Case (EV). Define an involutive inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by

(ev.1)
$$\theta := \exp \pi \operatorname{ad} i Z_2.$$

Then it follows from (e7.2) that $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$, which enables us to obtain the decomposition $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ of \mathfrak{g}_u with respect to θ and construct a non-compact real form \mathfrak{g} of $\mathfrak{g}_{\mathbb{C}}$ from $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$. Setting

$$\begin{aligned} \gamma_1 &:= -2\alpha_1 - 2\alpha_2 - 3\alpha_3 - 4\alpha_4 - 3\alpha_5 - 2\alpha_6 - \alpha_7, \\ \gamma_2 &:= \alpha_1, \\ \gamma_p &:= \alpha_p \text{ for } 3 \le p \le 7, \end{aligned}$$

we have a fundamental root system $\{\gamma_{\ell}\}_{\ell=1}^7$ of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$, and see that its Dynkin diagram is

(ev.2)
$$\begin{array}{c} \circ 1 \\ \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \gamma_4 \\ \gamma_5 \\ \gamma_6 \\ \gamma_7, \end{array} \right) \circ 1 \\ \gamma_6 \\ \gamma_7, \\ \circ 1 \\ \circ$$

where $\mathfrak{k}_{\mathbb{C}} = \{X \in \mathfrak{g}_{\mathbb{C}} | \theta(X) = X\}$. This implies $\mathfrak{k} = \mathfrak{su}(8)$ and $\mathfrak{g} = \mathfrak{e}_{7(7)}$. Now, let

$$T := iZ_7$$

Then one has $T \in i\mathfrak{h}_{\mathbb{R}} \subset \mathfrak{k} \subset \mathfrak{g}$ and $\alpha_{\ell}(-iT) = \alpha_{\ell}(Z_7) = \delta_{\ell,7} \geq 0$ for all $1 \leq \ell \leq 7$. Moreover, (ev.1) yields $\mathfrak{g}_{\alpha_7} = \operatorname{span}_{\mathbb{C}} \{E_{\alpha_7}\} \subset \mathfrak{k}_{\mathbb{C}}$. Consequently the (s1) and (s2) in Proposition 2.7 hold for $\Pi_{\Delta} = \{\alpha_\ell\}_{\ell=1}^7$. For this reason we establish

Proposition 3.21 (EV). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{e}_{7(7)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{7(7)}$ from (e7.2) and (ev.1), and put $T = iZ_7$, where $\{Z_\ell\}_{\ell=1}^7$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^7$ in (e7.1).

• Cases (EVI-1) & (EVI-2). Define an involutive inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by (evi.1) $\theta := \exp \pi \operatorname{ad} i(Z_2 + Z_7).$

Let $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ be the decomposition of \mathfrak{g}_u with respect to θ , where we remark that $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$ comes from (e7.2) and (evi.1). Let us set $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$ and

$$\gamma_1 := \alpha_1,$$

$$\gamma_2 := \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$$

$$\gamma_q := \alpha_q \text{ for } 3 \le q \le 6,$$

$$\gamma_7 := \alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 2\alpha_5 + \alpha_6.$$

Then it turns out that $\{\gamma_\ell\}_{\ell=1}^7$ is a fundamental root system of $\triangle(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ and its Dynkin diagram is

(evi.2)
$$\begin{array}{c} \gamma_2 & 1 \\ \gamma_1 & 2 \\ \gamma_1 & \gamma_3 \end{array} \begin{array}{c} \gamma_2 & 2 \\ \gamma_4 & \gamma_5 \end{array} \begin{array}{c} \gamma_6 & \gamma_7 \end{array}$$

So it follows that $\mathfrak{k} = \mathfrak{so}(12) \oplus \mathfrak{su}(2)$ and $\mathfrak{g} = \mathfrak{e}_{7(-5)}$. We are in a position to verify

Proposition 3.22 (EVI). The supposition (S) in Proposition 2.7 holds for the following two pseudo-Hermitian symmetric Lie algebras $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T))$:

- (1) $(\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t})$ and $T = iZ_7$.
- (2) $(\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t})$ and $T = i(Z_6 Z_7)$.

Here $\{Z_{\ell}\}_{\ell=1}^{7}$ is the dual basis of $\{\alpha_{\ell}\}_{\ell=1}^{7}$ in (e7.1) and we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{7(-5)}$ from (e7.2) and (evi.1).

Proof. (1). Let $T := iZ_7$, and let

$$\begin{split} \beta_{1} &:= -\alpha_{1} - 2\alpha_{2} - 2\alpha_{3} - 3\alpha_{4} - 2\alpha_{5} - \alpha_{6}, \\ \beta_{2} &:= \alpha_{6}, \\ \beta_{3} &:= \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4}, \\ \beta_{4} &:= \alpha_{5}, \\ \beta_{5} &:= \alpha_{4}, \\ \beta_{6} &:= \alpha_{3}, \\ \beta_{7} &:= \alpha_{2} + \alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7}. \end{split}$$

Then $\Pi_1 := \{\beta_\ell\}_{\ell=1}^7$ is a fundamental root system of \triangle whose Dynkin diagram is $\beta_2 \circ 2$

(evi-1)
$$\Pi_1: \quad \underset{\beta_1}{\circ} \frac{2}{\beta_3} \overset{\circ}{\beta_4} \frac{4}{\beta_5} \overset{\circ}{\beta_6} \frac{2}{\beta_7} \overset{\circ}{\beta_7} \overset{\circ}{\beta_7} \overset{\circ}{\beta_6} \overset{\circ}{\beta_7} \overset{\circ}{\beta_7}$$

Moreover, $\alpha_a(Z_b) = \delta_{a,b}$ and (evi.1) imply that $\beta_\ell(-iT) = \beta_\ell(Z_7) = \delta_{\ell,7} \ge 0$ for all $1 \le \ell \le 7$ and $\mathfrak{g}_{\beta_7} = \mathfrak{g}_{\alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7} \subset \mathfrak{k}_{\mathbb{C}}$, so that the (s1) and (s2) in Proposition 2.7 hold for this $\Pi_1 = \{\beta_\ell\}_{\ell=1}^7$. In addition, $\mathfrak{c}_{\mathfrak{g}}(T) = \mathfrak{e}_{6(2)} \oplus \mathfrak{t}$ follows from (evi-1), (evi.2) and $T = iZ_7$.

(2). One can conclude (2) by arguments similar to those above, and by setting $T := i(Z_6 - Z_7)$ and

$$\begin{split} \beta_{1} &:= -\alpha_{2} - \alpha_{3} - \alpha_{4}, \\ \beta_{2} &:= -\alpha_{1} - \alpha_{3} - \alpha_{4}, \\ \beta_{3} &:= \alpha_{3}, \\ \beta_{4} &:= \alpha_{4}, \\ \beta_{5} &:= \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ \beta_{6} &:= -\alpha_{6} - \alpha_{7}, \\ \beta_{7} &:= \alpha_{6}, \end{split}$$

where we remark that $\Pi_2 := \{\beta_\ell\}_{\ell=1}^7$ is a fundamental root system of \triangle and its Dynkin diagram is

(evi-2)
$$\Pi_{2}: \begin{array}{c} \beta_{1} & \beta_{3} \\ \beta_{1} & \beta_{3} \\ \end{array} \xrightarrow{\beta_{2}} & \beta_{2} \\ \beta_{4} & \beta_{5} \\ \beta_{5} & \beta_{6} \\ \end{array} \xrightarrow{\beta_{2}} & \beta_{7} \\ \beta_{7} \\ \beta_{7} \\ \end{array}$$

• Case (EVII). First, let us realize the exceptional real simple Lie algebra $\mathfrak{e}_{7(-25)}$. Define an involutive inner automorphism θ of $\mathfrak{g}_{\mathbb{C}}$ by

(evii.1)
$$\theta := \exp \pi \operatorname{ad} i Z_7.$$

Since (e7.2) we have $\theta(\mathfrak{g}_u) \subset \mathfrak{g}_u$. So, one can consider the decomposition $\mathfrak{g}_u = \mathfrak{k} \oplus i\mathfrak{p}$ of \mathfrak{g}_u with respect to θ , and set a non-compact real form $\mathfrak{g} \subset \mathfrak{g}_{\mathbb{C}}$ as $\mathfrak{g} := \mathfrak{k} \oplus \mathfrak{p}$. It follows from (evii.1) and (e7.1) that $\{\alpha_k\}_{k=1}^6$ is a fundamental root system of $\Delta(\mathfrak{k}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}})$ whose Dynkin diagram is

(evii.2)
$$\begin{array}{c} \alpha_{2} \\ \alpha_{1} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{2} \\ \alpha_{5} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{5} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{5} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{5} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{5} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{5} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \begin{array}{c} \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{6} \end{array} \end{array}$$

Therefore we show that $\mathfrak{k} = \mathfrak{e}_6 \oplus \mathfrak{t}$ and $\mathfrak{g} = \mathfrak{e}_{7(-25)}$. Now, let us prove

Proposition 3.23 (EVII). $(\mathfrak{g}, \mathfrak{c}_{\mathfrak{g}}(T)) = (\mathfrak{e}_{7(-25)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t})$ satisfies the supposition (S) in Proposition 2.7. Here we construct a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ of $\mathfrak{g} = \mathfrak{e}_{7(-25)}$ from (e7.2) and (evii.1), and put $T = i(Z_6 - Z_7)$, where $\{Z_\ell\}_{\ell=1}^7$ stands for the dual basis of $\{\alpha_\ell\}_{\ell=1}^7$ in (e7.1).

Proof. Setting

$$\begin{split} \beta_1 &:= -\alpha_2 - \alpha_3 - \alpha_4, \\ \beta_2 &:= -\alpha_1 - \alpha_3 - \alpha_4, \\ \beta_3 &:= \alpha_3, \\ \beta_4 &:= \alpha_4, \\ \beta_5 &:= \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \\ \beta_6 &:= -\alpha_6 - \alpha_7, \\ \beta_7 &:= \alpha_6, \end{split}$$

we deduce that $\Pi' := \{\beta_\ell\}_{\ell=1}^7$ is a fundamental root system of \triangle whose Dynkin diagram is $\beta_2 \circ 2$

(evii)
$$\Pi': \quad \bigcirc^{2}_{\beta_{1}} \stackrel{\circ}{\xrightarrow{\beta_{3}}} \stackrel{\circ}{\xrightarrow{\beta_{4}}} \stackrel{\circ}{\xrightarrow{\beta_{5}}} \stackrel{\circ}{\xrightarrow{\beta_{6}}} \stackrel{\circ}{\xrightarrow{\beta_{7}}} \stackrel{\circ}{\xrightarrow{$$

Then it turns out that $\beta_{\ell}(-iT) = \beta_{\ell}(Z_6 - Z_7) = \delta_{\ell,7} \ge 0$ for all $1 \le \ell \le 7$, and that $\mathfrak{g}_{\beta_7} = \mathfrak{g}_{\alpha_6} \subset \{X \in \mathfrak{g}_{\mathbb{C}} | \theta(X) = X\} = \mathfrak{k}_{\mathbb{C}}$ due to (evii.1) and $\alpha_a(Z_b) = \delta_{a,b}$. Accordingly the (s1) and (s2) in Proposition 2.7 hold for $\Pi' = \{\beta_\ell\}_{\ell=1}^7$. \Box

Remark 3.24. Seven Propositions 3.17 through 3.23 tell us that the supposition (S) in Proposition 2.7 holds for every simple irreducible pseudo-Hermitian, non-Hermitian symmetric Lie algebra of the exceptional type.

 $\begin{array}{l} \text{(EII-1)} \ (\mathfrak{e}_{6(2)}, \mathfrak{so}(6, 4) \oplus \mathfrak{t}), \\ \text{(EII-2)} \ (\mathfrak{e}_{6(2)}, \mathfrak{so}^*(10) \oplus \mathfrak{t}), \\ \text{(EIII-1)} \ (\mathfrak{e}_{6(-14)}, \mathfrak{so}^*(10) \oplus \mathfrak{t}), \\ \text{(EIII-2)} \ (\mathfrak{e}_{6(-14)}, \mathfrak{so}(8, 2) \oplus \mathfrak{t}), \\ \text{(EV)} \ (\mathfrak{e}_{7(7)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t}), \\ \text{(EVI-1)} \ (\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(2)} \oplus \mathfrak{t}), \\ \text{(EVI-2)} \ (\mathfrak{e}_{7(-5)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t}), \\ \text{(EVII)} \ (\mathfrak{e}_{7(-25)}, \mathfrak{e}_{6(-14)} \oplus \mathfrak{t}). \end{array}$

Remark 2.8-(2), Remark 3.2 and the propositions in Subsection 3.2 lead to

Theorem 3.25. The supposition (S) in Proposition 2.7 holds for every effective semisimple Hermitian symmetric space of the compact type and each effective simple irreducible pseudo-Hermitian (non-Hermitian) symmetric space G/L given in Table C.

Table C			
G/L, where we assume the center $Z(G)$ to be trivial for the G/L below.			
(1) $SU^*(2n)/(SL(n,\mathbb{C})\cdot T), n \ge 2.$			
	cf. Proposition 3.3 (AII)		
$(2) SU(p,q)/S(U(a) \times U(p-a,q)), 1 \le a \le p-1, 1 \le q.$			
(3) $SU(p,q)/S(U(p,b) \times U(q-b)), 1 \le p, 1 \le b \le q-1.$			
$(4) SU(p,q)/S(U(a,b) \times U(p-a,q-b)), 1 \le a \le p$	$p - 1, 1 \le b \le q - 1.$		
	cf. Proposition 3.8 (AIII)		
$(5) SO_0(2k, 2n-2k+1)/(SO_0(2k-2, 2n-2k+1))$) \cdot SO(2)), $n \ge 3, 2 \le k \le n$.		
$(6) SO_0(2k, 2n - 2k + 1) / (SO_0(2k, 2n - 2k - 1) \cdot S)$	$O(2)), 1 \le k \le n - 2.$		
	cf. Proposition 3.9 (BI)		
(7) $Sp(p,q)/U(p,q), p,q \ge 1.$			
	cf. Proposition 3.11 (CII)		
$(8) SO_0(p, 2n-p)/(SO_0(p-2, 2n-p) \cdot SO(2)), n$	$\geq 4, p \geq 4, 2n - p \geq 1.$		
$(9) SO_0(p, 2n-p)/(SO_0(p, 2n-p-2) \cdot SO(2)), n$	$\geq 4, p \geq 1, 2n - p \geq 4.$		
	cf. Proposition 3.13 (DI-1)		
(10) $SO_0(2m, 2n-2m)/U(m, n-m), n \ge 4, m \ge 1$	$1, n-m \ge 2.$		
	cf. Proposition 3.15 (DI-2)		
(11) $SO^*(2n)/U(k, n-k), 1 \le k \le n-2.$			
(12) $SO^*(2n)/(SO^*(2n-2) \cdot SO^*(2)), n \ge 3.$			
	cf. Proposition 3.16 (DIII)		
(13) $E_{6(2)}/(SO_0(6,4) \cdot SO(2)).$			
	cf. Proposition 3.17 (EII-1)		
(14) $E_{6(2)}/(SO^*(10) \cdot SO^*(2)).$			
	cf. Proposition 3.18 (EII-2)		
(15) $E_{6(-14)}/(SO^*(10) \cdot SO^*(2)).$			
	cf. Proposition 3.19 (EIII-1)		
(16) $E_{6(-14)}/(SO_0(8,2) \cdot SO(2)).$			
	cf. Proposition 3.20 (EIII-2)		
(17) $E_{7(7)}/(E_{6(2)}\cdot T)$.			
	cf. Proposition 3.21 (EV)		
(18) $E_{7(-5)}/(E_{6(2)} \cdot T)$.			
(19) $E_{7(-5)}/(E_{6(-14)}\cdot T)$.			
	ct. Proposition 3.22 (EVI)		
(20) $E_{7(-25)}/(E_{6(-14)}\cdot T)$.			
	cf. Proposition 3.23 (EVII)		

Remark 3.26. The pseudo-Hermitian symmetric spaces G/L in Table C, together with

(i) $SL(2n, \mathbb{R})/(SL(n, \mathbb{C}) \cdot T), n \ge 2,$ (ii) $SO_0(2n-2,3)/(SO_0(2n-2,1) \cdot SO(2)), n \ge 3,$ (iii) $SO_0(3,2n-3)/(SO_0(1,2n-3) \cdot SO(2)), n \ge 4,$ (iv) $SO_0(2n-3,3)/(SO_0(2n-3,1) \cdot SO(2)), n \ge 4,$ (v) $Sp(n, \mathbb{R})/U(k, n-k), 1 \le k \le n-1,$

exhaust all the simple irreducible pseudo-Hermitian, non-Hermitian symmetric spaces in Tableau II of Berger [1, pp.157–161]. Unfortunately, we do not know whether the above pseudo-Hermitian symmetric spaces (i) through (v) satisfy the supposition (S) or not.

3.3. An appendix. It is known that for any effective irreducible Hermitian symmetric space G_u/L_u of the compact type, the complex vector space $\mathcal{O}(T^{1,0}(G_u/L_u))$ is linear isomorphic to $\mathfrak{g}_{\mathbb{C}}$, where $\mathfrak{g}_{\mathbb{C}}$ is the complexification of \mathfrak{g}_u (e.g. Corollary 4.1-(ii) in [6, p.145]). So, Theorem 3.25, and two Propositions 2.7 and 2.5-(iv) lead to

Corollary 3.27. For each effective simple irreducible pseudo-Hermitian symmetric space G/L in Table C, the complex vector space $\mathcal{O}(T^{1,0}(G/L))$ is linear isomorphic to the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} .

Acknowledgment. The author is very grateful to the referee for valuable comments on an earlier version of this paper.

References

- M. Berger, Les espaces symétriques noncompacts, Ann. Sci. École Norm. Sup. (3), 74 (1957), 85–177.
- [2] N. Boumuki, Isotropy subalgebras of elliptic orbits in semisimple Lie algebras, and the canonical representatives of pseudo-Hermitian symmetric elliptic orbits, J. Math. Soc. Japan, 59 (2007), 1135–1177.
- [3] N. Boumuki, The classification of simple irreducible pseudo-Hermitian symmetric spaces: from a viewpoint of elliptic orbits, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B. Math. Sci., 41 (2008), 13–122.
- [4] N. Boumuki, A topic on homogeneous vector bundles over elliptic orbits: A condition for the vector spaces of their cross-sections to be finite dimensional, arXiv:1901.07818v1 [math.DG] 23 Jan 2019.
- [5] N. Boumuki, Continuous representations of semisimple Lie groups concerning homogeneous holomorphic vector bundles over elliptic adjoint orbits, arXiv:1912.07769v1 [math.DG] 17 Dec 2019.
- [6] N. Boumuki, An indecomposable representation and the complex vector space of holomorphic vector fields on a pseudo-Hermitian symmetric space, "Recent Topics in Differential Geometry and its Related Fields" (ed. T. Adachi and H. Hashimoto), 139–148, World Scientific Publishing, 2019.
- [7] N. Bourbaki, Lie Groups and Lie Algebras, Chapters 4–6, Translated from the 1968 French original by Andrew Pressley, Elements of Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 2002.

- [8] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Corrected reprint of the 1978 original, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
- [9] T. Kobayashi, *Adjoint action*, Encyclopedia of Mathematics. URL: http: //encyclopediaofmath.org/index.php?title=Adjoint_action&oldid=11210
- [10] K. Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math., 76 (1954), 33–65.
- [11] R. A. Shapiro, Pseudo-Hermitian symmetric spaces, Comment. Math. Helv., 46 (1971), 529– 548.

DIVISION OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE AND TECHNOLOGY, OITA UNIVERSITY, 700 DANNOHARU, OITA-SHI, OITA 870-1192, JAPAN

Email address: boumuki@oita-u.ac.jp