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Abstract. We develop a discrete potential theory for the equation ∆u = qu
on an infinite network similar to the classical potential theory on Riemannian
surfaces. The q-Green function for the Schrödinger operator −∆ + q plays the
role of the Green function for the Laplace operator. We study some properties
of q-Green potential whose kernel is the q-Green function. As an application, we
give a classification of infinite networks by the classes of q-harmonic functions.
We also focus on the role of the q-elliptic measure of the ideal boundary of the
network.

1. Introduction

Many fruitful results in the theory of potentials related to Laplace operator had
published in Constantinescu and Cornea [2]. Related to discrete Laplacian, some
results were obtained by Soardi [12], Yamasaki [13], [15], and Kurata and Yamasaki
[5], [6], etc. There are some papers related to Schrödinger operator ∆u − qu, for
instance Ozawa [10], Maeda [8] and Sario, Nakai, Wang, and Chung [11]. The
discrete equation ∆qu := ∆u− qu = 0 has been studied by Yamasaki [17], Kurata
and Yamasaki [7], Anandam [1], and Fischer and Keller [3]. Their research methods
are different. Anandam used the theory of axiomatic potentials. Our research
method depends on the theory of Dirichlet space and reasoning in [2]. Fischer and
Keller used semigroups of a self-adjoint realization of the Schrödinger operator. The
aim of this paper is to study the discrete equation ∆qu = 0 on an infinite network
along the same line in [17]. We always assume that q is a non-zero non-negative
function and q 6≡ 0. We show the fundamental results relating the spaces E and
E0 and the norm E(·)1/2 in Section 3, and properties of q-superharmonic functions
in Section 4. We define the q-Green function of N in Section 5. Most of these
results were obtained in [17]. We give their proofs for completeness. The discrete
analogues of Royden’s decomposition of a function in E and Riesz’s decomposition
of a non-negative q-superharmonic function play the fundamental roles in our study.
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In Sections 6–9, we study potential-theoretic properties of q-Green potentials; for
example, domination principle, equilibrium principle, etc. As the discrete analogy
of q-elliptic measure in [11, Page 286], we introduce the q-elliptic measure ω of the
ideal boundary of the network and study it in Section 10 more detail than in [17].
In case N is parabolic, we give some supplementary results in Section 11. We shall
give a classification of infinite networks by using the classes of q-harmonic functions
in Section 12. Analogous to the classification theory in Sario, Nakai, Wang, and
Chung [11], we give some results of q-quasiharmonic classification of the networks
by using q-elliptic measure ω in Section 13 which is similar to Yamasaki [16].

2. Fundamental Notion

Let G = 〈X,Y,K〉 be an infinite graph which is connected and locally finite
without self-loops (cf. [13]). Here we denote X by the countable set of nodes, Y
by the countable set of arcs, and K by the node-arc incidence matrix. Namely, K
is a function on X×Y and K(x, y) = −1 if x is the initial node of y, K(x, y) = 1 if
x is the terminal node of y, and K(x, y) = 0 otherwise. Now we introduce several
fundamental notation used in this paper. Let L(X) be the set of all real functions
on X, L0(X) the subset of L(X) with finite support, and L+(X) the set of all
non-negative functions on X. We define L(Y ), L0(Y ), and L+(Y ) similarly. Let
r ∈ L+(Y ) be a resistance, which is a strictly positive function, and let q ∈ L+(X)
and q 6≡ 0. In this paper, we call the triple N = 〈G, r, q〉 an infinite network. For
x ∈ X, let Y (x) = {y ∈ Y ; K(x, y) 6= 0}, which is the set of arcs incidence to x.
We say that a sequence of finite networks {Nn = 〈Gn, rn, qn〉}n is an exhaustion of
N if the sequence {Gn = 〈Xn, Yn, Kn〉}n of connected graphs satisfies Xn ⊂ Xn+1,
Yn ⊂ Yn+1, X =

∪∞
n=1Xn, Y =

∪∞
n=1 Yn, and Y (x) ⊂ Yn+1 for all x ∈ Xn. Here

denote by Kn the restriction of K onto Xn×Yn and by rn and qn the restrictions of
r and q onto Yn and Xn respectively. Hereafter we write Nn = 〈Xn, Yn〉 for short.
For u ∈ L(X), let

du(y) = −r(y)−1
∑
x∈X

K(x, y)u(x) (discrete derivative),

D(u) =
∑
y∈Y

r(y)[du(y)]2 (Dirichlet sum),

E(u) = D(u) +
∑
x∈X

q(x)u(x)2 (q-energy),

∆u(x) =
∑
y∈Y

K(x, y)[du(y)] (discrete Laplacian),

∆qu(x) = ∆u(x)− q(x)u(x) (discrete q-Laplacian).

We say that u ∈ L(X) is q-harmonic on a subset A of X if ∆qu(x) = 0 on A. For
a ∈ X, denote by εa ∈ L(X) the characteristic function of {a}, i.e., εa(a) = 1 and
εa(x) = 0 for x 6= a. Also for a set A ⊂ X denote by εA ∈ L(X) the characteristic
function of A.
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3. The Spaces E and E0

Let us put

D = {u ∈ L(X) ; D(u) < ∞},
E = {u ∈ L(X) ; E(u) < ∞},
H = {u ∈ L(X) ; ∆qu = 0} (the set of q-harmonic functions),

HE = H ∩ E, HD = H ∩D.

For simplicity, we set for u, v ∈ L(X)

〈u, v〉 =
∑
x∈X

q(x)u(x)v(x),

‖u‖2 = 〈u, u〉,

D(u, v) =
∑
y∈Y

r(y)[du(y)][dv(y)],

E(u, v) = D(u, v) + 〈u, v〉.

Then D(u) = D(u, u) and E(u) = D(u) + ‖u‖2 = E(u, u).

Lemma 3.1. For a ∈ X there exists a constant Ma > 0 such that |u(a)| ≤
MaE(u)1/2 for u ∈ E.

Proof. Let a ∈ X. Let b ∈ X be such that q(b) > 0. For u ∈ E we have
q(b)u(b)2 ≤ E(u), or |u(b)| ≤ q(b)−1/2E(u)1/2. Let P be a path between a and b.
Then

|u(a)| ≤ |u(b)|+
∑

y∈Y (P )

r(y)|du(y)|

≤ |u(b)|+

 ∑
y∈Y (P )

r(y)

1/2 ∑
y∈Y (P )

r(y)du(y)2

1/2

≤ q(b)−1/2E(u)1/2 +

 ∑
y∈Y (P )

r(y)

1/2

E(u)1/2,

where Y (P ) is the set of arcs belonging to P . □

It is easily seen that E is a Hilbert space with respect to the inner product
E(·, ·). Note that if un, u ∈ E and E(un − u) → 0 as n → ∞, then {un}n
converges pointwise to u. Denote by E0 the closure of L0(X) with respect to the
norm [E(·)]1/2. Recall that D0 is the closure of L0(X) with respect to the norm
[D(·) + u(x0)

2]1/2, where x0 is a fixed node of X (see [15, Theorem 1.1]). We say
that N is hyperbolic (parabolic resp.) if the network 〈G, r〉 is hyperbolic (parabolic
resp.), i.e., D 6= D0 (D = D0 resp.) (cf. [14]).

Theorem 3.2. E0 = D0 ∩ E.
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Proof. From E0 ⊂ D0 and E0 ⊂ E, it follows that E0 ⊂ D0 ∩ E. To prove the
converse relation, let u ∈ D0∩E. There exists a sequence {fn}n in L0(X) such that
D(u− fn) → 0 as n → ∞, {fn}n converges pointwise to u, and |fn(x)| ≤ |u(x)| on
X. It suffices to show that ‖u− fn‖ → 0 as n → ∞. Note that L2(X ; q) = {u ∈
L(X) ; ‖u‖ < ∞} is a Hilbert space with respect to the inner product 〈·, ·〉. Since
‖fn‖2 ≤ ‖u‖2 and {fn}n converges pointwise to u, we see that {fn}n converges
weakly to u. We have ‖fn‖2 → ‖u‖2, so that ‖u− fn‖2 → 0 as n → ∞. □

Lemma 3.3. E(u, f) = −
∑

x∈X [∆qu(x)]f(x) for u ∈ E and f ∈ L0(X).

Proof. Using [13, Lemma 3] we have

E(u, f) = D(u, f) +
∑
x∈X

q(x)u(x)f(x)

= −
∑
x∈X

[∆u(x)]f(x) +
∑
x∈X

q(x)u(x)f(x)

= −
∑
x∈X

[∆qu(x)]f(x). □

Lemma 3.4. HE is the orthogonal complement of E0 in E.

Proof. Let h ∈ HE. Then E(h, f) = 0 for every f ∈ L0(X) by Lemma 3.3, so that
E(h, v) = 0 for every v ∈ E0. Conversely, suppose that h ∈ E satisfies E(h, v) = 0
for all v ∈ E0. Since E(h, εx) = −∆qh(x) by Lemma 3.3 for every x ∈ X, we see
that h ∈ HE. □

By a standard argument, we obtain

Theorem 3.5 (Royden’s Decomposition). Every u ∈ E is decomposed uniquely in
the form u = v + h with v ∈ E0 and h ∈ HE.

Corollary 3.6. HE = {0} if and only if E = E0.

We have by Theorem 3.2 and Corollary 3.6

Theorem 3.7. If N is parabolic, then E = E0 and HE = {0}.

Theorem 3.8. Assume that
∑

x∈X q(x) < ∞. Then N is parabolic if and only if
HE = {0}.

Proof. Assume that HE = {0}, or E = E0. Since E(1) =
∑

x∈X q(x) < ∞, we
have 1 ∈ E = E0 ⊂ D0. Therefore N is parabolic by [14, Theorem 3.2]. The
converse follows from Theorem 3.7. □

We say that T is a normal contraction of the real line if T0 = 0 and |Ts1−Ts2| ≤
|s1 − s2| for every real numbers s1, s2. We define Tu ∈ L(X) for u ∈ L(X) by
(Tu)(x) = Tu(x) for x ∈ X.

Lemma 3.9. Let T be a normal contraction of the real line. Then E(Tu) ≤ E(u).
If u ∈ E0, then Tu ∈ E0.
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Proof. For u ∈ L(X), we have D(Tu) ≤ D(u) by [13, Lemma 2] and ‖Tu‖ ≤ ‖u‖,
so that

E(Tu) = D(Tu) + ‖Tu‖2 ≤ D(u) + ‖u‖2 = E(u).

Let u ∈ E0. Then Tu ∈ E by the above. We see by [15, Theorem 4.2] that
Tu ∈ D0. Therefore, Tu ∈ E0 by Theorem 3.2. □
Corollary 3.10. If u ∈ E (E0 resp.) and c is a positive constant, then
max(u, 0),min(u, c), |u| ∈ E (E0 resp.). In this case,

E(max(u, 0)) ≤ E(u), E(min(u, c)) ≤ E(u), E(|u|) ≤ E(u).

Proposition 3.11. If u, v ∈ E0, then min(u, v) ∈ E0.

Proof. Since u+v, |u−v| ∈ E0, we see that min(u, v) = (u+v−|u−v|)/2 ∈ E0. □

4. q-Superharmonic Functions

For a ∈ X, denote by U(a) the set of neighboring nodes of a and a itself, i.e.,
U(a) = {x ∈ X ; K(a, y)K(x, y) 6= 0 for some y ∈ Y }. For a subset A of X, denote
by U(A) the union of U(x) for x ∈ A. We say that u ∈ L(X) is q-superharmonic
on a subset A of X if ∆qu(x) ≤ 0 on A. In order to express ∆qu(x) in a more
familiar form, let us put

t(x, z) =
∑
y∈Y

|K(x, y)K(z, y)|r(y)−1 if z 6= x, t(x, x) = 0,

t(x) =
∑
y∈Y

|K(x, y)|r(y)−1.

Then t(x, z) = t(z, x) for all x, z ∈ X and t(x) =
∑

z∈X t(x, z). Now we have

∆qu(x) = −[t(x) + q(x)]u(x) +
∑
z∈X

t(x, z)u(z).

Lemma 4.1. (1) A non-negative harmonic function is q-superharmonic. Es-
pecially, a positive constant is q-superharmonic.

(2) If u and v are q-superharmonic on A, then both u + v and min(u, v) are
q-superharmonic on A.

(3) If u is q-harmonic on X, then −max(u, 0) is q-superharmonic on X.
(4) If c > 0 is a constant and u is q-superharmonic (q-harmonic resp.) on X,

then cu is q-superharmonic (q-harmonic resp.) on X.

Proof. (1) Let h be non-negative and harmonic. Then ∆qh(x) = ∆h(x) −
q(x)h(x) = −q(x)h(x) ≤ 0 on X.

(2) If u and v are q-superharmonic, then ∆q(u+ v)(x) = ∆qu(x) + ∆qv(x) ≤ 0.
Let f = min(u, v) and a ∈ A. We may assume that f(a) = u(a). Since f(x) ≤ u(x),
we have

∆qf(a) =
∑
z∈X

t(z, a)f(z)− [t(a) + q(a)]f(a)

≤
∑
z∈X

t(z, a)u(z)− [t(a) + q(a)]u(a) = ∆qu(a) ≤ 0.
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(3) Let f = max(u, 0). Then f ∈ L+(X). If f(a) = 0, then ∆qf(a) =∑
z∈X t(a, z)f(z) ≥ 0. Let f(a) > 0, i.e., f(a) = u(a). Since f(x) ≥ u(x) and

u is q-harmonic, we have

∆qf(a) = ∆qf(a)−∆qu(a) =
∑
z∈X

t(z, a)[f(z)− u(z)] ≥ 0,

which means ∆q(−f) ≤ 0.
(4) Our assertion follows from ∆q(cu) = c∆qu. □
For u ∈ L(X) and a ∈ X, we define q-Poisson modification Pau ∈ L(X) as

Pau(a) =
1

t(a) + q(a)

∑
z∈X

t(z, a)u(z), Pau(x) = u(x) for x 6= a.

Lemma 4.2. If u is q-superharmonic on X, then Pau is q-superharmonic on X
and q-harmonic at a and Pau ≤ u on X.

Proof. Since u is q-superharmonic at x, we have Pau(x) ≤ u(x). In fact, in case x 6=
a our assertion is obvious. In case x = a, ∆qu(a) ≤ 0 implies

∑
z∈X t(z, a)u(z) ≤

[q(a) + t(a)]u(a), so that Pau(a) ≤ u(a). The proof is given in the following three
cases: (1) x 6∈ U(a), (2) x = a, and (3) x ∈ U(a) \ {a}.
(1). For x /∈ U(a), it is obvious that ∆qPau(x) = ∆qu(x) ≤ 0.
(2). In case x = a, we have

∆qPau(a) = −[t(a) + q(a)]Pau(a) +
∑
z∈X

t(z, a)Pau(z)

= −
∑
z∈X

t(z, a)u(z) +
∑
z∈X

t(z, a)u(z) = 0.

(3). In case x ∈ U(a) \ {a}, we have

∆qPau(x) = −[t(x) + q(x)]Pau(x) +
∑
z∈X

t(x, z)Pau(z)

≤ −[t(x) + q(x)]u(x) +
∑
z∈X

t(x, z)u(z) = ∆qu(x) ≤ 0. □

Lemma 4.3 (Local Minimum Principle). Let u ∈ L(X) and a ∈ X. Assume that
u is q-superharmonic at a and u(z) ≥ 0 for all z ∈ U(a) \ {a}. Then u(a) ≥ 0.
Moreover, u(a) = 0 occurs only when u(z) = 0 for all z ∈ U(a) \ {a}.

Proof. Since ∆qu(a) ≤ 0 and u(z) ≥ 0 for z ∈ U(a) \ {a}, we have

[q(a) + t(a)]u(a) ≥
∑

z∈U(a)

t(a, z)u(z) ≥ 0,

so that u(a) ≥ 0. If u(a) = 0, then u(z) = 0 for z ∈ U(a) \ {a} by the above
inequality. □
Corollary 4.4. Let u be q-superharmonic on X. If u(x) ≥ 0 on X and u(a) = 0
for some a ∈ X, then u(x) = 0 on X.
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We have the following minimum principle:

Theorem 4.5 (Minimum Principle). Let A be a finite subset of X and let u ∈ L(X)
be q-superharmonic on A. If u(x) ≥ 0 on X \ A, then u(x) ≥ 0 on X.

Proof. Suppose that c := min{u(x) ; x ∈ A} < 0 and put B = {x ∈ X ; u(x) = c}.
Lemma 4.1 implies that u− c is q-superharmonic on A. Since u− c ≥ 0 on X and
u−c = 0 on B, the local minimum principle implies U(x) ⊂ B for all x ∈ B, so that
U(B) ⊂ B. Since X is connected, we have B = X, which is a contradiction. □
Corollary 4.6. Let A be a finite subset of X. If u is q-superharmonic on A and
v is q-harmonic on A and if u(x) ≥ v(x) on X \ A, then u(x) ≥ v(x) on X.

Proposition 4.7 (Harnack’s Inequality). Let a, b ∈ X. There exists a positive
constant α depending only on a and b such that α−1u(b) ≤ u(a) ≤ αu(b) for all
non-negative q-superharmonic function u on X.

Proof. Let x0 ∈ X and x1 ∈ U(x0) \ {x0}. Since u(x) ≥ 0 and ∆qu(x0) ≤ 0, we
have

t(x1, x0)u(x1) ≤
∑
x∈X

t(x, x0)u(x) ≤ [t(x0) + q(x0)]u(x0),

or

u(x1) ≤
t(x0) + q(x0)

t(x1, x0)
u(x0).

If x2 ∈ U(x1) \ {x1}, then

u(x2) ≤
t(x1) + q(x1)

t(x2, x1)
u(x1).

Repeat this argument to obtain the result. □
The following result was proved in Anandam [1, Theorem 2.4.9] in case N is a

finite network.

Lemma 4.8. Let P be a Perron family. Namely P is a non-empty family of q-
superharmonic functions on X such that

(1) {u(x) ; u ∈ P} is bounded from below for each x ∈ X,
(2) min(u, v) ∈ P whenever u, v ∈ P,
(3) Pau ∈ P for any u ∈ P and a ∈ X.

Then u∗(x) = inf{u(x) ; u ∈ P} is q-harmonic on X.

Proof. By (1), u∗ ∈ L(X). Let a ∈ X. Since U(a) is a finite set, in view of (2), we
can choose un ∈ P such that un(z) converges decreasingly to u∗(z) for all z ∈ U(a).
Put vn = Paun. Then vn ∈ P and u∗ ≤ vn ≤ un. Hence vn(z) → u∗(z) for all
z ∈ U(a). Since vn is q-harmonic at a, so is u∗. □

Denote by SH the set of all q-superharmonic functions on X and let

H+ = H ∩ L+(X), HB = {u ∈ H ; sup{|u(x)| ; x ∈ X} < ∞}.

Theorem 4.9. H+ = {0} implies HB = {0}.
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Proof. Let u ∈ HB and consider P = {v ∈ SH ; v ≥ u+ := max(u, 0)}. Since
u is bounded, there exists c > 0 such that |u| ≤ c. Note that c ∈ P 6= ∅.
Lemma 4.8 implies min(v1, v2) ∈ P for v1, v2 ∈ P . If v ∈ P and a ∈ X, then
Pav − u+ = v − u+ ≥ 0 on X \ {a} and Pav − u+ is q-superharmonic at a by
Lemmas 4.1 and 4.2. By the local minimum principle, Pav(a)− u+(a) ≥ 0, which
implies Pav ∈ P . Lemma 4.8 shows that h+(x) := inf{v(x) ; v ∈ P} is q-harmonic
on X and h+ ≥ u+ ≥ 0, so that h+ ∈ H+ = {0}, hence u+ = 0. Similarly,
u− := max(−u, 0) = 0, so that u = 0. □

This result was shown in [9] for a non-linear case.

5. The q-Green Function

Lemma 3.1 shows that u 7→ u(a) is a continuous linear mapping on E for each
a ∈ X. By F. Riesz’s theorem, there exists a reproducing kernel φa of E, i.e.,
φa ∈ E and E(φa, u) = u(a) for every u ∈ E. Let φa = ga + θa be Royden’s
decomposition, i.e., ga ∈ E0 and θa ∈ HE. We call ga the q-Green function of
N with pole at a. By the uniqueness of the reproducing kernel and its Royden’s
decomposition, the q-Green function ga exists uniquely. Note that in case E = E0,
ga = φa is the q-Green function of N with pole at a.

Theorem 5.1. E(ga, u) = u(a) for all u ∈ E0 and ∆qga(x) = −εa(x) on X.

Proof. Let u ∈ E0. Then E(θa, u) = 0 by Lemma 3.4, so that

E(ga, u) = E(ga + θa, u) = E(φa, u) = u(a).

Since εx ∈ L0(X) for every x ∈ X, we see by Lemma 3.3 that

εx(a) = E(ga, εx) = −∆qga(x). □
We do not use the notation g̃a used in [17]. In what follows, every statement

related to the pair (ga,E0) remains true even in case E0 = E. Since the reasoning
related to (ga,E0) in case E 6= E0 holds in the case E = E0, we do not discern
these cases.

Corollary 5.2. ga(a) = E(ga) > 0.

Lemma 5.3. The function u∗ = ga/ga(a) is the unique optimal solution to the
extremum problem: Minimize E(u) subject to u ∈ E0 and u(a) = 1.

Proof. Clearly, u∗ is a feasible solution to our extremum problem. For any u ∈ E0

with u(a) = 1, we have

E(u∗) =
E(ga)

ga(a)2
=

1

ga(a)
, 1 = E(ga, u) ≤ E(ga)

1/2E(u)1/2,

so that E(u) ≥ 1/E(ga) = E(u∗). To show the uniqueness of the optimal solution,
let u1 and u2 be optimal solutions to our extremum problem. Then

α := E(u1) = E(u2) ≤ E((u1 + u2)/2)

≤ E((u1 + u2)/2) + E((u1 − u2)/2) = (E(u1) + E(u2))/2 = α,

so that E(u1 − u2) = 0. Hence u1 = u2. □
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Theorem 5.4. (1) ga(b) = gb(a) for every a, b ∈ X.
(2) 0 < ga(x) ≤ ga(a) on X.

Proof. (1) ga(b) = E(gb, ga) = E(ga, gb) = gb(a).
(2) Let u∗ = ga/ga(a). Since E(max(u∗, 0)) ≤ E(u∗) and E(min(u∗, 1)) ≤ E(u∗)

by Corollary 3.10, we have u∗ = max(u∗, 0) = min(u∗, 1) by Lemma 5.3, and hence
0 ≤ u∗ ≤ 1. We see u∗ > 0 by Corollary 4.4. □

Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N . There exists a unique q-Green

function g
(n)
a of Nn with pole at a ∈ Xn. This function is defined as the reproducing

kernel of the linear mapping u ∈ E(Xn) 7→ u(a), i.e., E(u, g
(n)
a ) = u(a) for u ∈

E(Xn), where E(Xn) = {u ∈ L(X) ; u = 0 on X \Xn} is a Hilbert space with

respect to the inner product E(·, ·). Needless to say, g
(n)
a is the unique function

of linear equation ∆qg
(n)
a = −εa on Xn with the boundary condition g

(n)
a = 0 on

X \Xn. We have

Theorem 5.5. (1) g
(n)
a (b) = g

(n)
b (a) for every a, b ∈ Xn.

(2) 0 < g
(n)
a (x) ≤ g

(n)
a (a) for a, x ∈ Xn.

(3) g
(n)
a ≤ g

(n+1)
a ≤ ga on X and {g(n)a } converges pointwise to ga for a ∈ Xn.

(4) E(g
(n)
a − ga) → 0 as n → ∞ for a ∈ X.

Proof. (1) and (2) are shown by arguments similar to those of Theorem 5.4. Put

un = g
(n+1)
a − g

(n)
a and vn = ga − g

(n)
a . Then both un and vn are q-harmonic on

Xn and are non-negative on X \ Xn. We see by Theorem 4.5 that un and vn are
non-negative on X. This shows the first half of (3).

For m > n and for a ∈ Xn, we have

E(g(n)a , g(m)
a ) = g(m)

a (a) = E(g(m)
a ) ≤ ga(a),

E(g(m)
a − g(n)a ) = E(g(m)

a )− 2E(g(m)
a , g(n)a ) + E(g(n)a ) = E(g(n)a )− E(g(m)

a ).

It follows that {g(n)a }n is a Cauchy sequence in the Hilbert space E0. There exists

f ∈ E0 such that E(g
(n)
a − f) → 0 as n → ∞. Since {g(n)a }n converges pointwise to

f , we have ∆qf(x) = −εa(x) on X. Thus f = ga. This shows (4) and the last half
of (3). □

Example 5.6. Let G be the linear graph, X = {xn ; n ≥ 0}, Y = {yn ; n ≥ 1},
K(xn, yn+1) = 1, K(xn+1, yn+1) = −1 for n ≥ 0, and K(x, y) = 0 for any other pair
(x, y). Let rn = r(yn) and assume that R0 :=

∑∞
j=1 rj < ∞. Let q(x) = εx0(x) and

N = {G, r, q}. The q-Green function of N with pole at xm (m ≥ 0) is given by

gxm(xn) =
(1 + ρn)Rm

1 +R0

if 0 ≤ n ≤ m,

gxm(xn) =
(1 + ρm)Rn

1 +R0

if n ≥ m,

where Rn =
∑∞

j=n+1 rj and ρn = R0 −Rn.
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Proof. We prove only the case m ≥ 1; the case m = 0 can be shown by a similar
argument. Let un = gxm(xn) and wn = r−1

n (un−un−1). Then ∆qgxm(x) = −εxm(x)
on X implies

w1 − u0 = 0, wn+1 − wn = 0 for n 6= m, wm+1 − wm = −1.

We see that wn = u0 for 1 ≤ n ≤ m and wn = u0 − 1 for n ≥ m+ 1, so that

un = u0 + ρnu0 for 0 ≤ n ≤ m,

un = (u0 − 1)(ρn − ρm) + um for n ≥ m.

Since N is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that un → 0
as n → ∞, so that (u0 − 1)Rm + um = 0. Therefore u0 = Rm/(1 +R0). □
Example 5.7. Let G be the homogeneous tree of order 3. We assume that r = 1
on Y and q = 1 on X. Denote by ρ(a, b) the geodesic metric between two nodes a
and b, i.e., the number of arcs of the path between a and b. Let C(a ; n) = {x ∈
X ; ρ(a, x) = n}. Then the q-Green function of N with pole at a is given by

ga(x) =
αn

4− 3α
for x ∈ C(a ; n), α = 1− 1√

2
.

Proof. Fix a node a ∈ X. By the symmetry, ga(x) depends only on ρ(a, x). Define
un = ga(x) for ρ(x, a) = n. The equation ∆qga(x) = −εa(x) on X can be written
as follows:

3u1 − 4u0 = −1, 2un+1 − 4un + un−1 = 0 for n ≥ 1.

The characteristic equation 2t2 − 4t + 1 = 0 gives t = 1 ± 1/
√
2. Since N is

hyperbolic, we have that un → 0 as n → ∞, so that un = Aαn with α = 1− 1/
√
2

for n ≥ 0. The condition 3u1 − 4u0 = −1 shows A = 1/(4− 3α). □

6. A Fundamental Existence Theorem

The following theorem plays a fundamental role for the study of q-Green poten-
tials in the succeeding sections.

Theorem 6.1. Let f ∈ E0 be non-negative and A a nonempty proper subset of X.
Then there exists u∗ ∈ E0 such that

(1) ∆qu
∗(x) ≤ 0 on X,

(2) ∆qu
∗(x) = 0 on X \ A,

(3) u∗(x) ≥ f(x) on A,
(4) u∗(x) = f(x) if x ∈ A and ∆qu

∗(x) < 0.

Proof. Let us consider the following extremum problem:

α = inf{E(u)− 2E(u, f) ; u ∈ F},
where F = {u ∈ E0 ; ∆qu ≤ 0,∆qu(x) = 0 on X \ A}. Note that α < ∞, since
gx ∈ F for x ∈ A. We see that α is finite by the inequality

E(u)− 2E(u, f) = E(u− f)− E(f) ≥ −E(f).
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Let {un}n be a minimizing sequence. Then

α ≤ E((un + um)/2)− 2E((un + um)/2, f)

≤ E((un + um)/2)− 2E((un + um)/2, f) + E((un − um)/2)

= [E(un)− 2E(un, f)]/2 + [E(um)− 2E(um, f)]/2 → α

as n,m → ∞, so that E(un − um) → 0 as n,m → ∞. Since E0 is a Hilbert space,
we see that there exists u∗ ∈ E0 such that E(un−u∗) → 0 as n → ∞. Since {un}n
converges pointwise to u∗, we see that u∗ ∈ F , which shows (1) and (2). We prove
(3). Noting that

|E(un, f)− E(u∗, f)| = |E(un − u∗, f)| ≤ E(un − u∗)1/2E(f)1/2 → 0

as n → ∞, we have α = E(u∗) − 2E(u∗, f). For v ∈ F and t > 0, we have
u∗ + tv ∈ F , so that

α ≤ E(u∗ + tv)− 2E(u∗ + tv, f)

= E(u∗)− 2E(u∗, f) + 2t[E(u∗, v)− E(v, f)] + t2E(v)

= α + 2t[E(u∗, v)− E(v, f)] + t2E(v).

Therefore E(u∗, v) − E(v, f) ≥ 0. By taking v = gx for x ∈ A in this inequality,
we obtain u∗(x) ≥ f(x) on A.

To prove (4), assume ∆qu
∗(a) < 0 for a ∈ A. For any t > 0 with ∆qu

∗(a)+t < 0,
we see that u∗ − tga ∈ E0 and ∆q(u

∗ − tga)(x) = ∆qu
∗(x) + tεa(x) ≤ 0, so that

u∗ − tga ∈ F . We have

α ≤ E(u∗ − tga)− 2E(u∗ − tga, f) = α− 2t[E(u∗, ga)− E(ga, f)] + t2E(ga),

so that E(u∗, ga) − E(f, ga) ≤ 0. Thus u∗(a) ≤ f(a). Hence u∗(a) = f(a) by
(3). □

7. q-Green Potentials

We define the q-Green potential Gµ of µ ∈ L+(X) and the mutual q-Green
potential energy G(µ, ν) of µ, ν ∈ L+(X) by

Gµ(x) =
∑
z∈X

gz(x)µ(z), G(µ, ν) =
∑
x∈X

[Gµ(x)]ν(x).

We call G(µ, µ) the q-Green potential energy of µ. Let us put

M = {µ ∈ L+(X) ; Gµ ∈ L(X)}, E = {µ ∈ L+(X) ; G(µ, µ) < ∞}.

We see easily

Lemma 7.1. ∆qGµ(x) = −µ(x) on X for every µ ∈ M.

By Harnack’s inequality, we note that Gµ(a) < ∞ for some a ∈ X implies
Gµ(x) < ∞ for any x ∈ X, so that E ⊂ M. We shall prove a discrete analogy of
the Riesz decomposition theorem.
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Theorem 7.2 (Riesz’s Decomposition). Every non-negative q-superharmonic func-
tion u can be decomposed uniquely in the form u = Gµ + h, where µ ∈ M and h
is non-negative and q-harmonic on X. In this decomposition, µ = −∆qu and h is
the greatest q-harmonic minorant of u.

Proof. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and let g
(n)
a be the q-Green

function of Nn with pole at a. Put µ = −∆qu,

un(x) =
∑
z∈Xn

g(n)z (x)µ(z), hn = u− un.

Then ∆qun = −µ on Xn and un = 0 on X \ Xn, so that hn is q-harmonic on Xn

and hn ≥ 0 on X \ Xn. Thus hn ≥ 0 on X by the minimum principle. Since

g
(n)
z ≤ g

(n+1)
z on X by Theorem 5.5, we have un ≤ un+1 and hn ≥ hn+1 on X. Let h

be the pointwise limit of {hn}n. Then h ∈ H. Since {un}n converges pointwise to
Gµ, we have u = Gµ+ h. The uniqueness of the decomposition is clear by Lemma
7.1. To prove the last assertion, let h′ ∈ H and 0 ≤ h′ ≤ u on X. Since hn − h′ is
q-harmonic on Xn and hn − h′ = u − h′ ≥ 0 on X \ Xn, we see by the minimum
principle that hn ≥ h′ on X, and hence h ≥ h′ on X. □
By this theorem, we obtain the following.

Theorem 7.3. A non-negative q-superharmonic function u is a q-Green potential
if and only if the greatest q-harmonic minorant of u is equal to zero.

Corollary 7.4. Let u be non-negative and q-superharmonic. If there exists µ ∈ M
such that u(x) ≤ Gµ(x) on X, then u is a q-Green potential.

8. q-Potentials with Finite Energy

We begin with the study of q-potentials with finite energy.

Lemma 8.1. If µ ∈ E , then Gµ ∈ E0 and E(Gµ) = G(µ, µ).

Proof. First let µ, ν ∈ L0(X). Since gx ∈ E0, we have Gµ,Gν ∈ E0. We obtain

E(Gµ,Gν) =
∑
z∈X

E(gz, Gν)µ(z) =
∑
z∈X

[Gν(z)]µ(z) = G(µ, ν).

Let µ ∈ E . Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and put µn = µεXn

and un = Gµn. Then un ∈ E0. For m > n we have

E(un, um) = G(µn, µm) ≥ G(µn, µn) = E(un),

E(un − um) = E(un)− 2E(un, um) + E(um) ≤ E(um)− E(un).

Since E(un) = G(µn, µn) ≤ G(µ, µ) < ∞, we have that {un}n is a Cauchy sequence
in E0. Thus there exists v ∈ E0 such that E(un − v) → 0 as n → ∞. We have

G(µ, µ) ≤ lim inf
n→∞

G(µn, µn) = lim
n→∞

E(un) ≤ G(µ, µ).

Therefore, E(v) = G(µ, µ). Since {un}n converges pointwise to Gµ, we conclude
that Gµ = v ∈ E0. □
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Lemma 8.2. Let µ ∈ E. Then E(Gµ, u) =
∑

x∈X u(x)µ(x) for every u ∈ E0 ∩
L+(X).

Proof. Since E(gx, u) = u(x) for u ∈ E0, our assertion is clear in case µ ∈ L0(X)
by Lemma 3.3 and Lemma 7.1. Let µn be the same as in the proof of the above
lemma. Then E(Gµn, u) =

∑
x∈X u(x)µn(x). Since E(Gµ−Gµn) → 0 as n → ∞,

we have E(Gµn, u) → E(Gµ, u) as n → ∞. Since u ∈ L+(X), we see that

E(Gµ, u) = lim
n→∞

E(Gµn, u) = lim
n→∞

∑
x∈X

u(x)µn(x)

= lim
n→∞

∑
x∈Xn

u(x)µ(x) =
∑
x∈X

u(x)µ(x). □

Lemma 8.3. If u ∈ E0 is q-superharmonic on X, then u ∈ L+(X).

Proof. Let a ∈ X and g
(n)
a be the q-Green function of Nn. We may assume that

a ∈ Xn for large n. Since E(ga − g
(n)
a ) → 0 as n → ∞ and u ∈ E0, we have

E(u, g
(n)
a − ga) → 0 as n → ∞. By Lemma 3.2,

E(u, g(n)a ) = −
∑
z∈X

[∆qu(z)]g
(n)
a (z) ≥ 0,

so that u(a) = E(u, ga) = limn→∞E(u, g
(n)
a ) ≥ 0. □

Theorem 8.4. {Gµ ; µ ∈ E} = {u ∈ E0 ; ∆qu(x) ≤ 0}.

Proof. Lemmas 7.1 and 8.1 shows that ∆qGµ ≤ 0 and Gµ ∈ E0 for µ ∈ E . To show
the converse, let u ∈ E0 satisfy ∆qu(x) ≤ 0 on X. Lemma 8.3 shows u ∈ L+(X).
By Riesz’s decomposition, there exist µ ∈ M and h ∈ H+ such that u = Gµ + h.
Consider an exhaustion {Nn = 〈Xn, Yn〉}n of N and put µn = µεXn and un = Gµn.
Since Gµ ≤ u, we have

E(un) = G(µn, µn) ≤ G(µ, µn) ≤
∑
x∈X

u(x)µn(x)

= E(Gµn, u) ≤ E(un)
1/2E(u)1/2

by Lemma 8.2, so that G(µn, µn) ≤ E(u) < ∞. Therefore

G(µ, µ) ≤ lim inf
n→∞

G(µn, µn) ≤ E(u),

hence µ ∈ E and Gµ ∈ E0 by Lemma 8.1. It follows from Royden’s decomposition
that u = Gµ. □

Let HE+ = HE ∩ L+(X).

Theorem 8.5. If u ∈ E is non-negative and q-superharmonic, then u is decom-
posed uniquely in the form u = Gµ+ h with µ ∈ E and h ∈ HE+.

Proof. Royden’s decomposition shows u = v + h with v ∈ E0 and h ∈ HE. Using
∆qv = ∆qu ≤ 0, we have v = Gµ for some µ ∈ E by Theorem 8.4. Riesz’s
decomposition shows u = Gµ′ + h′ for some µ′ ∈ M and h′ ∈ H+. Note that
µ′ = −∆qu = −∆qv = µ, so that h = h′ ≥ 0. □
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Lemma 8.6. Let µ ∈ M and ν ∈ E . If Gµ ≤ Gν on X, then µ ∈ E .
Proof. We have

G(µ, µ) =
∑
x∈X

[Gµ(x)]µ(x) ≤
∑
x∈X

[Gν(x)]µ(x) =
∑
z∈X

[Gµ(z)]ν(z)

≤
∑
z∈X

[Gν(z)]ν(z) = G(ν, ν) < ∞. □

Denote by Sµ the support of µ ∈ L(X), i.e., Sµ = {x ∈ X ; µ(x) 6= 0}.
Proposition 8.7. Let µ, ν ∈ E . If Gµ ≤ Gν on Sµ, then the same inequality holds
on X.

Proof. Let u = min(Gµ,Gν). Since Gµ and Gν are q-superharmonic, so is u by
Lemma 4.1. Proposition 3.11 implies u ∈ E0, so that there exists λ ∈ E such that
u = Gλ by Theorem 8.4. Note that u(x) = Gµ(x) on Sµ by our assumption.
Lemma 8.2 shows

E(Gµ,Gµ− u) =
∑
x∈X

(Gµ(x)− u(x))µ(x) = 0.

Therefore

E(Gµ− u) = E(Gµ,Gµ− u)− E(Gλ,Gµ− u)

= −
∑
x∈X

(Gµ(x)− u(x))λ(x) ≤ 0,

and hence E(Gµ− u) = 0. Thus u = Gµ and Gµ ≤ Gν on X. □

9. Potential Theoretic Properties of q-Green Potentials

Now we show some fundamental properties of q-Green potential which are well-
known as the domination principle, the equilibrium principle and the balayage
principle.

Proposition 9.1. Let µ1, µ2 ∈ M. Then there exists ν ∈ M such that Gν =
min(Gµ1, Gµ1).

Proof. Let u = min(Gµ1, Gµ2). Then u is non-negative and q-superharmonic by
Lemma 4.1. Our assertion follows from Corollary 7.4. □

By Proposition 9.1 and Lemma 8.6, we have

Corollary 9.2. Let µ ∈ M and ν ∈ E . Then there exists λ ∈ E such that
Gλ = min(Gµ,Gν).

Proposition 9.3 (Domination Principle). Let ν ∈ E and µ ∈ M. If Gµ(x) ≤
Gν(x) on Sµ, then the same inequality holds on X.

Proof. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and let µn = µεXn . Then
Sµn ⊂ Sµ and µn ∈ E . We have Gµn(x) ≤ Gν(x) on Sµn. By Proposition 8.7, the
same inequality holds on X. Since Gµn(x) → Gµ(x) as n → ∞, we conclude that
Gµ(x) ≤ Gν(x) on X. □
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Theorem 9.4. Let u be non-negative and q-superharmonic on X and µ ∈ M. If
Gµ(x) ≤ u(x) on Sµ, then the same inequality holds on X.

Proof. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and let µn = µεXn . Then
Sµn ⊂ Sµ and µn ∈ E . Let un = min(Gµn, u). Since un ≤ Gµn, we see by
Corollary 7.4 that there exists λn ∈ E such that Gλn = un. For x ∈ Sµn, we
have Gλn(x) = min(Gµn(x), u(x)) = Gµn(x), so that Gµn(x) ≤ Gλn(x) ≤ u(x)
on X by Proposition 8.7. Since Gµn(x) → Gµ(x) as n → ∞, we conclude that
Gµ(x) ≤ u(x) on X. □
Proposition 9.5 (Equilibrium Principle). For a nonempty finite subset A of X,
there exists ξA ∈ L+(X) such that SξA ⊂ A, GξA(x) = 1 on A, and GξA(x) ≤ 1
on X.

Proof. Take f = εA ∈ E0 and let u∗ be the function obtained in Theorem 6.1.
Theorem 8.4 shows u∗ = GξA for some ξA ∈ E . Note that ∆qu

∗ = −ξA by Lemma
7.1. We see that GξA(x) ≥ 1 on A and SξA ⊂ A. Since GξA(x) = 1 on SξA,
Theorem 9.4 shows that GξA(x) ≤ 1 on X. □
Proposition 9.6 (Balayage Principle 1). Let µ ∈ E and A a nonempty proper
subset of X. Then there exists µA ∈ L+(X) such that SµA ⊂ A, GµA(x) = Gµ(x)
on A, and GµA(x) ≤ Gµ(x) on X.

Proof. Since Gµ ∈ E0 by Lemma 8.1, we take f = Gµ in Theorem 6.1 and obtain
u∗. Theorem 8.4 shows u∗ = GµA for some µA ∈ E . We see that SµA ⊂ A,
GµA(x) ≥ Gµ(x) on A, and GµA(x) = Gµ(x) on SµA. Proposition 9.3 shows that
GµA(x) ≤ Gµ(x) on X. □
Proposition 9.7 (Balayage Principle 2). Let µ ∈ M and A a finite subset of
X. If µ(X) :=

∑
x∈X µ(x) < ∞, then there exists µA ∈ M such that SµA ⊂ A,

GµA(x) = Gµ(x) on A, and GµA(x) ≤ Gµ(x) on X.

Proof. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and let µn = µεXn . Then
µn ∈ E , so that by Proposition 9.6 there exists µ∗

n ∈ L+(X) such that Sµ∗
n ⊂ A,

Gµ∗
n(x) = Gµn(x) on A, and Gµ∗

n(x) ≤ Gµn(x) on X. Let ξA ∈ L+(X) be the
function in Proposition 9.5, i.e., SξA ⊂ A, GξA(x) = 1 on A, and GξA(x) ≤ 1 on
X. We have

µ∗
n(A) :=

∑
x∈A

µ∗
n(x) =

∑
x∈A

[GξA(x)]µ
∗
n(x) = G(ξA, µ

∗
n)

=
∑
x∈X

[Gµ∗
n(x)]ξA(x) ≤

∑
x∈X

[Gµn(x)]ξA(x)

≤
∑
x∈X

[Gµ(x)]ξA(x) =
∑
x∈X

[GξA(x)]µ(x) ≤ µ(X) < ∞.

Taking a subsequence if necessary, we may assume that {µ∗
n}n converges pointwise

to µ∗. Since Gµ∗
n (Gµn resp.) converges pointwise to Gµ∗ (Gµ resp.), we see that

Sµ∗ ⊂ A, Gµ∗(x) = Gµ(x) on A, and Gµ∗(x) ≤ Gµ(x) on X. We may take
µA = µ∗. □
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10. The q-Elliptic Measure of the Ideal Boundary of N

We introduce the discrete version of q-elliptic measure in [11, Page 286]. Let
{Nn = 〈Xn, Yn〉}n be an exhaustion of N and let ωn be the unique solution of the
following boundary problem.

∆qu = 0 on Xn and u = 1 on X \Xn.

Remark 10.1. The existence and uniqueness follows from the fact that our prob-
lem is reduced to a system of linear equations in a form: Au = b, where A is
m ×m-matrix and u,b ∈ Rm with m the number of nodes in Xn. Our assertion
follows from detA 6= 0.
Another way to prove our assertion is to consider the extremum problem: βn =

inf{E(u);u ∈ L(X), u = 1 on X \Xn}. We can show by a standard technique
that there exists u∗ ∈ L(X) such that u∗ = 1 on X \ Xn and βn = E(u∗). By
the variational technique used in the proof of Proposition 12.3 below, we see that
u∗ is the desired solution. In this case, the uniqueness follows from the minimum
principle.

By the minimum principle, 0 ≤ ωn+1 ≤ ωn ≤ 1 on X. The limit function ω of
{ωn}n exists. It is easily seen that ω does not depend on the choice of an exhaustion
of N and that ω is q-harmonic on X and 0 ≤ ω ≤ 1 on X. We call ω the q-elliptic
measure of the ideal boundary of N , shortly, q-elliptic measure.

Proposition 10.2. Assume that u vanishes at the ideal boundary, i.e., for any
ε > 0, there exists a finite subset X ′ of X such that |u(x)| ≤ ε on X \X ′. If u is
q-harmonic on X, then u = 0.

Proof. For any ε > 0, there exists a finite subset X ′ of X such that |u(x)| ≤ ε
on X \ X ′. Since both ε ± u are q-superharmonic and non-negative on X \ X ′,
the minimum principle shows that ε ± u ≥ 0 on X, i.e., |u(x)| ≤ ε on X. By the
arbitrariness of ε, we have u = 0. □
Proposition 10.3. If c := inf{q(x) ; x ∈ X} > 0, then HE = {0}.
Proof. Let u ∈ HE. We have

c
∑
x∈X

u(x)2 ≤ ‖u‖2 ≤ E(u) < ∞,

so that u vanishes at the ideal boundary. Thus u = 0 by Proposition 10.2. □
Lemma 10.4. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and g

(n)
a be the q-Green

function of Nn with pole at a ∈ Xn. Then ωn(x) = 1−
∑

z∈Xn
q(z)g

(n)
z (x).

Proof. Let u(x) = 1−
∑

z∈Xn
q(z)g

(n)
z (x). Then u is q-harmonic on Xn. In fact, for

x ∈ Xn, we have

∆qu(x) = ∆q1(x)−
∑
z∈Xn

q(z)∆qg
(n)
z (x) = −q(x)−

∑
z∈Xn

q(z)[−εz(x)] = 0.

Since g
(n)
z (x) = 0 for x ∈ X \ Xn and z ∈ Xn, we have u = 1 on X \ Xn. Hence

u = ωn. □
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Letting n → ∞ in this lemma, we obtain

Theorem 10.5. Let ω be the q-elliptic measure of the ideal boundary. Then ω(x) =
1−

∑
z∈X q(z)gz(x).

Corollary 10.6. Gq(x) =
∑

z∈X q(z)gz(x) ≤ 1 on X.

Another proof of this fact was given without using the q-elliptic measure (cf. [17,
Theorem 4.5]).

Lemma 10.7. Let c be a positive constant. If u is q-superharmonic and u(x) ≥ −c
on X, then u(x) ≥ −cω(x) on X. If u is q-harmonic and |u(x)| ≤ c on X, then
|u(x)| ≤ cω(x) on X.

Proof. Let {ωn}n be the determining sequence of ω. If u is q-superharmonic such
that u(x) ≥ −c on X, then u+ cωn is q-superharmonic on Xn and is non-negative
on X \Xn. The minimum principle implies u+cωn ≥ 0 on X. Therefore u+cω ≥ 0
on X. If u is q-harmonic such that |u(x)| ≤ c on X, then u ≥ −c and −u ≥ −c.
We have u ≥ −cω and −u ≥ −cω, so that |u(x)| ≤ cω(x) on X. □

Corollary 4.4, Theorem 10.5, and Lemma 10.7 imply

Theorem 10.8. The following three properties are equivalent:

(1) ω = 0.
(2) HB = {0}.
(3) Gq(x) = 1 for some x ∈ X.

Example 10.9. Let G be the same as in Example 5.6 and take r(yn) = 2−n for
n ≥ 1 and q(xn) = 2n+1 for n ≥ 0. Then N is hyperbolic and HB = {0}.

Proof. Let u ∈ H and un = u(xn). The equation ∆qu(x) = 0 implies

u1 − u0

2−1
= 2u0,

un−1 − un

2−n
+

un+1 − un

2−n−1
= 2n+1un for n ≥ 1,

or

u1 = 2u0, 2un+1 − 5un + un−1 = 0 for n ≥ 1.

The general solution is un = Aαn + Bβn for n ≥ 0 with α = (5 −
√
17)/4, β =

(5 +
√
17)/4. Note that un = Aαn does not satisfy u1 = 2u0 unless A = 0, which

implies HB = {0}. By the condition u1 = 2u0, we have B = (7− 3α)A, so that

un = Aαn + (7− 3α)Aβn for n ≥ 0.

Now let vn = gx0(xn). Then the equation ∆qgx0 = −εx0 implies

v1 = 2v0 −
1

2
, 2vn+1 − 5vn + vn−1 = 0 for n ≥ 1.

Since N is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that vn → 0
as n → ∞, so that vn = Aαn. By the initial condition, we have A = 1/(4 − 2α),
and hence

gx0(xn) =
αn

4− 2α
for n ≥ 0.
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We have

Gq(x0) =
∞∑
n=0

q(xn)gx0(xn) =
∞∑
n=0

2n+1αn

4− 2α
=

1

(2− α)(1− 2α)
= 1.

This also follows from Theorem 10.8. □
Proposition 10.10. If N is hyperbolic and q ∈ L+

0 (X), then ω 6= 0.

Proof. Suppose that ω = 0. Then Gq(x) = 1 on X. Since Sq is a finite set, Kayano
and Yamasaki [4, Theorem 3.3] show that there exists a sequence {xn}n such that
gz(xn) → 0 as n → ∞ for all z ∈ Sq, so that

1 = lim
n→∞

Gq(xn) = lim
n→∞

∑
z∈Sq

gz(xn)q(z) = 0,

which is a contradiction. □
Proposition 10.11. Assume that q ∈ L+

0 (X) and ω 6= 0. Then there exists a
constant c with 0 < c < 1 such that ω(x) ≥ 1− c on X.

Proof. Let c = max{Gq(x) ; x ∈ Sq}. We have Gq(x) < 1 on X by Theorem 10.8.
Since Sq is a finite set, it follows that c < 1. Namely Gq(x) ≤ c on Sq. We have
Gq(x) ≤ c onX by Theorem 9.4. Theorem 10.5 shows that ω(x) = 1−Gq(x) ≥ 1−c
on X. □
Corollary 10.12. Assume that q ∈ L+

0 (X) and ω 6= 0. Then there exists a constant
c with 0 < c < 1 such that (1− c)G1(x) ≤ Gω(x) ≤ G1(x) on X.

11. The Case Where N is Parabolic

In this section, we consider the case where N is parabolic, i.e., E = E0. We have

Proposition 11.1. Assume that N is parabolic. Then Gq(x) = 1 on X.

Proof. By [14, Theorem 3.2], we have 1 ∈ D0, so that there exists a sequence
{fn}n in L0(X) such that 0 ≤ fn(x) ≤ 1 on X, D(1 − fn) → 0 as n → ∞, and
{fn}n converges pointwise to 1. Let a ∈ X. Since ∆qga(x) = −εa(x), we have
q(x)ga(x) = ∆ga(x) + εa(x) and∑

z∈X

fn(z)[q(z)ga(z)] =
∑
z∈X

fn(z)[∆ga(z) + εa(z)] = −D(fn, ga) + fn(a).

Since D(fn) = D(1− fn), we have

lim
n→∞

|D(fn, ga)| ≤ lim
n→∞

D(fn)
1/2D(ga)

1/2 = 0.

Since Gq(a) ≤ 1 by Theorem 10.5, we have by Lebesgue’s dominated convergence
theorem

Gq(a) =
∑
z∈X

q(z)ga(z) = lim
n→∞

∑
z∈X

fn(z)[q(z)ga(z)]

= lim
n→∞

[−D(fn, ka) + fn(a)] = 1

By Theorem 10.5 and the minimum principle, we see that Gq = 1 on X. □
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By Theorems 10.8 and Proposition 11.1, we have

Theorem 11.2. Assume that N is parabolic. Then HB = {0}.

We show the effect of the condition Gq = 1 by examples.

Example 11.3. Let G be the linear graph as in Example 5.6, q = εx0 + εx1 + εx2 ,
and r(y) = 1 on Y . Then N is parabolic (cf. [15, Example 3.1]) and gx0 is given
by

gx0(x0) =
5

8
, gx0(x1) =

2

8
, gx0(xn) =

1

8
for n ≥ 2.

The class H+ consists of h ∈ L(X) defined by

h(x0) = t > 0, h(x1) = 2t, h(xn) = (8n− 11)t for n ≥ 2.

Proof. Let h ∈ H+ and hn = h(xn). Then

h1 − 2h0 = 0, h2 + h0 − 3h1 = 0,

h3 + h1 − 3h2 = 0, hn+1 − 2hn + hn−1 = 0 for n ≥ 3,

which implies

h(x0) = t > 0, h(x1) = 2t, h(xn) = (8n− 11)t for n ≥ 2.

This means HB = {0}. Let un = gx0(xn). The equation ∆qgx0 = −εx0 implies

u1 − 2u0 = −1, u2 + u0 − 3u1 = 0,

u3 + u1 − 3u2 = 0, un+1 − 2un + un−1 = 0 for n ≥ 3.

Proposition 11.1 implies Gq(x0) = 1, which means

u0 + u1 + u2 = 1.

These equations lead to u0 = 5/8, u1 = 2/8, un = 1/8 for n ≥ 2. □

Example 11.4. Let G be the linear graph and let q(x) = 1 on X and r(y) = 1 on
Y . Then N is parabolic (cf. [15, Example 3.1]) and

gx0(xn) =
αn

2− α
for n ≥ 0, α =

3−
√
5

2
.

Proof. Let h ∈ H+ and hn = h(xn). The equation ∆qh(x) = 0 implies h1 = 2h0

and hn+1 − 3hn + hn−1 = 0 for n ≥ 1. The general solution is un = Aαn + Bβn

for n ≥ 0, where α = (3 −
√
5)/2 and β = (3 +

√
5)/2 are solutions of the

characteristic equation t2 − 3t+ 1 = 0. The initial condition shows B = (3− α)A
and H = {Aαn + (3− α)Aβn ; n ≥ 0}. This means HB = {0}. Let un = gx0(xn).
The equation ∆qgx0 = −εx0 implies

u1 − 2u0 = −1, un+1 − 3un + un−1 = 0 for n ≥ 1.

Since Gq(x) = 1, we obtain un = Aαn. By the condition u1 = 2u0 − 1, we have
A = 1/(2− α). □
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12. Classification of Infinite Networks

Recall HE+ = HE ∩ L+(X) and let

HP = H+ −H+ = {h = h1 − h2 ; h1, h2 ∈ H+},
HEP = HE+ −HE+.

For a class C of L(X), denote by OC the collection of those infinite networks N
for which C consists only of 0. Since HP ⊂ H, we have OH ⊂ OHP .

Proposition 12.1. HB ⊂ HP.

Proof. Let u ∈ HB. Then there exists a constant such that |u(x)| ≤ c on X. By
Lemma 10.7, |u(x)| ≤ cω(x) on X. Let u1 = (cω + u)/2 and u2 = (cω − u)/2. By
Lemma 4.1, u1 and u2 are non-negative and q-harmonic and u1 − u2 = u. □

Corollary 12.2. OHP ⊂ OHB.

Clearly HEB ⊂ HB, so that OHB ⊂ OHEB.

Proposition 12.3. HE = HEP = {u1 − u2 ; u1, u2 ∈ HE+}.

Proof. Since HEP ⊂ HE is clear, we prove the converse inclusion. Let u ∈ HE
and u+ = max(u, 0), u− = max(−u, 0). For our purpose, we may assume that
both u+ and u− are non-zero. Let {Nn = 〈Xn, Yn〉}n be an exhaustion of N and
consider the following extremum problems:

αn = inf{E(v) ; v ∈ E, v = u+ on X \Xn}.

Note that αn ≤ E(u+) ≤ E(u) by Corollary 3.10. By the same reasoning as in
the proof of Theorem 6.1, we see that there exists a unique solution v∗n such that
αn = E(v∗n). Let f ∈ L(X) satisfy f = 0 on X \Xn. Since v∗n + tf(∈ E) is equal
to u+ on X \Xn for any real number t, we have

E(v∗n) ≤ E(v∗n + tf) = E(v∗) + 2tE(v∗n, f) + t2E(f).

Letting t ↗ 0 and t ↘ 0, we obtain E(v∗n, f) = 0. For any x ∈ X \Xn, Lemma 3.3
shows

0 = E(v∗n, εx) = −∆qv
∗
n(x),

namely v∗n is q-harmonic onXn. Note that−u+ is q-superharmonic onX by Lemma
4.1. Since v∗n − u+ is q-superharmonic on Xn and vanishes on X \ Xn, we have
v∗n−u+ ≥ 0 on X by the minimum principle. From v∗n+1 ≥ u+ on X and v∗n = u+ on
X\Xn, we see that v

∗
n+1−v∗n ≥ 0 onX\Xn. Since v

∗
n+1−v∗n is q-harmonic onXn, we

obtain by the minimum principle v∗n+1 ≥ v∗n on X. Lemma 3.1 implies that, for each

x ∈ X, there exists Mx > 0 such that u+(x) ≤ v∗n(x) ≤ MxE(v∗n)
1/2 ≤ MxE(u)1/2.

Therefore, the sequence {v∗n}n converges pointwise to v∗ ∈ L+(X). Then v∗ is
q-harmonic on X and v∗ ≥ u+. Note that

E(v∗) ≤ lim inf
n→∞

E(v∗n) ≤ E(u) < ∞,
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so that v∗ ∈ HE+. Theorem 8.5 shows that v∗ − u+ = Gµ1 + h1 with µ1 ∈ E
and h1 ∈ HE+. Similarly we find w∗ ∈ HE+, µ2 ∈ E , and h2 ∈ HE+ such that
w∗ − u− = Gµ2 + h2. Let φ = v∗ − w∗ ∈ HE. Then

0 = ∆q(φ− u) = ∆qG(µ1 − µ2) = −µ1 + µ2.

Let u1 = v∗ + h2 and u2 = w∗ + h1. Then u1, u2 ∈ HE+ and

u = φ− (h1 − h2) = u1 − u2.

This completes the proof. □
Next theorem gives a sufficient condition for H+ 6= {0}.

Theorem 12.4. If N is hyperbolic and
∑

x∈X q(x) < ∞, then H+ 6= {0}.

Proof. If H+ = {0}, then HE+ = {0}, so that HEP = {0}. Hence HE = {0} by
Proposition 12.3. This contradicts Theorem 3.8. □
Proposition 12.5. For every u ∈ HE, there exists a sequence {hn}n in HEB
such that E(u− hn) → 0 as n → ∞.

Proof. Let u ∈ HE and u ≥ 0 and let un(x) = min(u(x), n). Then un ∈ E is non-
negative and q-superharmonic. Theorem 8.5 shows that un = Gµn+hn with µn ∈ E
and hn ∈ HE+. We have 0 ≤ hn ≤ un ≤ n and hn ∈ HEB. Lemma 3.3 shows
E(u−hn, Gµn) = 0, which leads to E(u−un) = E(Gµn)+E(u−hn) ≥ E(u−hn).
Note that D(u − un) → 0 as n → ∞ by [14, Lemma 3.1]. Since ‖un‖ ≤ ‖u‖ and
{un}n converges pointwise to u, we see that {〈un, v〉}n converges to 〈u, v〉 for every
v ∈ E. Furthermore, we have ‖un‖2 → ‖u‖2 as n → ∞, and that ‖u−un‖2 → 0 as
n → ∞. Thus E(u− un) → 0 as n → ∞, which shows E(u− hn) → 0 as n → ∞.

Now we consider the case where u ∈ HE is of any sign. By Proposition 12.3,
there exist u′, u′′ ∈ HE+ such that u = u′ − u′′. By the above observation, we can
find sequences {h′

n} and {h′′
n} inHEB such that E(u′−h′

n) → 0 and E(u′′−h′′
n) → 0

as n → ∞. Let hn = h′
n−h′′

n. Then hn ∈ HEB and E(u−hn) → 0 as n → ∞. □
Corollary 12.6. OHE = OHEB.

Thus we have the following classification of infinite networks by the classes of
q-harmonic functions:

Theorem 12.7. OH ⊂ OHP ⊂ OHB ⊂ OHEB = OHE.

Note that HD = HE if q ∈ L+
0 (X).

13. q-Quasiharmonic Classification

We say that a function u ∈ L(X) is q-quasiharmonic on X if ∆qu = cω on
X, where ω is the q-elliptic measure and c is a constant. Denote by Q the set
of q-quasiharmonic functions on X normalized by ∆qu = −ω. In this section, we
always assume that ω 6= 0. We consider the following classes of q-quasiharmonic
functions:

QB = {u ∈ Q ; sup{|u(x)| ; x ∈ X} < ∞},
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QE = Q ∩ E, Q+ = Q ∩ L+(X).

In addition to M and E , we introduce

Mb = {µ ∈ M ; sup{Gµ(x) ; x ∈ X} < ∞}.
Theorem 13.1. Assume ω 6= 0. The classes OC for C = Q+,QB,QE are char-
acterized as follows:

(1) N ∈ OQ+ if and only if ω /∈ M;
(2) N ∈ OQB if and only if ω /∈ Mb;
(3) N ∈ OQE if and only if ω /∈ E .

Proof. Let u = Gω. If ω ∈ M, then ∆qu = −ω on X and u > 0, and hence
u ∈ Q+. If ω ∈ Mb, then u ∈ QB. If ω ∈ E , then u ∈ QE by Theorem 8.4. Thus
the only-if parts in (1)–(3) are proved.

(1) Assume that N /∈ OQ+ and let u ∈ Q+. Since u is non-negative and q-
superharmonic, we see by Riesz’s decomposition that there exist µ ∈ M and h ∈
H+ such that u = Gµ+ h and µ = −∆qu = ω. Thus ω ∈ M.

(2) Assume that N /∈ OQB and u ∈ QB. Then there exists a positive constant
c such that |u(x)| ≤ c on X. Lemma 10.7 shows that u + cω is non-negative and
q-superharmonic. Riesz’s decomposition shows that there exist µ ∈ M and h ∈ H+

such that u + cω = Gµ + h and µ = −∆q(u + cω) = ω. Thus Gω ≤ u + cω ≤ 2c
on X and ω ∈ Mb.

(3) Assume that N /∈ OQE and u ∈ QE. Royden’s decomposition implies that
there exist v ∈ E0 and h ∈ HE such that u = v + h. Since ∆qv = ∆qu = −ω,
Theorem 8.4 shows that there exists µ ∈ E such that v = Gµ. We obtain ω =
−∆qGµ = µ ∈ E . □
This theorem implies

Proposition 13.2. If ω 6= 0, then OQ+ ⊂ OQB.

We have by Proposition 10.11 and Corollary 10.12

Lemma 13.3. Assume that q ∈ L+
0 (X) and ω 6= 0. Then

(1) ω ∈ M if and only if 1 ∈ M;
(2) ω ∈ Mb if and only if 1 ∈ Mb;
(3) ω ∈ E if and only if 1 ∈ E .
We show by an example that there exists N /∈ OQ+ such that N ∈ OQB.

Example 13.4. Let G be the ladder as in [16, Example 4.3]. Namely X =
{xn, x

′
n ; n ≥ 0}, Yn = {yn, y′n, y′′n ; n ≥ 1} ∪ {y′′0} and K(x, y) is defined by

K(xn, yn+1) = K(x′
n, y

′
n+1) = K(xn, y

′′
n) = −1,

K(xn+1, yn+1) = K(x′
n+1, y

′
n+1) = K(x′

n, y
′′
n) = 1

for n ≥ 0 and K(x, y) = 0 for any other pair. Let q(x) = εx0(x) and α0 a constant
with 0 < α0 < 1. We choose r(y) as follows:

rn = 1, r′n =
2−n−1α0

2n+ 1− α0

,
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r′′0 =
α0

2(2− α0)
, r′′n = (1− 2−n−1)α0 + n

for n ≥ 1, where rn = r(yn), r
′
n = r(y′n), and r′′n = r(y′′n). This network is in

OQB \OQ+ .

Proof. Let us consider the function u ∈ L(X) defined by

un = α0 + n, u′
n = 2−n−1α0 for n ≥ 0,

where un = u(xn) and u′
n = u(x′

n). We show ∆qu = −1. We compute

du(yn) = −K(xn−1, yn)u(xn−1) +K(xn, yn)u(xn)

r(yn)
=

un−1 − un

rn
= −1,

du(y′n) = −
K(x′

n−1, y
′
n)u(x

′
n−1) +K(x′

n, y
′
n)u(x

′
n)

r(y′n)
=

u′
n−1 − u′

n

r′n
= 2n+ 1− α0,

du(y′′0) = −K(x0, y
′′
0)u(x0) +K(x′

0, y
′′
0)u(x

′
0)

r(y′′0)
=

u0 − u′
0

r′′0
= 2− α0,

du(y′′n) = −K(xn, y
′′
n)u(xn) +K(x′

n, y
′′
n)u(x

′
n)

r(y′′n)
=

un − u′
n

r′′n
= 1

for n ≥ 1. We have

∆qu(x0) = K(x0, y1)du(y1) +K(x0, y
′′
0)du(y

′′
0)− u(x0)

= −du(y1)− du(y′′0)− u0 = −1,

∆qu(x
′
0) = K(x′

0, y
′
1)du(y

′
1) +K(x′

0, y
′′
0)du(y

′′
0)

= −du(y′1) + du(y′′0) = −1,

∆qu(xn) = K(xn, yn)du(yn) +K(xn, yn+1)du(yn+1) +K(xn, y
′′
n)du(y

′′
n)

= du(yn)− du(yn+1)− du(y′′n) = −1,

∆qu(x
′
n) = K(x′

n, y
′
n)du(y

′
n) +K(x′

n, y
′
n+1)du(y

′
n+1) +K(x′

n, y
′′
n)du(y

′′
n)

= du(y′n)− du(y′n+1) + du(y′′n) = −1.

By Riesz’s decomposition, we have u = Gµ + h with µ ∈ M and h ∈ H+. Note
that 1 = −∆qu = µ ∈ M. Also note that N is hyperbolic because of

∑
n r

′
n < ∞

and [14, Theorem 4.1 and Lemma 4.3]. Proposition 10.10 shows ω 6= 0.
To show N ∈ OQB \OQ+ , it suffices to show that 1 ∈ M\Mb by Theorem 13.3

and Lemma 13.3. We show that v := G1 is unbounded. Suppose that v is bounded,
i.e., there exists a positive constant c such that |v(x)| ≤ c on X. Let vn = v(xn),
v′n = v(x′

n), wn = dv(yn), w
′
n = dv(y′n), and w′′

n = dv(y′′n). Then |wn| ≤ 2c for all
n. For any ε with 0 < ε < 1, there exists n0 such that r′′n ≥ 2c/ε for all n ≥ n0, so
that

|w′′
n| =

1

r′′n
|v′n − vn| ≤ ε.

Since 1 ∈ M, Lemma 7.1 shows ∆qv = −1, which implies wn − wn+1 − w′′
n = −1,

and that

−1− ε ≤ wn − wn+1 ≤ −1 + ε
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for all n ≥ n0. This contradicts the boundedness of {wn}n. Thus v is unbounded.
□

Proposition 13.5. If q ∈ L+
0 (X) and ω 6= 0, then OQB ⊂ OQE.

Proof. Assume N /∈ OQE. Theorem 13.1 shows ω ∈ E . There exists a constant c
with 0 < c < 1 such that ω(x) ≥ 1− c on X by Proposition 10.11, so that

G(ω, ω) =
∑
z∈X

Gω(z)ω(z) ≥ (1− c)
∑
z∈X

Gω(z) ≥ (1− c)Gω(x)

for each x ∈ X. This means ω ∈ Mb. □
Example 13.6. Let G and q be the same as in Example 5.6. Define r(y) by
r(yn) = n−2 − (n + 1)−2 for n ≥ 1. Then ω ∈ Mb and ω /∈ E . Equivalently
QB 6= {0} and QE = {0}.

Proof. Let Rn and ρn be defined as in Example 5.6. Then

R0 = 1, Rn =
1

(n+ 1)2
, ρn = 1− 1

(n+ 1)2
< 1.

We have by Theorem 10.5

ω(xn) = 1− gx0(xn) = 1− (1 + ρ0)Rn

1 +R0

=
1 + ρn
1 +R0

for n ≥ 0.

We obtain

Gω(x0) =
1

(1 +R0)2

∞∑
n=0

Rn(1 + ρn) ≤
1

2

∞∑
n=0

Rn < ∞,

Gω(xm) =
∞∑
n=0

gxm(xn)ω(xn)

=
1

(1 +R0)2

[
Rm

m∑
n=0

(1 + ρn)
2 + (1 + ρm)

∞∑
n=m+1

Rn(1 + ρn)

]

≤ (m+ 1)Rm +
∞∑

n=m+1

Rn ≤ 1

m+ 1
+

∞∑
n=1

1

n2
,

so that Gω is bounded and ω ∈ Mb.
We have G(ω, ω) = S1 + S2, where

S1 =
1

(1 +R0)3

∞∑
m=0

Rm(1 + ρm)
m∑

n=0

(1 + ρn)
2,

S2 =
1

(1 +R0)3

∞∑
m=0

(1 + ρm)
2

∞∑
n=m+1

Rn(1 + ρn).

Therefore

cm :=
∞∑

n=m+1

Rn(1 + ρn) ≥
∞∑

n=m+1

1

(n+ 1)2
≥

∫ ∞

m+2

1

t2
dt =

1

m+ 2
,
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thus

G(ω, ω) ≥ S2 ≥
1

8

∞∑
m=0

cm = ∞. □
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