POTENTIAL THEORY OF THE DISCRETE EQUATION $\Delta u=q u$

HISAYASU KURATA AND MARETSUGU YAMASAKI
Communicated by Jitsuro Sugie

(Received: November 30, 2020)

Abstract

We develop a discrete potential theory for the equation $\Delta u=q u$ on an infinite network similar to the classical potential theory on Riemannian surfaces. The q-Green function for the Schrödinger operator $-\Delta+q$ plays the role of the Green function for the Laplace operator. We study some properties of q-Green potential whose kernel is the q-Green function. As an application, we give a classification of infinite networks by the classes of q-harmonic functions. We also focus on the role of the q-elliptic measure of the ideal boundary of the network.

1. Introduction

Many fruitful results in the theory of potentials related to Laplace operator had published in Constantinescu and Cornea [2]. Related to discrete Laplacian, some results were obtained by Soardi [12], Yamasaki [13], [15], and Kurata and Yamasaki [5], [6], etc. There are some papers related to Schrödinger operator $\Delta u-q u$, for instance Ozawa [10], Maeda [8] and Sario, Nakai, Wang, and Chung [11]. The discrete equation $\Delta_{q} u:=\Delta u-q u=0$ has been studied by Yamasaki [17], Kurata and Yamasaki [7], Anandam [1], and Fischer and Keller [3]. Their research methods are different. Anandam used the theory of axiomatic potentials. Our research method depends on the theory of Dirichlet space and reasoning in [2]. Fischer and Keller used semigroups of a self-adjoint realization of the Schrödinger operator. The aim of this paper is to study the discrete equation $\Delta_{q} u=0$ on an infinite network along the same line in [17]. We always assume that q is a non-zero non-negative function and $q \not \equiv 0$. We show the fundamental results relating the spaces \mathbf{E} and \mathbf{E}_{0} and the norm $E(\cdot)^{1 / 2}$ in Section 3, and properties of q-superharmonic functions in Section 4. We define the q-Green function of \mathcal{N} in Section 5. Most of these results were obtained in [17]. We give their proofs for completeness. The discrete analogues of Royden's decomposition of a function in \mathbf{E} and Riesz's decomposition of a non-negative q-superharmonic function play the fundamental roles in our study.

[^0]In Sections 6-9, we study potential-theoretic properties of q-Green potentials; for example, domination principle, equilibrium principle, etc. As the discrete analogy of q-elliptic measure in [11, Page 286], we introduce the q-elliptic measure ω of the ideal boundary of the network and study it in Section 10 more detail than in [17]. In case \mathcal{N} is parabolic, we give some supplementary results in Section 11. We shall give a classification of infinite networks by using the classes of q-harmonic functions in Section 12. Analogous to the classification theory in Sario, Nakai, Wang, and Chung [11], we give some results of q-quasiharmonic classification of the networks by using q-elliptic measure ω in Section 13 which is similar to Yamasaki [16].

2. Fundamental Notion

Let $\mathcal{G}=\langle X, Y, K\rangle$ be an infinite graph which is connected and locally finite without self-loops (cf. [13]). Here we denote X by the countable set of nodes, Y by the countable set of arcs, and K by the node-arc incidence matrix. Namely, K is a function on $X \times Y$ and $K(x, y)=-1$ if x is the initial node of $y, K(x, y)=1$ if x is the terminal node of y, and $K(x, y)=0$ otherwise. Now we introduce several fundamental notation used in this paper. Let $L(X)$ be the set of all real functions on $X, L_{0}(X)$ the subset of $L(X)$ with finite support, and $L^{+}(X)$ the set of all non-negative functions on X. We define $L(Y), L_{0}(Y)$, and $L^{+}(Y)$ similarly. Let $r \in L^{+}(Y)$ be a resistance, which is a strictly positive function, and let $q \in L^{+}(X)$ and $q \not \equiv 0$. In this paper, we call the triple $\mathcal{N}=\langle\mathcal{G}, r, q\rangle$ an infinite network. For $x \in X$, let $Y(x)=\{y \in Y ; K(x, y) \neq 0\}$, which is the set of arcs incidence to x. We say that a sequence of finite networks $\left\{\mathcal{N}_{n}=\left\langle\mathcal{G}_{n}, r_{n}, q_{n}\right\rangle\right\}_{n}$ is an exhaustion of \mathcal{N} if the sequence $\left\{\mathcal{G}_{n}=\left\langle X_{n}, Y_{n}, K_{n}\right\rangle\right\}_{n}$ of connected graphs satisfies $X_{n} \subset X_{n+1}$, $Y_{n} \subset Y_{n+1}, X=\bigcup_{n=1}^{\infty} X_{n}, Y=\bigcup_{n=1}^{\infty} Y_{n}$, and $Y(x) \subset Y_{n+1}$ for all $x \in X_{n}$. Here denote by K_{n} the restriction of K onto $X_{n} \times Y_{n}$ and by r_{n} and q_{n} the restrictions of r and q onto Y_{n} and X_{n} respectively. Hereafter we write $\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle$ for short. For $u \in L(X)$, let

$$
\begin{aligned}
d u(y) & =-r(y)^{-1} \sum_{x \in X} K(x, y) u(x) \quad(\text { discrete derivative }), \\
D(u) & =\sum_{y \in Y} r(y)[d u(y)]^{2} \quad(\text { Dirichlet sum) } \\
E(u) & =D(u)+\sum_{x \in X} q(x) u(x)^{2} \quad(q \text {-energy) } \\
\Delta u(x) & =\sum_{y \in Y} K(x, y)[d u(y)] \quad \text { (discrete Laplacian) } \\
\Delta_{q} u(x) & =\Delta u(x)-q(x) u(x) \quad \text { (discrete } q \text {-Laplacian). }
\end{aligned}
$$

We say that $u \in L(X)$ is q-harmonic on a subset A of X if $\Delta_{q} u(x)=0$ on A. For $a \in X$, denote by $\varepsilon_{a} \in L(X)$ the characteristic function of $\{a\}$, i.e., $\varepsilon_{a}(a)=1$ and $\varepsilon_{a}(x)=0$ for $x \neq a$. Also for a set $A \subset X$ denote by $\varepsilon_{A} \in L(X)$ the characteristic function of A.

3. The Spaces E and \mathbf{E}_{0}

Let us put

$$
\begin{aligned}
\mathbf{D} & =\{u \in L(X) ; D(u)<\infty\}, \\
\mathbf{E} & =\{u \in L(X) ; E(u)<\infty\}, \\
\mathbf{H} & =\left\{u \in L(X) ; \Delta_{q} u=0\right\} \quad \text { (the set of } q \text {-harmonic functions) }, \\
\mathbf{H E} & =\mathbf{H} \cap \mathbf{E}, \quad \mathbf{H D}=\mathbf{H} \cap \mathbf{D} .
\end{aligned}
$$

For simplicity, we set for $u, v \in L(X)$

$$
\begin{aligned}
\langle u, v\rangle & =\sum_{x \in X} q(x) u(x) v(x), \\
\|u\|^{2} & =\langle u, u\rangle \\
D(u, v) & =\sum_{y \in Y} r(y)[d u(y)][d v(y)], \\
E(u, v) & =D(u, v)+\langle u, v\rangle .
\end{aligned}
$$

Then $D(u)=D(u, u)$ and $E(u)=D(u)+\|u\|^{2}=E(u, u)$.
Lemma 3.1. For $a \in X$ there exists a constant $M_{a}>0$ such that $|u(a)| \leq$ $M_{a} E(u)^{1 / 2}$ for $u \in \mathbf{E}$.

Proof. Let $a \in X$. Let $b \in X$ be such that $q(b)>0$. For $u \in \mathbf{E}$ we have $q(b) u(b)^{2} \leq E(u)$, or $|u(b)| \leq q(b)^{-1 / 2} E(u)^{1 / 2}$. Let P be a path between a and b. Then

$$
\begin{aligned}
|u(a)| & \leq|u(b)|+\sum_{y \in Y(P)} r(y)|d u(y)| \\
& \leq|u(b)|+\left(\sum_{y \in Y(P)} r(y)\right)^{1 / 2}\left(\sum_{y \in Y(P)} r(y) d u(y)^{2}\right)^{1 / 2} \\
& \leq q(b)^{-1 / 2} E(u)^{1 / 2}+\left(\sum_{y \in Y(P)} r(y)\right)^{1 / 2} E(u)^{1 / 2}
\end{aligned}
$$

where $Y(P)$ is the set of arcs belonging to P.
It is easily seen that \mathbf{E} is a Hilbert space with respect to the inner product $E(\cdot, \cdot)$. Note that if $u_{n}, u \in \mathbf{E}$ and $E\left(u_{n}-u\right) \rightarrow 0$ as $n \rightarrow \infty$, then $\left\{u_{n}\right\}_{n}$ converges pointwise to u. Denote by \mathbf{E}_{0} the closure of $L_{0}(X)$ with respect to the norm $[E(\cdot)]^{1 / 2}$. Recall that \mathbf{D}_{0} is the closure of $L_{0}(X)$ with respect to the norm $\left[D(\cdot)+u\left(x_{0}\right)^{2}\right]^{1 / 2}$, where x_{0} is a fixed node of X (see [15, Theorem 1.1]). We say that \mathcal{N} is hyperbolic (parabolic resp.) if the network $\langle\mathcal{G}, r\rangle$ is hyperbolic (parabolic resp.), i.e., $\mathbf{D} \neq \mathbf{D}_{0}\left(\mathbf{D}=\mathbf{D}_{0}\right.$ resp.) (cf. [14]).

Theorem 3.2. $\mathrm{E}_{0}=\mathrm{D}_{0} \cap \mathrm{E}$.

Proof. From $\mathbf{E}_{0} \subset \mathbf{D}_{0}$ and $\mathbf{E}_{0} \subset \mathbf{E}$, it follows that $\mathbf{E}_{0} \subset \mathbf{D}_{0} \cap \mathbf{E}$. To prove the converse relation, let $u \in \mathbf{D}_{0} \cap \mathbf{E}$. There exists a sequence $\left\{f_{n}\right\}_{n}$ in $L_{0}(X)$ such that $D\left(u-f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty,\left\{f_{n}\right\}_{n}$ converges pointwise to u, and $\left|f_{n}(x)\right| \leq|u(x)|$ on X. It suffices to show that $\left\|u-f_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Note that $L_{2}(X ; q)=\{u \in$ $L(X) ;\|u\|<\infty\}$ is a Hilbert space with respect to the inner product $\langle\cdot, \cdot\rangle$. Since $\left\|f_{n}\right\|^{2} \leq\|u\|^{2}$ and $\left\{f_{n}\right\}_{n}$ converges pointwise to u, we see that $\left\{f_{n}\right\}_{n}$ converges weakly to u. We have $\left\|f_{n}\right\|^{2} \rightarrow\|u\|^{2}$, so that $\left\|u-f_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$.
Lemma 3.3. $E(u, f)=-\sum_{x \in X}\left[\Delta_{q} u(x)\right] f(x)$ for $u \in \mathbf{E}$ and $f \in L_{0}(X)$.
Proof. Using [13, Lemma 3] we have

$$
\begin{aligned}
E(u, f) & =D(u, f)+\sum_{x \in X} q(x) u(x) f(x) \\
& =-\sum_{x \in X}[\Delta u(x)] f(x)+\sum_{x \in X} q(x) u(x) f(x) \\
& =-\sum_{x \in X}\left[\Delta_{q} u(x)\right] f(x) .
\end{aligned}
$$

Lemma 3.4. HE is the orthogonal complement of \mathbf{E}_{0} in \mathbf{E}.
Proof. Let $h \in \mathbf{H E}$. Then $E(h, f)=0$ for every $f \in L_{0}(X)$ by Lemma 3.3, so that $E(h, v)=0$ for every $v \in \mathbf{E}_{0}$. Conversely, suppose that $h \in \mathbf{E}$ satisfies $E(h, v)=0$ for all $v \in \mathbf{E}_{0}$. Since $E\left(h, \varepsilon_{x}\right)=-\Delta_{q} h(x)$ by Lemma 3.3 for every $x \in X$, we see that $h \in \mathbf{H E}$.

By a standard argument, we obtain
Theorem 3.5 (Royden's Decomposition). Every $u \in \mathbf{E}$ is decomposed uniquely in the form $u=v+h$ with $v \in \mathbf{E}_{0}$ and $h \in \mathbf{H E}$.

Corollary 3.6. $\mathbf{H E}=\{0\}$ if and only if $\mathbf{E}=\mathbf{E}_{0}$.
We have by Theorem 3.2 and Corollary 3.6
Theorem 3.7. If \mathcal{N} is parabolic, then $\mathbf{E}=\mathbf{E}_{0}$ and $\mathbf{H E}=\{0\}$.
Theorem 3.8. Assume that $\sum_{x \in X} q(x)<\infty$. Then \mathcal{N} is parabolic if and only if $\mathbf{H E}=\{0\}$.

Proof. Assume that $\mathbf{H E}=\{0\}$, or $\mathbf{E}=\mathbf{E}_{0}$. Since $E(1)=\sum_{x \in X} q(x)<\infty$, we have $1 \in \mathbf{E}=\mathbf{E}_{0} \subset \mathbf{D}_{0}$. Therefore \mathcal{N} is parabolic by [14, Theorem 3.2]. The converse follows from Theorem 3.7.

We say that T is a normal contraction of the real line if $T 0=0$ and $\left|T s_{1}-T s_{2}\right| \leq$ $\left|s_{1}-s_{2}\right|$ for every real numbers s_{1}, s_{2}. We define $T u \in L(X)$ for $u \in L(X)$ by $(T u)(x)=T u(x)$ for $x \in X$.

Lemma 3.9. Let T be a normal contraction of the real line. Then $E(T u) \leq E(u)$. If $u \in \mathbf{E}_{0}$, then $T u \in \mathbf{E}_{0}$.

Proof. For $u \in L(X)$, we have $D(T u) \leq D(u)$ by [13, Lemma 2] and $\|T u\| \leq\|u\|$, so that

$$
E(T u)=D(T u)+\|T u\|^{2} \leq D(u)+\|u\|^{2}=E(u) .
$$

Let $u \in \mathbf{E}_{0}$. Then $T u \in \mathbf{E}$ by the above. We see by [15, Theorem 4.2] that $T u \in \mathbf{D}_{0}$. Therefore, $T u \in \mathbf{E}_{0}$ by Theorem 3.2.

Corollary 3.10. If $u \in \mathbf{E}$ (\mathbf{E}_{0} resp.) and c is a positive constant, then $\max (u, 0), \min (u, c),|u| \in \mathbf{E}\left(\mathbf{E}_{0}\right.$ resp.). In this case,

$$
E(\max (u, 0)) \leq E(u), \quad E(\min (u, c)) \leq E(u), \quad E(|u|) \leq E(u)
$$

Proposition 3.11. If $u, v \in \mathbf{E}_{0}$, then $\min (u, v) \in \mathbf{E}_{0}$.
Proof. Since $u+v,|u-v| \in \mathbf{E}_{0}$, we see that $\min (u, v)=(u+v-|u-v|) / 2 \in \mathbf{E}_{0}$.

4. q-Superharmonic Functions

For $a \in X$, denote by $U(a)$ the set of neighboring nodes of a and a itself, i.e., $U(a)=\{x \in X ; K(a, y) K(x, y) \neq 0$ for some $y \in Y\}$. For a subset A of X, denote by $U(A)$ the union of $U(x)$ for $x \in A$. We say that $u \in L(X)$ is q-superharmonic on a subset A of X if $\Delta_{q} u(x) \leq 0$ on A. In order to express $\Delta_{q} u(x)$ in a more familiar form, let us put

$$
\begin{gathered}
t(x, z)=\sum_{y \in Y}|K(x, y) K(z, y)| r(y)^{-1} \quad \text { if } z \neq x, \quad t(x, x)=0, \\
t(x)=\sum_{y \in Y}|K(x, y)| r(y)^{-1} .
\end{gathered}
$$

Then $t(x, z)=t(z, x)$ for all $x, z \in X$ and $t(x)=\sum_{z \in X} t(x, z)$. Now we have

$$
\Delta_{q} u(x)=-[t(x)+q(x)] u(x)+\sum_{z \in X} t(x, z) u(z) .
$$

Lemma 4.1. (1) A non-negative harmonic function is q-superharmonic. Especially, a positive constant is q-superharmonic.
(2) If u and v are q-superharmonic on A, then both $u+v$ and $\min (u, v)$ are q-superharmonic on A.
(3) If u is q-harmonic on X, then $-\max (u, 0)$ is q-superharmonic on X.
(4) If $c>0$ is a constant and u is q-superharmonic (q-harmonic resp.) on X, then cu is q-superharmonic (q-harmonic resp.) on X.
Proof. (1) Let h be non-negative and harmonic. Then $\Delta_{q} h(x)=\Delta h(x)-$ $q(x) h(x)=-q(x) h(x) \leq 0$ on X.
(2) If u and v are q-superharmonic, then $\Delta_{q}(u+v)(x)=\Delta_{q} u(x)+\Delta_{q} v(x) \leq 0$. Let $f=\min (u, v)$ and $a \in A$. We may assume that $f(a)=u(a)$. Since $f(x) \leq u(x)$, we have

$$
\begin{aligned}
\Delta_{q} f(a) & =\sum_{z \in X} t(z, a) f(z)-[t(a)+q(a)] f(a) \\
& \leq \sum_{z \in X} t(z, a) u(z)-[t(a)+q(a)] u(a)=\Delta_{q} u(a) \leq 0 .
\end{aligned}
$$

(3) Let $f=\max (u, 0)$. Then $f \in L^{+}(X)$. If $f(a)=0$, then $\Delta_{q} f(a)=$ $\sum_{z \in X} t(a, z) f(z) \geq 0$. Let $f(a)>0$, i.e., $f(a)=u(a)$. Since $f(x) \geq u(x)$ and u is q-harmonic, we have

$$
\Delta_{q} f(a)=\Delta_{q} f(a)-\Delta_{q} u(a)=\sum_{z \in X} t(z, a)[f(z)-u(z)] \geq 0
$$

which means $\Delta_{q}(-f) \leq 0$.
(4) Our assertion follows from $\Delta_{q}(c u)=c \Delta_{q} u$.

For $u \in L(X)$ and $a \in X$, we define q-Poisson modification $P_{a} u \in L(X)$ as

$$
P_{a} u(a)=\frac{1}{t(a)+q(a)} \sum_{z \in X} t(z, a) u(z), \quad P_{a} u(x)=u(x) \quad \text { for } x \neq a .
$$

Lemma 4.2. If u is q-superharmonic on X, then $P_{a} u$ is q-superharmonic on X and q-harmonic at a and $P_{a} u \leq u$ on X.
Proof. Since u is q-superharmonic at x, we have $P_{a} u(x) \leq u(x)$. In fact, in case $x \neq$ a our assertion is obvious. In case $x=a, \Delta_{q} u(a) \leq 0$ implies $\sum_{z \in X} t(z, a) u(z) \leq$ $[q(a)+t(a)] u(a)$, so that $P_{a} u(a) \leq u(a)$. The proof is given in the following three cases: (1) $x \notin U(a),(2) x=a$, and (3) $x \in U(a) \backslash\{a\}$.
(1). For $x \notin U(a)$, it is obvious that $\Delta_{q} P_{a} u(x)=\Delta_{q} u(x) \leq 0$.
(2). In case $x=a$, we have

$$
\begin{aligned}
\Delta_{q} P_{a} u(a) & =-[t(a)+q(a)] P_{a} u(a)+\sum_{z \in X} t(z, a) P_{a} u(z) \\
& =-\sum_{z \in X} t(z, a) u(z)+\sum_{z \in X} t(z, a) u(z)=0 .
\end{aligned}
$$

(3). In case $x \in U(a) \backslash\{a\}$, we have

$$
\begin{aligned}
\Delta_{q} P_{a} u(x) & =-[t(x)+q(x)] P_{a} u(x)+\sum_{z \in X} t(x, z) P_{a} u(z) \\
& \leq-[t(x)+q(x)] u(x)+\sum_{z \in X} t(x, z) u(z)=\Delta_{q} u(x) \leq 0
\end{aligned}
$$

Lemma 4.3 (Local Minimum Principle). Let $u \in L(X)$ and $a \in X$. Assume that u is q-superharmonic at a and $u(z) \geq 0$ for all $z \in U(a) \backslash\{a\}$. Then $u(a) \geq 0$. Moreover, $u(a)=0$ occurs only when $u(z)=0$ for all $z \in U(a) \backslash\{a\}$.
Proof. Since $\Delta_{q} u(a) \leq 0$ and $u(z) \geq 0$ for $z \in U(a) \backslash\{a\}$, we have

$$
[q(a)+t(a)] u(a) \geq \sum_{z \in U(a)} t(a, z) u(z) \geq 0
$$

so that $u(a) \geq 0$. If $u(a)=0$, then $u(z)=0$ for $z \in U(a) \backslash\{a\}$ by the above inequality.

Corollary 4.4. Let u be q-superharmonic on X. If $u(x) \geq 0$ on X and $u(a)=0$ for some $a \in X$, then $u(x)=0$ on X.

We have the following minimum principle:
Theorem 4.5 (Minimum Principle). Let A be a finite subset of X and let $u \in L(X)$ be q-superharmonic on A. If $u(x) \geq 0$ on $X \backslash A$, then $u(x) \geq 0$ on X.

Proof. Suppose that $c:=\min \{u(x) ; x \in A\}<0$ and put $B=\{x \in X ; u(x)=c\}$. Lemma 4.1 implies that $u-c$ is q-superharmonic on A. Since $u-c \geq 0$ on X and $u-c=0$ on B, the local minimum principle implies $U(x) \subset B$ for all $x \in B$, so that $U(B) \subset B$. Since X is connected, we have $B=X$, which is a contradiction.

Corollary 4.6. Let A be a finite subset of X. If u is q-superharmonic on A and v is q-harmonic on A and if $u(x) \geq v(x)$ on $X \backslash A$, then $u(x) \geq v(x)$ on X.

Proposition 4.7 (Harnack's Inequality). Let $a, b \in X$. There exists a positive constant α depending only on a and b such that $\alpha^{-1} u(b) \leq u(a) \leq \alpha u(b)$ for all non-negative q-superharmonic function u on X.

Proof. Let $x_{0} \in X$ and $x_{1} \in U\left(x_{0}\right) \backslash\left\{x_{0}\right\}$. Since $u(x) \geq 0$ and $\Delta_{q} u\left(x_{0}\right) \leq 0$, we have

$$
t\left(x_{1}, x_{0}\right) u\left(x_{1}\right) \leq \sum_{x \in X} t\left(x, x_{0}\right) u(x) \leq\left[t\left(x_{0}\right)+q\left(x_{0}\right)\right] u\left(x_{0}\right),
$$

or

$$
u\left(x_{1}\right) \leq \frac{t\left(x_{0}\right)+q\left(x_{0}\right)}{t\left(x_{1}, x_{0}\right)} u\left(x_{0}\right) .
$$

If $x_{2} \in U\left(x_{1}\right) \backslash\left\{x_{1}\right\}$, then

$$
u\left(x_{2}\right) \leq \frac{t\left(x_{1}\right)+q\left(x_{1}\right)}{t\left(x_{2}, x_{1}\right)} u\left(x_{1}\right) .
$$

Repeat this argument to obtain the result.
The following result was proved in Anandam [1, Theorem 2.4.9] in case \mathcal{N} is a finite network.

Lemma 4.8. Let \mathcal{P} be a Perron family. Namely \mathcal{P} is a non-empty family of q superharmonic functions on X such that
(1) $\{u(x) ; u \in \mathcal{P}\}$ is bounded from below for each $x \in X$,
(2) $\min (u, v) \in \mathcal{P}$ whenever $u, v \in \mathcal{P}$,
(3) $P_{a} u \in \mathcal{P}$ for any $u \in \mathcal{P}$ and $a \in X$.

Then $u^{*}(x)=\inf \{u(x) ; u \in \mathcal{P}\}$ is q-harmonic on X.
Proof. By (1), $u^{*} \in L(X)$. Let $a \in X$. Since $U(a)$ is a finite set, in view of (2), we can choose $u_{n} \in \mathcal{P}$ such that $u_{n}(z)$ converges decreasingly to $u^{*}(z)$ for all $z \in U(a)$. Put $v_{n}=P_{a} u_{n}$. Then $v_{n} \in \mathcal{P}$ and $u^{*} \leq v_{n} \leq u_{n}$. Hence $v_{n}(z) \rightarrow u^{*}(z)$ for all $z \in U(a)$. Since v_{n} is q-harmonic at a, so is u^{*}.

Denote by $\mathbf{S H}$ the set of all q-superharmonic functions on X and let

$$
\mathbf{H}^{+}=\mathbf{H} \cap L^{+}(X), \quad \mathbf{H B}=\{u \in \mathbf{H} ; \sup \{|u(x)| ; x \in X\}<\infty\} .
$$

Theorem 4.9. $\mathbf{H}^{+}=\{0\}$ implies $\mathbf{H B}=\{0\}$.

Proof. Let $u \in \mathbf{H B}$ and consider $\mathcal{P}=\left\{v \in \mathbf{S H} ; v \geq u^{+}:=\max (u, 0)\right\}$. Since u is bounded, there exists $c>0$ such that $|u| \leq c$. Note that $c \in \mathcal{P} \neq \emptyset$. Lemma 4.8 implies $\min \left(v_{1}, v_{2}\right) \in \mathcal{P}$ for $v_{1}, v_{2} \in \mathcal{P}$. If $v \in \mathcal{P}$ and $a \in X$, then $P_{a} v-u^{+}=v-u^{+} \geq 0$ on $X \backslash\{a\}$ and $P_{a} v-u^{+}$is q-superharmonic at a by Lemmas 4.1 and 4.2. By the local minimum principle, $P_{a} v(a)-u^{+}(a) \geq 0$, which implies $P_{a} v \in \mathcal{P}$. Lemma 4.8 shows that $h^{+}(x):=\inf \{v(x) ; v \in \mathcal{P}\}$ is q-harmonic on X and $h^{+} \geq u^{+} \geq 0$, so that $h^{+} \in \mathbf{H}^{+}=\{0\}$, hence $u^{+}=0$. Similarly, $u^{-}:=\max (-u, 0)=0$, so that $u=0$.

This result was shown in [9] for a non-linear case.

5. The q-Green Function

Lemma 3.1 shows that $u \mapsto u(a)$ is a continuous linear mapping on \mathbf{E} for each $a \in X$. By F. Riesz's theorem, there exists a reproducing kernel φ_{a} of \mathbf{E}, i.e., $\varphi_{a} \in \mathbf{E}$ and $E\left(\varphi_{a}, u\right)=u(a)$ for every $u \in \mathbf{E}$. Let $\varphi_{a}=g_{a}+\theta_{a}$ be Royden's decomposition, i.e., $g_{a} \in \mathbf{E}_{0}$ and $\theta_{a} \in \mathbf{H E}$. We call g_{a} the q-Green function of \mathcal{N} with pole at a. By the uniqueness of the reproducing kernel and its Royden's decomposition, the q-Green function g_{a} exists uniquely. Note that in case $\mathbf{E}=\mathbf{E}_{0}$, $g_{a}=\varphi_{a}$ is the q-Green function of \mathcal{N} with pole at a.
Theorem 5.1. $E\left(g_{a}, u\right)=u(a)$ for all $u \in \mathbf{E}_{0}$ and $\Delta_{q} g_{a}(x)=-\varepsilon_{a}(x)$ on X.
Proof. Let $u \in \mathbf{E}_{0}$. Then $E\left(\theta_{a}, u\right)=0$ by Lemma 3.4, so that

$$
E\left(g_{a}, u\right)=E\left(g_{a}+\theta_{a}, u\right)=E\left(\varphi_{a}, u\right)=u(a) .
$$

Since $\varepsilon_{x} \in L_{0}(X)$ for every $x \in X$, we see by Lemma 3.3 that

$$
\varepsilon_{x}(a)=E\left(g_{a}, \varepsilon_{x}\right)=-\Delta_{q} g_{a}(x)
$$

We do not use the notation \tilde{g}_{a} used in [17]. In what follows, every statement related to the pair (g_{a}, \mathbf{E}_{0}) remains true even in case $\mathbf{E}_{0}=\mathbf{E}$. Since the reasoning related to (g_{a}, \mathbf{E}_{0}) in case $\mathbf{E} \neq \mathbf{E}_{0}$ holds in the case $\mathbf{E}=\mathbf{E}_{0}$, we do not discern these cases.
Corollary 5.2. $g_{a}(a)=E\left(g_{a}\right)>0$.
Lemma 5.3. The function $u^{*}=g_{a} / g_{a}(a)$ is the unique optimal solution to the extremum problem: Minimize $E(u)$ subject to $u \in \mathbf{E}_{0}$ and $u(a)=1$.
Proof. Clearly, u^{*} is a feasible solution to our extremum problem. For any $u \in \mathbf{E}_{0}$ with $u(a)=1$, we have

$$
E\left(u^{*}\right)=\frac{E\left(g_{a}\right)}{g_{a}(a)^{2}}=\frac{1}{g_{a}(a)}, \quad 1=E\left(g_{a}, u\right) \leq E\left(g_{a}\right)^{1 / 2} E(u)^{1 / 2}
$$

so that $E(u) \geq 1 / E\left(g_{a}\right)=E\left(u^{*}\right)$. To show the uniqueness of the optimal solution, let u_{1} and u_{2} be optimal solutions to our extremum problem. Then

$$
\begin{aligned}
\alpha & :=E\left(u_{1}\right)=E\left(u_{2}\right) \leq E\left(\left(u_{1}+u_{2}\right) / 2\right) \\
& \leq E\left(\left(u_{1}+u_{2}\right) / 2\right)+E\left(\left(u_{1}-u_{2}\right) / 2\right)=\left(E\left(u_{1}\right)+E\left(u_{2}\right)\right) / 2=\alpha,
\end{aligned}
$$

so that $E\left(u_{1}-u_{2}\right)=0$. Hence $u_{1}=u_{2}$.

Theorem 5.4. (1) $g_{a}(b)=g_{b}(a)$ for every $a, b \in X$.
(2) $0<g_{a}(x) \leq g_{a}(a)$ on X.

Proof. (1) $g_{a}(b)=E\left(g_{b}, g_{a}\right)=E\left(g_{a}, g_{b}\right)=g_{b}(a)$.
(2) Let $u^{*}=g_{a} / g_{a}(a)$. Since $E\left(\max \left(u^{*}, 0\right)\right) \leq E\left(u^{*}\right)$ and $E\left(\min \left(u^{*}, 1\right)\right) \leq E\left(u^{*}\right)$ by Corollary 3.10, we have $u^{*}=\max \left(u^{*}, 0\right)=\min \left(u^{*}, 1\right)$ by Lemma 5.3, and hence $0 \leq u^{*} \leq 1$. We see $u^{*}>0$ by Corollary 4.4.

Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N}. There exists a unique q-Green function $g_{a}^{(n)}$ of \mathcal{N}_{n} with pole at $a \in X_{n}$. This function is defined as the reproducing kernel of the linear mapping $u \in \mathbf{E}\left(X_{n}\right) \mapsto u(a)$, i.e., $E\left(u, g_{a}^{(n)}\right)=u(a)$ for $u \in$ $\mathbf{E}\left(X_{n}\right)$, where $\mathbf{E}\left(X_{n}\right)=\left\{u \in L(X) ; u=0\right.$ on $\left.X \backslash X_{n}\right\}$ is a Hilbert space with respect to the inner product $E(\cdot, \cdot)$. Needless to say, $g_{a}^{(n)}$ is the unique function of linear equation $\Delta_{q} g_{a}^{(n)}=-\varepsilon_{a}$ on X_{n} with the boundary condition $g_{a}^{(n)}=0$ on $X \backslash X_{n}$. We have

Theorem 5.5. (1) $g_{a}^{(n)}(b)=g_{b}^{(n)}(a)$ for every $a, b \in X_{n}$.
(2) $0<g_{a}^{(n)}(x) \leq g_{a}^{(n)}(a)$ for $a, x \in X_{n}$.
(3) $g_{a}^{(n)} \leq g_{a}^{(n+1)} \leq g_{a}$ on X and $\left\{g_{a}^{(n)}\right\}$ converges pointwise to g_{a} for $a \in X_{n}$.
(4) $E\left(g_{a}^{(n)}-g_{a}\right) \rightarrow 0$ as $n \rightarrow \infty$ for $a \in X$.

Proof. (1) and (2) are shown by arguments similar to those of Theorem 5.4. Put $u_{n}=g_{a}^{(n+1)}-g_{a}^{(n)}$ and $v_{n}=g_{a}-g_{a}^{(n)}$. Then both u_{n} and v_{n} are q-harmonic on X_{n} and are non-negative on $X \backslash X_{n}$. We see by Theorem 4.5 that u_{n} and v_{n} are non-negative on X. This shows the first half of (3).

For $m>n$ and for $a \in X_{n}$, we have

$$
\begin{aligned}
E\left(g_{a}^{(n)}, g_{a}^{(m)}\right) & =g_{a}^{(m)}(a)=E\left(g_{a}^{(m)}\right) \leq g_{a}(a) \\
E\left(g_{a}^{(m)}-g_{a}^{(n)}\right) & =E\left(g_{a}^{(m)}\right)-2 E\left(g_{a}^{(m)}, g_{a}^{(n)}\right)+E\left(g_{a}^{(n)}\right)=E\left(g_{a}^{(n)}\right)-E\left(g_{a}^{(m)}\right)
\end{aligned}
$$

It follows that $\left\{g_{a}^{(n)}\right\}_{n}$ is a Cauchy sequence in the Hilbert space \mathbf{E}_{0}. There exists $f \in \mathbf{E}_{0}$ such that $E\left(g_{a}^{(n)}-f\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{g_{a}^{(n)}\right\}_{n}$ converges pointwise to f, we have $\Delta_{q} f(x)=-\varepsilon_{a}(x)$ on X. Thus $f=g_{a}$. This shows (4) and the last half of (3).

Example 5.6. Let \mathcal{G} be the linear graph, $X=\left\{x_{n} ; n \geq 0\right\}, Y=\left\{y_{n} ; n \geq 1\right\}$, $K\left(x_{n}, y_{n+1}\right)=1, K\left(x_{n+1}, y_{n+1}\right)=-1$ for $n \geq 0$, and $K(x, y)=0$ for any other pair (x, y). Let $r_{n}=r\left(y_{n}\right)$ and assume that $R_{0}:=\sum_{j=1}^{\infty} r_{j}<\infty$. Let $q(x)=\varepsilon_{x_{0}}(x)$ and $\mathcal{N}=\{\mathcal{G}, r, q\}$. The q-Green function of \mathcal{N} with pole at $x_{m}(m \geq 0)$ is given by

$$
\begin{aligned}
& g_{x_{m}}\left(x_{n}\right)=\frac{\left(1+\rho_{n}\right) R_{m}}{1+R_{0}} \quad \text { if } 0 \leq n \leq m \\
& g_{x_{m}}\left(x_{n}\right)=\frac{\left(1+\rho_{m}\right) R_{n}}{1+R_{0}} \quad \text { if } n \geq m
\end{aligned}
$$

where $R_{n}=\sum_{j=n+1}^{\infty} r_{j}$ and $\rho_{n}=R_{0}-R_{n}$.

Proof. We prove only the case $m \geq 1$; the case $m=0$ can be shown by a similar argument. Let $u_{n}=g_{x_{m}}\left(x_{n}\right)$ and $w_{n}=r_{n}^{-1}\left(u_{n}-u_{n-1}\right)$. Then $\Delta_{q} g_{x_{m}}(x)=-\varepsilon_{x_{m}}(x)$ on X implies

$$
w_{1}-u_{0}=0, \quad w_{n+1}-w_{n}=0 \quad \text { for } n \neq m, \quad w_{m+1}-w_{m}=-1 .
$$

We see that $w_{n}=u_{0}$ for $1 \leq n \leq m$ and $w_{n}=u_{0}-1$ for $n \geq m+1$, so that

$$
\begin{gathered}
u_{n}=u_{0}+\rho_{n} u_{0} \quad \text { for } 0 \leq n \leq m, \\
u_{n}=\left(u_{0}-1\right)\left(\rho_{n}-\rho_{m}\right)+u_{m} \quad \text { for } n \geq m .
\end{gathered}
$$

Since \mathcal{N} is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, so that $\left(u_{0}-1\right) R_{m}+u_{m}=0$. Therefore $u_{0}=R_{m} /\left(1+R_{0}\right)$.

Example 5.7. Let \mathcal{G} be the homogeneous tree of order 3. We assume that $r=1$ on Y and $q=1$ on X. Denote by $\rho(a, b)$ the geodesic metric between two nodes a and b, i.e., the number of arcs of the path between a and b. Let $C(a ; n)=\{x \in$ $X ; \rho(a, x)=n\}$. Then the q-Green function of \mathcal{N} with pole at a is given by

$$
g_{a}(x)=\frac{\alpha^{n}}{4-3 \alpha} \quad \text { for } x \in C(a ; n), \quad \alpha=1-\frac{1}{\sqrt{2}} .
$$

Proof. Fix a node $a \in X$. By the symmetry, $g_{a}(x)$ depends only on $\rho(a, x)$. Define $u_{n}=g_{a}(x)$ for $\rho(x, a)=n$. The equation $\Delta_{q} g_{a}(x)=-\varepsilon_{a}(x)$ on X can be written as follows:

$$
3 u_{1}-4 u_{0}=-1, \quad 2 u_{n+1}-4 u_{n}+u_{n-1}=0 \quad \text { for } n \geq 1 .
$$

The characteristic equation $2 t^{2}-4 t+1=0$ gives $t=1 \pm 1 / \sqrt{2}$. Since \mathcal{N} is hyperbolic, we have that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, so that $u_{n}=A \alpha^{n}$ with $\alpha=1-1 / \sqrt{2}$ for $n \geq 0$. The condition $3 u_{1}-4 u_{0}=-1$ shows $A=1 /(4-3 \alpha)$.

6. A Fundamental Existence Theorem

The following theorem plays a fundamental role for the study of q-Green potentials in the succeeding sections.

Theorem 6.1. Let $f \in \mathbf{E}_{0}$ be non-negative and A a nonempty proper subset of X. Then there exists $u^{*} \in \mathbf{E}_{0}$ such that
(1) $\Delta_{q} u^{*}(x) \leq 0$ on X,
(2) $\Delta_{q} u^{*}(x)=0$ on $X \backslash A$,
(3) $u^{*}(x) \geq f(x)$ on A,
(4) $u^{*}(x)=f(x)$ if $x \in A$ and $\Delta_{q} u^{*}(x)<0$.

Proof. Let us consider the following extremum problem:

$$
\alpha=\inf \{E(u)-2 E(u, f) ; u \in \mathcal{F}\},
$$

where $\mathcal{F}=\left\{u \in \mathbf{E}_{0} ; \Delta_{q} u \leq 0, \Delta_{q} u(x)=0\right.$ on $\left.X \backslash A\right\}$. Note that $\alpha<\infty$, since $g_{x} \in \mathcal{F}$ for $x \in A$. We see that α is finite by the inequality

$$
E(u)-2 E(u, f)=E(u-f)-E(f) \geq-E(f) .
$$

Let $\left\{u_{n}\right\}_{n}$ be a minimizing sequence. Then

$$
\begin{aligned}
\alpha & \leq E\left(\left(u_{n}+u_{m}\right) / 2\right)-2 E\left(\left(u_{n}+u_{m}\right) / 2, f\right) \\
& \leq E\left(\left(u_{n}+u_{m}\right) / 2\right)-2 E\left(\left(u_{n}+u_{m}\right) / 2, f\right)+E\left(\left(u_{n}-u_{m}\right) / 2\right) \\
& =\left[E\left(u_{n}\right)-2 E\left(u_{n}, f\right)\right] / 2+\left[E\left(u_{m}\right)-2 E\left(u_{m}, f\right)\right] / 2 \rightarrow \alpha
\end{aligned}
$$

as $n, m \rightarrow \infty$, so that $E\left(u_{n}-u_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$. Since \mathbf{E}_{0} is a Hilbert space, we see that there exists $u^{*} \in \mathbf{E}_{0}$ such that $E\left(u_{n}-u^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$. Since $\left\{u_{n}\right\}_{n}$ converges pointwise to u^{*}, we see that $u^{*} \in \mathcal{F}$, which shows (1) and (2). We prove (3). Noting that

$$
\left|E\left(u_{n}, f\right)-E\left(u^{*}, f\right)\right|=\left|E\left(u_{n}-u^{*}, f\right)\right| \leq E\left(u_{n}-u^{*}\right)^{1 / 2} E(f)^{1 / 2} \rightarrow 0
$$

as $n \rightarrow \infty$, we have $\alpha=E\left(u^{*}\right)-2 E\left(u^{*}, f\right)$. For $v \in \mathcal{F}$ and $t>0$, we have $u^{*}+t v \in \mathcal{F}$, so that

$$
\begin{aligned}
\alpha & \leq E\left(u^{*}+t v\right)-2 E\left(u^{*}+t v, f\right) \\
& =E\left(u^{*}\right)-2 E\left(u^{*}, f\right)+2 t\left[E\left(u^{*}, v\right)-E(v, f)\right]+t^{2} E(v) \\
& =\alpha+2 t\left[E\left(u^{*}, v\right)-E(v, f)\right]+t^{2} E(v) .
\end{aligned}
$$

Therefore $E\left(u^{*}, v\right)-E(v, f) \geq 0$. By taking $v=g_{x}$ for $x \in A$ in this inequality, we obtain $u^{*}(x) \geq f(x)$ on A.

To prove (4), assume $\Delta_{q} u^{*}(a)<0$ for $a \in A$. For any $t>0$ with $\Delta_{q} u^{*}(a)+t<0$, we see that $u^{*}-t g_{a} \in \mathbf{E}_{0}$ and $\Delta_{q}\left(u^{*}-t g_{a}\right)(x)=\Delta_{q} u^{*}(x)+t \varepsilon_{a}(x) \leq 0$, so that $u^{*}-t g_{a} \in \mathcal{F}$. We have

$$
\alpha \leq E\left(u^{*}-t g_{a}\right)-2 E\left(u^{*}-t g_{a}, f\right)=\alpha-2 t\left[E\left(u^{*}, g_{a}\right)-E\left(g_{a}, f\right)\right]+t^{2} E\left(g_{a}\right)
$$

so that $E\left(u^{*}, g_{a}\right)-E\left(f, g_{a}\right) \leq 0$. Thus $u^{*}(a) \leq f(a)$. Hence $u^{*}(a)=f(a)$ by (3).

7. q-Green Potentials

We define the q-Green potential $G \mu$ of $\mu \in L^{+}(X)$ and the mutual q-Green potential energy $G(\mu, \nu)$ of $\mu, \nu \in L^{+}(X)$ by

$$
G \mu(x)=\sum_{z \in X} g_{z}(x) \mu(z), \quad G(\mu, \nu)=\sum_{x \in X}[G \mu(x)] \nu(x) .
$$

We call $G(\mu, \mu)$ the q-Green potential energy of μ. Let us put

$$
\mathcal{M}=\left\{\mu \in L^{+}(X) ; G \mu \in L(X)\right\}, \quad \mathcal{E}=\left\{\mu \in L^{+}(X) ; G(\mu, \mu)<\infty\right\} .
$$

We see easily
Lemma 7.1. $\Delta_{q} G \mu(x)=-\mu(x)$ on X for every $\mu \in \mathcal{M}$.
By Harnack's inequality, we note that $G \mu(a)<\infty$ for some $a \in X$ implies $G \mu(x)<\infty$ for any $x \in X$, so that $\mathcal{E} \subset \mathcal{M}$. We shall prove a discrete analogy of the Riesz decomposition theorem.

Theorem 7.2 (Riesz's Decomposition). Every non-negative q-superharmonic function u can be decomposed uniquely in the form $u=G \mu+h$, where $\mu \in \mathcal{M}$ and h is non-negative and q-harmonic on X. In this decomposition, $\mu=-\Delta_{q} u$ and h is the greatest q-harmonic minorant of u.
Proof. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and let $g_{a}^{(n)}$ be the q-Green function of \mathcal{N}_{n} with pole at a. Put $\mu=-\Delta_{q} u$,

$$
u_{n}(x)=\sum_{z \in X_{n}} g_{z}^{(n)}(x) \mu(z), \quad h_{n}=u-u_{n}
$$

Then $\Delta_{q} u_{n}=-\mu$ on X_{n} and $u_{n}=0$ on $X \backslash X_{n}$, so that h_{n} is q-harmonic on X_{n} and $h_{n} \geq 0$ on $X \backslash X_{n}$. Thus $h_{n} \geq 0$ on X by the minimum principle. Since $g_{z}^{(n)} \leq g_{z}^{(n+1)}$ on X by Theorem 5.5, we have $u_{n} \leq u_{n+1}$ and $h_{n} \geq h_{n+1}$ on X. Let h be the pointwise limit of $\left\{h_{n}\right\}_{n}$. Then $h \in \mathbf{H}$. Since $\left\{u_{n}\right\}_{n}$ converges pointwise to $G \mu$, we have $u=G \mu+h$. The uniqueness of the decomposition is clear by Lemma 7.1. To prove the last assertion, let $h^{\prime} \in \mathbf{H}$ and $0 \leq h^{\prime} \leq u$ on X. Since $h_{n}-h^{\prime}$ is q-harmonic on X_{n} and $h_{n}-h^{\prime}=u-h^{\prime} \geq 0$ on $X \backslash X_{n}$, we see by the minimum principle that $h_{n} \geq h^{\prime}$ on X, and hence $h \geq h^{\prime}$ on X.

By this theorem, we obtain the following.
Theorem 7.3. A non-negative q-superharmonic function u is a q-Green potential if and only if the greatest q-harmonic minorant of u is equal to zero.
Corollary 7.4. Let u be non-negative and q-superharmonic. If there exists $\mu \in \mathcal{M}$ such that $u(x) \leq G \mu(x)$ on X, then u is a q-Green potential.

8. q-Potentials with Finite Energy

We begin with the study of q-potentials with finite energy.
Lemma 8.1. If $\mu \in \mathcal{E}$, then $G \mu \in \mathbf{E}_{0}$ and $E(G \mu)=G(\mu, \mu)$.
Proof. First let $\mu, \nu \in L_{0}(X)$. Since $g_{x} \in \mathbf{E}_{0}$, we have $G \mu, G \nu \in \mathbf{E}_{0}$. We obtain

$$
E(G \mu, G \nu)=\sum_{z \in X} E\left(g_{z}, G \nu\right) \mu(z)=\sum_{z \in X}[G \nu(z)] \mu(z)=G(\mu, \nu) .
$$

Let $\mu \in \mathcal{E}$. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and put $\mu_{n}=\mu \varepsilon_{X_{n}}$ and $u_{n}=G \mu_{n}$. Then $u_{n} \in \mathbf{E}_{0}$. For $m>n$ we have

$$
\begin{gathered}
E\left(u_{n}, u_{m}\right)=G\left(\mu_{n}, \mu_{m}\right) \geq G\left(\mu_{n}, \mu_{n}\right)=E\left(u_{n}\right), \\
E\left(u_{n}-u_{m}\right)=E\left(u_{n}\right)-2 E\left(u_{n}, u_{m}\right)+E\left(u_{m}\right) \leq E\left(u_{m}\right)-E\left(u_{n}\right) .
\end{gathered}
$$

Since $E\left(u_{n}\right)=G\left(\mu_{n}, \mu_{n}\right) \leq G(\mu, \mu)<\infty$, we have that $\left\{u_{n}\right\}_{n}$ is a Cauchy sequence in \mathbf{E}_{0}. Thus there exists $v \in \mathbf{E}_{0}$ such that $E\left(u_{n}-v\right) \rightarrow 0$ as $n \rightarrow \infty$. We have

$$
G(\mu, \mu) \leq \liminf _{n \rightarrow \infty} G\left(\mu_{n}, \mu_{n}\right)=\lim _{n \rightarrow \infty} E\left(u_{n}\right) \leq G(\mu, \mu)
$$

Therefore, $E(v)=G(\mu, \mu)$. Since $\left\{u_{n}\right\}_{n}$ converges pointwise to $G \mu$, we conclude that $G \mu=v \in \mathbf{E}_{0}$.

Lemma 8.2. Let $\mu \in \mathcal{E}$. Then $E(G \mu, u)=\sum_{x \in X} u(x) \mu(x)$ for every $u \in \mathbf{E}_{0} \cap$ $L^{+}(X)$.
Proof. Since $E\left(g_{x}, u\right)=u(x)$ for $u \in \mathbf{E}_{0}$, our assertion is clear in case $\mu \in L_{0}(X)$ by Lemma 3.3 and Lemma 7.1. Let μ_{n} be the same as in the proof of the above lemma. Then $E\left(G \mu_{n}, u\right)=\sum_{x \in X} u(x) \mu_{n}(x)$. Since $E\left(G \mu-G \mu_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we have $E\left(G \mu_{n}, u\right) \rightarrow E(G \mu, u)$ as $n \rightarrow \infty$. Since $u \in L^{+}(X)$, we see that

$$
\begin{aligned}
E(G \mu, u) & =\lim _{n \rightarrow \infty} E\left(G \mu_{n}, u\right)=\lim _{n \rightarrow \infty} \sum_{x \in X} u(x) \mu_{n}(x) \\
& =\lim _{n \rightarrow \infty} \sum_{x \in X_{n}} u(x) \mu(x)=\sum_{x \in X} u(x) \mu(x) .
\end{aligned}
$$

Lemma 8.3. If $u \in \mathbf{E}_{0}$ is q-superharmonic on X, then $u \in L^{+}(X)$.
Proof. Let $a \in X$ and $g_{a}^{(n)}$ be the q-Green function of \mathcal{N}_{n}. We may assume that $a \in X_{n}$ for large n. Since $E\left(g_{a}-g_{a}^{(n)}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $u \in \mathbf{E}_{0}$, we have $E\left(u, g_{a}^{(n)}-g_{a}\right) \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 3.2,

$$
E\left(u, g_{a}^{(n)}\right)=-\sum_{z \in X}\left[\Delta_{q} u(z)\right] g_{a}^{(n)}(z) \geq 0
$$

so that $u(a)=E\left(u, g_{a}\right)=\lim _{n \rightarrow \infty} E\left(u, g_{a}^{(n)}\right) \geq 0$.
Theorem 8.4. $\{G \mu ; \mu \in \mathcal{E}\}=\left\{u \in \mathbf{E}_{0} ; \Delta_{q} u(x) \leq 0\right\}$.
Proof. Lemmas 7.1 and 8.1 shows that $\Delta_{q} G \mu \leq 0$ and $G \mu \in \mathbf{E}_{0}$ for $\mu \in \mathcal{E}$. To show the converse, let $u \in \mathbf{E}_{0}$ satisfy $\Delta_{q} u(x) \leq 0$ on X. Lemma 8.3 shows $u \in L^{+}(X)$. By Riesz's decomposition, there exist $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^{+}$such that $u=G \mu+h$. Consider an exhaustion $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ of \mathcal{N} and put $\mu_{n}=\mu \varepsilon_{X_{n}}$ and $u_{n}=G \mu_{n}$. Since $G \mu \leq u$, we have

$$
\begin{aligned}
E\left(u_{n}\right) & =G\left(\mu_{n}, \mu_{n}\right) \leq G\left(\mu, \mu_{n}\right) \leq \sum_{x \in X} u(x) \mu_{n}(x) \\
& =E\left(G \mu_{n}, u\right) \leq E\left(u_{n}\right)^{1 / 2} E(u)^{1 / 2}
\end{aligned}
$$

by Lemma 8.2, so that $G\left(\mu_{n}, \mu_{n}\right) \leq E(u)<\infty$. Therefore

$$
G(\mu, \mu) \leq \liminf _{n \rightarrow \infty} G\left(\mu_{n}, \mu_{n}\right) \leq E(u),
$$

hence $\mu \in \mathcal{E}$ and $G \mu \in \mathbf{E}_{0}$ by Lemma 8.1. It follows from Royden's decomposition that $u=G \mu$.

$$
\text { Let } \mathbf{H E}^{+}=\mathbf{H E} \cap L^{+}(X)
$$

Theorem 8.5. If $u \in \mathbf{E}$ is non-negative and q-superharmonic, then u is decomposed uniquely in the form $u=G \mu+h$ with $\mu \in \mathcal{E}$ and $h \in \mathbf{H E}^{+}$.
Proof. Royden's decomposition shows $u=v+h$ with $v \in \mathbf{E}_{0}$ and $h \in \mathbf{H E}$. Using $\Delta_{q} v=\Delta_{q} u \leq 0$, we have $v=G \mu$ for some $\mu \in \mathcal{E}$ by Theorem 8.4. Riesz's decomposition shows $u=G \mu^{\prime}+h^{\prime}$ for some $\mu^{\prime} \in \mathcal{M}$ and $h^{\prime} \in \mathbf{H}^{+}$. Note that $\mu^{\prime}=-\Delta_{q} u=-\Delta_{q} v=\mu$, so that $h=h^{\prime} \geq 0$.

Lemma 8.6. Let $\mu \in \mathcal{M}$ and $\nu \in \mathcal{E}$. If $G \mu \leq G \nu$ on X, then $\mu \in \mathcal{E}$.
Proof. We have

$$
\begin{aligned}
G(\mu, \mu) & =\sum_{x \in X}[G \mu(x)] \mu(x) \leq \sum_{x \in X}[G \nu(x)] \mu(x)=\sum_{z \in X}[G \mu(z)] \nu(z) \\
& \leq \sum_{z \in X}[G \nu(z)] \nu(z)=G(\nu, \nu)<\infty .
\end{aligned}
$$

Denote by $S \mu$ the support of $\mu \in L(X)$, i.e., $S \mu=\{x \in X ; \mu(x) \neq 0\}$.
Proposition 8.7. Let $\mu, \nu \in \mathcal{E}$. If $G \mu \leq G \nu$ on $S \mu$, then the same inequality holds on X.

Proof. Let $u=\min (G \mu, G \nu)$. Since $G \mu$ and $G \nu$ are q-superharmonic, so is u by Lemma 4.1. Proposition 3.11 implies $u \in \mathbf{E}_{0}$, so that there exists $\lambda \in \mathcal{E}$ such that $u=G \lambda$ by Theorem 8.4. Note that $u(x)=G \mu(x)$ on $S \mu$ by our assumption. Lemma 8.2 shows

$$
E(G \mu, G \mu-u)=\sum_{x \in X}(G \mu(x)-u(x)) \mu(x)=0 .
$$

Therefore

$$
\begin{aligned}
E(G \mu-u) & =E(G \mu, G \mu-u)-E(G \lambda, G \mu-u) \\
& =-\sum_{x \in X}(G \mu(x)-u(x)) \lambda(x) \leq 0,
\end{aligned}
$$

and hence $E(G \mu-u)=0$. Thus $u=G \mu$ and $G \mu \leq G \nu$ on X.

9. Potential Theoretic Properties of q-Green Potentials

Now we show some fundamental properties of q-Green potential which are wellknown as the domination principle, the equilibrium principle and the balayage principle.

Proposition 9.1. Let $\mu_{1}, \mu_{2} \in \mathcal{M}$. Then there exists $\nu \in \mathcal{M}$ such that $G \nu=$ $\min \left(G \mu_{1}, G \mu_{1}\right)$.
Proof. Let $u=\min \left(G \mu_{1}, G \mu_{2}\right)$. Then u is non-negative and q-superharmonic by Lemma 4.1. Our assertion follows from Corollary 7.4.

By Proposition 9.1 and Lemma 8.6, we have
Corollary 9.2. Let $\mu \in \mathcal{M}$ and $\nu \in \mathcal{E}$. Then there exists $\lambda \in \mathcal{E}$ such that $G \lambda=\min (G \mu, G \nu)$.
Proposition 9.3 (Domination Principle). Let $\nu \in \mathcal{E}$ and $\mu \in \mathcal{M}$. If $G \mu(x) \leq$ $G \nu(x)$ on $S \mu$, then the same inequality holds on X.

Proof. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and let $\mu_{n}=\mu \varepsilon_{X_{n}}$. Then $S \mu_{n} \subset S \mu$ and $\mu_{n} \in \mathcal{E}$. We have $G \mu_{n}(x) \leq G \nu(x)$ on $S \mu_{n}$. By Proposition 8.7, the same inequality holds on X. Since $G \mu_{n}(x) \rightarrow G \mu(x)$ as $n \rightarrow \infty$, we conclude that $G \mu(x) \leq G \nu(x)$ on X.

Theorem 9.4. Let u be non-negative and q-superharmonic on X and $\mu \in \mathcal{M}$. If $G \mu(x) \leq u(x)$ on $S \mu$, then the same inequality holds on X.
Proof. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and let $\mu_{n}=\mu \varepsilon_{X_{n}}$. Then $S \mu_{n} \subset S \mu$ and $\mu_{n} \in \mathcal{E}$. Let $u_{n}=\min \left(G \mu_{n}, u\right)$. Since $u_{n} \leq G \mu_{n}$, we see by Corollary 7.4 that there exists $\lambda_{n} \in \mathcal{E}$ such that $G \lambda_{n}=u_{n}$. For $x \in S \mu_{n}$, we have $G \lambda_{n}(x)=\min \left(G \mu_{n}(x), u(x)\right)=G \mu_{n}(x)$, so that $G \mu_{n}(x) \leq G \lambda_{n}(x) \leq u(x)$ on X by Proposition 8.7. Since $G \mu_{n}(x) \rightarrow G \mu(x)$ as $n \rightarrow \infty$, we conclude that $G \mu(x) \leq u(x)$ on X.
Proposition 9.5 (Equilibrium Principle). For a nonempty finite subset A of X, there exists $\xi_{A} \in L^{+}(X)$ such that $S \xi_{A} \subset A, G \xi_{A}(x)=1$ on A, and $G \xi_{A}(x) \leq 1$ on X.

Proof. Take $f=\varepsilon_{A} \in \mathbf{E}_{0}$ and let u^{*} be the function obtained in Theorem 6.1. Theorem 8.4 shows $u^{*}=G \xi_{A}$ for some $\xi_{A} \in \mathcal{E}$. Note that $\Delta_{q} u^{*}=-\xi_{A}$ by Lemma 7.1. We see that $G \xi_{A}(x) \geq 1$ on A and $S \xi_{A} \subset A$. Since $G \xi_{A}(x)=1$ on $S \xi_{A}$, Theorem 9.4 shows that $G \xi_{A}(x) \leq 1$ on X.
Proposition 9.6 (Balayage Principle 1). Let $\mu \in \mathcal{E}$ and A a nonempty proper subset of X. Then there exists $\mu_{A} \in L^{+}(X)$ such that $S \mu_{A} \subset A, G \mu_{A}(x)=G \mu(x)$ on A, and $G \mu_{A}(x) \leq G \mu(x)$ on X.
Proof. Since $G \mu \in \mathbf{E}_{0}$ by Lemma 8.1, we take $f=G \mu$ in Theorem 6.1 and obtain u^{*}. Theorem 8.4 shows $u^{*}=G \mu_{A}$ for some $\mu_{A} \in \mathcal{E}$. We see that $S \mu_{A} \subset A$, $G \mu_{A}(x) \geq G \mu(x)$ on A, and $G \mu_{A}(x)=G \mu(x)$ on $S \mu_{A}$. Proposition 9.3 shows that $G \mu_{A}(x) \leq G \mu(x)$ on X.
Proposition 9.7 (Balayage Principle 2). Let $\mu \in \mathcal{M}$ and A a finite subset of X. If $\mu(X):=\sum_{x \in X} \mu(x)<\infty$, then there exists $\mu_{A} \in \mathcal{M}$ such that $S \mu_{A} \subset A$, $G \mu_{A}(x)=G \mu(x)$ on A, and $G \mu_{A}(x) \leq G \mu(x)$ on X.
Proof. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and let $\mu_{n}=\mu \varepsilon_{X_{n}}$. Then $\mu_{n} \in \mathcal{E}$, so that by Proposition 9.6 there exists $\mu_{n}^{*} \in L^{+}(X)$ such that $S \mu_{n}^{*} \subset A$, $G \mu_{n}^{*}(x)=G \mu_{n}(x)$ on A, and $G \mu_{n}^{*}(x) \leq G \mu_{n}(x)$ on X. Let $\xi_{A} \in L^{+}(X)$ be the function in Proposition 9.5, i.e., $S \xi_{A} \subset A, G \xi_{A}(x)=1$ on A, and $G \xi_{A}(x) \leq 1$ on X. We have

$$
\begin{aligned}
\mu_{n}^{*}(A) & :=\sum_{x \in A} \mu_{n}^{*}(x)=\sum_{x \in A}\left[G \xi_{A}(x)\right] \mu_{n}^{*}(x)=G\left(\xi_{A}, \mu_{n}^{*}\right) \\
& =\sum_{x \in X}\left[G \mu_{n}^{*}(x)\right] \xi_{A}(x) \leq \sum_{x \in X}\left[G \mu_{n}(x)\right] \xi_{A}(x) \\
& \leq \sum_{x \in X}[G \mu(x)] \xi_{A}(x)=\sum_{x \in X}\left[G \xi_{A}(x)\right] \mu(x) \leq \mu(X)<\infty .
\end{aligned}
$$

Taking a subsequence if necessary, we may assume that $\left\{\mu_{n}^{*}\right\}_{n}$ converges pointwise to μ^{*}. Since $G \mu_{n}^{*}$ ($G \mu_{n}$ resp.) converges pointwise to $G \mu^{*}$ ($G \mu$ resp.), we see that $S \mu^{*} \subset A, G \mu^{*}(x)=G \mu(x)$ on A, and $G \mu^{*}(x) \leq G \mu(x)$ on X. We may take $\mu_{A}=\mu^{*}$.

10. The q-Elliptic Measure of the Ideal Boundary of \mathcal{N}

We introduce the discrete version of q-elliptic measure in [11, Page 286]. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and let ω_{n} be the unique solution of the following boundary problem.

$$
\Delta_{q} u=0 \quad \text { on } X_{n} \quad \text { and } \quad u=1 \quad \text { on } X \backslash X_{n} .
$$

Remark 10.1. The existence and uniqueness follows from the fact that our problem is reduced to a system of linear equations in a form: $A \mathbf{u}=\mathbf{b}$, where A is $m \times m$-matrix and $\mathbf{u}, \mathbf{b} \in \mathbb{R}^{m}$ with m the number of nodes in X_{n}. Our assertion follows from $\operatorname{det} A \neq 0$.

Another way to prove our assertion is to consider the extremum problem: $\beta_{n}=$ $\inf \left\{E(u) ; u \in L(X), u=1\right.$ on $\left.X \backslash X_{n}\right\}$. We can show by a standard technique that there exists $u^{*} \in L(X)$ such that $u^{*}=1$ on $X \backslash X_{n}$ and $\beta_{n}=E\left(u^{*}\right)$. By the variational technique used in the proof of Proposition 12.3 below, we see that u^{*} is the desired solution. In this case, the uniqueness follows from the minimum principle.

By the minimum principle, $0 \leq \omega_{n+1} \leq \omega_{n} \leq 1$ on X. The limit function ω of $\left\{\omega_{n}\right\}_{n}$ exists. It is easily seen that ω does not depend on the choice of an exhaustion of \mathcal{N} and that ω is q-harmonic on X and $0 \leq \omega \leq 1$ on X. We call ω the q-elliptic measure of the ideal boundary of \mathcal{N}, shortly, q-elliptic measure.
Proposition 10.2. Assume that u vanishes at the ideal boundary, i.e., for any $\varepsilon>0$, there exists a finite subset X^{\prime} of X such that $|u(x)| \leq \varepsilon$ on $X \backslash X^{\prime}$. If u is q-harmonic on X, then $u=0$.
Proof. For any $\varepsilon>0$, there exists a finite subset X^{\prime} of X such that $|u(x)| \leq \varepsilon$ on $X \backslash X^{\prime}$. Since both $\varepsilon \pm u$ are q-superharmonic and non-negative on $X \backslash X^{\prime}$, the minimum principle shows that $\varepsilon \pm u \geq 0$ on X, i.e., $|u(x)| \leq \varepsilon$ on X. By the arbitrariness of ε, we have $u=0$.
Proposition 10.3. If $c:=\inf \{q(x) ; x \in X\}>0$, then $\mathbf{H E}=\{0\}$.
Proof. Let $u \in$ HE. We have

$$
c \sum_{x \in X} u(x)^{2} \leq\|u\|^{2} \leq E(u)<\infty
$$

so that u vanishes at the ideal boundary. Thus $u=0$ by Proposition 10.2.
Lemma 10.4. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and $g_{a}^{(n)}$ be the q-Green function of \mathcal{N}_{n} with pole at $a \in X_{n}$. Then $\omega_{n}(x)=1-\sum_{z \in X_{n}} q(z) g_{z}^{(n)}(x)$.
Proof. Let $u(x)=1-\sum_{z \in X_{n}} q(z) g_{z}^{(n)}(x)$. Then u is q-harmonic on X_{n}. In fact, for $x \in X_{n}$, we have

$$
\Delta_{q} u(x)=\Delta_{q} 1(x)-\sum_{z \in X_{n}} q(z) \Delta_{q} g_{z}^{(n)}(x)=-q(x)-\sum_{z \in X_{n}} q(z)\left[-\varepsilon_{z}(x)\right]=0 .
$$

Since $g_{z}^{(n)}(x)=0$ for $x \in X \backslash X_{n}$ and $z \in X_{n}$, we have $u=1$ on $X \backslash X_{n}$. Hence $u=\omega_{n}$.

Letting $n \rightarrow \infty$ in this lemma, we obtain
Theorem 10.5. Let ω be the q-elliptic measure of the ideal boundary. Then $\omega(x)=$ $1-\sum_{z \in X} q(z) g_{z}(x)$.
Corollary 10.6. $G q(x)=\sum_{z \in X} q(z) g_{z}(x) \leq 1$ on X.
Another proof of this fact was given without using the q-elliptic measure (cf. [17, Theorem 4.5]).
Lemma 10.7. Let c be a positive constant. If u is q-superharmonic and $u(x) \geq-c$ on X, then $u(x) \geq-c \omega(x)$ on X. If u is q-harmonic and $|u(x)| \leq c$ on X, then $|u(x)| \leq c \omega(x)$ on X.

Proof. Let $\left\{\omega_{n}\right\}_{n}$ be the determining sequence of ω. If u is q-superharmonic such that $u(x) \geq-c$ on X, then $u+c \omega_{n}$ is q-superharmonic on X_{n} and is non-negative on $X \backslash X_{n}$. The minimum principle implies $u+c \omega_{n} \geq 0$ on X. Therefore $u+c \omega \geq 0$ on X. If u is q-harmonic such that $|u(x)| \leq c$ on X, then $u \geq-c$ and $-u \geq-c$. We have $u \geq-c \omega$ and $-u \geq-c \omega$, so that $|u(x)| \leq c \omega(x)$ on X.

Corollary 4.4, Theorem 10.5, and Lemma 10.7 imply
Theorem 10.8. The following three properties are equivalent:
(1) $\omega=0$.
(2) $\mathbf{H B}=\{0\}$.
(3) $G q(x)=1$ for some $x \in X$.

Example 10.9. Let \mathcal{G} be the same as in Example 5.6 and take $r\left(y_{n}\right)=2^{-n}$ for $n \geq 1$ and $q\left(x_{n}\right)=2^{n+1}$ for $n \geq 0$. Then \mathcal{N} is hyperbolic and $\mathbf{H B}=\{0\}$.
Proof. Let $u \in \mathbf{H}$ and $u_{n}=u\left(x_{n}\right)$. The equation $\Delta_{q} u(x)=0$ implies

$$
\frac{u_{1}-u_{0}}{2^{-1}}=2 u_{0}, \quad \frac{u_{n-1}-u_{n}}{2^{-n}}+\frac{u_{n+1}-u_{n}}{2^{-n-1}}=2^{n+1} u_{n} \quad \text { for } n \geq 1
$$

or

$$
u_{1}=2 u_{0}, \quad 2 u_{n+1}-5 u_{n}+u_{n-1}=0 \quad \text { for } n \geq 1
$$

The general solution is $u_{n}=A \alpha^{n}+B \beta^{n}$ for $n \geq 0$ with $\alpha=(5-\sqrt{17}) / 4, \beta=$ $(5+\sqrt{17}) / 4$. Note that $u_{n}=A \alpha^{n}$ does not satisfy $u_{1}=2 u_{0}$ unless $A=0$, which implies $\mathbf{H B}=\{0\}$. By the condition $u_{1}=2 u_{0}$, we have $B=(7-3 \alpha) A$, so that

$$
u_{n}=A \alpha^{n}+(7-3 \alpha) A \beta^{n} \quad \text { for } n \geq 0
$$

Now let $v_{n}=g_{x_{0}}\left(x_{n}\right)$. Then the equation $\Delta_{q} g_{x_{0}}=-\varepsilon_{x_{0}}$ implies

$$
v_{1}=2 v_{0}-\frac{1}{2}, \quad 2 v_{n+1}-5 v_{n}+v_{n-1}=0 \quad \text { for } n \geq 1
$$

Since \mathcal{N} is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that $v_{n} \rightarrow 0$ as $n \rightarrow \infty$, so that $v_{n}=A \alpha^{n}$. By the initial condition, we have $A=1 /(4-2 \alpha)$, and hence

$$
g_{x_{0}}\left(x_{n}\right)=\frac{\alpha^{n}}{4-2 \alpha} \quad \text { for } n \geq 0
$$

We have

$$
G q\left(x_{0}\right)=\sum_{n=0}^{\infty} q\left(x_{n}\right) g_{x_{0}}\left(x_{n}\right)=\sum_{n=0}^{\infty} \frac{2^{n+1} \alpha^{n}}{4-2 \alpha}=\frac{1}{(2-\alpha)(1-2 \alpha)}=1 .
$$

This also follows from Theorem 10.8.
Proposition 10.10. If \mathcal{N} is hyperbolic and $q \in L_{0}^{+}(X)$, then $\omega \neq 0$.
Proof. Suppose that $\omega=0$. Then $G q(x)=1$ on X. Since $S q$ is a finite set, Kayano and Yamasaki [4, Theorem 3.3] show that there exists a sequence $\left\{x_{n}\right\}_{n}$ such that $g_{z}\left(x_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ for all $z \in S q$, so that

$$
1=\lim _{n \rightarrow \infty} G q\left(x_{n}\right)=\lim _{n \rightarrow \infty} \sum_{z \in S q} g_{z}\left(x_{n}\right) q(z)=0,
$$

which is a contradiction.
Proposition 10.11. Assume that $q \in L_{0}^{+}(X)$ and $\omega \neq 0$. Then there exists a constant c with $0<c<1$ such that $\omega(x) \geq 1-c$ on X.
Proof. Let $c=\max \{G q(x) ; x \in S q\}$. We have $G q(x)<1$ on X by Theorem 10.8. Since $S q$ is a finite set, it follows that $c<1$. Namely $G q(x) \leq c$ on $S q$. We have $G q(x) \leq c$ on X by Theorem 9.4. Theorem 10.5 shows that $\omega(x)=1-G q(x) \geq 1-c$ on X.

Corollary 10.12. Assume that $q \in L_{0}^{+}(X)$ and $\omega \neq 0$. Then there exists a constant c with $0<c<1$ such that $(1-c) G 1(x) \leq G \omega(x) \leq G 1(x)$ on X.

11. The Case Where \mathcal{N} is Parabolic

In this section, we consider the case where \mathcal{N} is parabolic, i.e., $\mathbf{E}=\mathbf{E}_{0}$. We have
Proposition 11.1. Assume that \mathcal{N} is parabolic. Then $G q(x)=1$ on X.
Proof. By [14, Theorem 3.2], we have $1 \in \mathbf{D}_{0}$, so that there exists a sequence $\left\{f_{n}\right\}_{n}$ in $L_{0}(X)$ such that $0 \leq f_{n}(x) \leq 1$ on $X, D\left(1-f_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, and $\left\{f_{n}\right\}_{n}$ converges pointwise to 1 . Let $a \in X$. Since $\Delta_{q} g_{a}(x)=-\varepsilon_{a}(x)$, we have $q(x) g_{a}(x)=\Delta g_{a}(x)+\varepsilon_{a}(x)$ and

$$
\sum_{z \in X} f_{n}(z)\left[q(z) g_{a}(z)\right]=\sum_{z \in X} f_{n}(z)\left[\Delta g_{a}(z)+\varepsilon_{a}(z)\right]=-D\left(f_{n}, g_{a}\right)+f_{n}(a) .
$$

Since $D\left(f_{n}\right)=D\left(1-f_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty}\left|D\left(f_{n}, g_{a}\right)\right| \leq \lim _{n \rightarrow \infty} D\left(f_{n}\right)^{1 / 2} D\left(g_{a}\right)^{1 / 2}=0
$$

Since $G q(a) \leq 1$ by Theorem 10.5, we have by Lebesgue's dominated convergence theorem

$$
\begin{aligned}
G q(a) & =\sum_{z \in X} q(z) g_{a}(z)=\lim _{n \rightarrow \infty} \sum_{z \in X} f_{n}(z)\left[q(z) g_{a}(z)\right] \\
& =\lim _{n \rightarrow \infty}\left[-D\left(f_{n}, k_{a}\right)+f_{n}(a)\right]=1
\end{aligned}
$$

By Theorem 10.5 and the minimum principle, we see that $G q=1$ on X.

By Theorems 10.8 and Proposition 11.1, we have
Theorem 11.2. Assume that \mathcal{N} is parabolic. Then $\mathbf{H B}=\{0\}$.
We show the effect of the condition $G q=1$ by examples.
Example 11.3. Let \mathcal{G} be the linear graph as in Example 5.6, $q=\varepsilon_{x_{0}}+\varepsilon_{x_{1}}+\varepsilon_{x_{2}}$, and $r(y)=1$ on Y. Then \mathcal{N} is parabolic (cf. [15, Example 3.1]) and $g_{x_{0}}$ is given by

$$
g_{x_{0}}\left(x_{0}\right)=\frac{5}{8}, \quad g_{x_{0}}\left(x_{1}\right)=\frac{2}{8}, \quad g_{x_{0}}\left(x_{n}\right)=\frac{1}{8} \quad \text { for } n \geq 2 .
$$

The class \mathbf{H}^{+}consists of $h \in L(X)$ defined by

$$
h\left(x_{0}\right)=t>0, \quad h\left(x_{1}\right)=2 t, \quad h\left(x_{n}\right)=(8 n-11) t \quad \text { for } n \geq 2 .
$$

Proof. Let $h \in \mathbf{H}^{+}$and $h_{n}=h\left(x_{n}\right)$. Then

$$
\begin{gathered}
h_{1}-2 h_{0}=0, \quad h_{2}+h_{0}-3 h_{1}=0 \\
h_{3}+h_{1}-3 h_{2}=0, \quad h_{n+1}-2 h_{n}+h_{n-1}=0 \quad \text { for } n \geq 3,
\end{gathered}
$$

which implies

$$
h\left(x_{0}\right)=t>0, \quad h\left(x_{1}\right)=2 t, \quad h\left(x_{n}\right)=(8 n-11) t \quad \text { for } n \geq 2 .
$$

This means HB $=\{0\}$. Let $u_{n}=g_{x_{0}}\left(x_{n}\right)$. The equation $\Delta_{q} g_{x_{0}}=-\varepsilon_{x_{0}}$ implies

$$
\begin{gathered}
u_{1}-2 u_{0}=-1, \quad u_{2}+u_{0}-3 u_{1}=0 \\
u_{3}+u_{1}-3 u_{2}=0, \quad u_{n+1}-2 u_{n}+u_{n-1}=0 \quad \text { for } n \geq 3 .
\end{gathered}
$$

Proposition 11.1 implies $G q\left(x_{0}\right)=1$, which means

$$
u_{0}+u_{1}+u_{2}=1 .
$$

These equations lead to $u_{0}=5 / 8, u_{1}=2 / 8, u_{n}=1 / 8$ for $n \geq 2$.
Example 11.4. Let \mathcal{G} be the linear graph and let $q(x)=1$ on X and $r(y)=1$ on Y. Then \mathcal{N} is parabolic (cf. [15, Example 3.1]) and

$$
g_{x_{0}}\left(x_{n}\right)=\frac{\alpha^{n}}{2-\alpha} \quad \text { for } n \geq 0, \quad \alpha=\frac{3-\sqrt{5}}{2} .
$$

Proof. Let $h \in \mathbf{H}^{+}$and $h_{n}=h\left(x_{n}\right)$. The equation $\Delta_{q} h(x)=0$ implies $h_{1}=2 h_{0}$ and $h_{n+1}-3 h_{n}+h_{n-1}=0$ for $n \geq 1$. The general solution is $u_{n}=A \alpha^{n}+B \beta^{n}$ for $n \geq 0$, where $\alpha=(3-\sqrt{5}) / 2$ and $\beta=(3+\sqrt{5}) / 2$ are solutions of the characteristic equation $t^{2}-3 t+1=0$. The initial condition shows $B=(3-\alpha) A$ and $\mathbf{H}=\left\{A \alpha^{n}+(3-\alpha) A \beta^{n} ; n \geq 0\right\}$. This means $\mathbf{H B}=\{0\}$. Let $u_{n}=g_{x_{0}}\left(x_{n}\right)$. The equation $\Delta_{q} g_{x_{0}}=-\varepsilon_{x_{0}}$ implies

$$
u_{1}-2 u_{0}=-1, \quad u_{n+1}-3 u_{n}+u_{n-1}=0 \quad \text { for } n \geq 1 .
$$

Since $G q(x)=1$, we obtain $u_{n}=A \alpha^{n}$. By the condition $u_{1}=2 u_{0}-1$, we have $A=1 /(2-\alpha)$.

12. Classification of Infinite Networks

Recall $\mathbf{H E}^{+}=\mathbf{H E} \cap L^{+}(X)$ and let

$$
\begin{aligned}
\mathbf{H P} & =\mathbf{H}^{+}-\mathbf{H}^{+}=\left\{h=h_{1}-h_{2} ; h_{1}, h_{2} \in \mathbf{H}^{+}\right\}, \\
\mathbf{H E P} & =\mathbf{H E}^{+}-\mathbf{H E}^{+} .
\end{aligned}
$$

For a class C of $L(X)$, denote by O_{C} the collection of those infinite networks \mathcal{N} for which C consists only of 0 . Since $\mathbf{H P} \subset \mathbf{H}$, we have $O_{H} \subset O_{H P}$.

Proposition 12.1. HB $\subset \mathbf{H P}$.
Proof. Let $u \in$ HB. Then there exists a constant such that $|u(x)| \leq c$ on X. By Lemma 10.7, $|u(x)| \leq c \omega(x)$ on X. Let $u_{1}=(c \omega+u) / 2$ and $u_{2}=(c \omega-u) / 2$. By Lemma 4.1, u_{1} and u_{2} are non-negative and q-harmonic and $u_{1}-u_{2}=u$.

Corollary 12.2. $O_{H P} \subset O_{H B}$.
Clearly $\mathbf{H E B} \subset \mathbf{H B}$, so that $O_{H B} \subset O_{H E B}$.
Proposition 12.3. $\mathbf{H E}=\mathbf{H E P}=\left\{u_{1}-u_{2} ; u_{1}, u_{2} \in \mathbf{H E}^{+}\right\}$.
Proof. Since $\mathbf{H E P} \subset \mathbf{H E}$ is clear, we prove the converse inclusion. Let $u \in \mathbf{H E}$ and $u^{+}=\max (u, 0), u^{-}=\max (-u, 0)$. For our purpose, we may assume that both u^{+}and u^{-}are non-zero. Let $\left\{\mathcal{N}_{n}=\left\langle X_{n}, Y_{n}\right\rangle\right\}_{n}$ be an exhaustion of \mathcal{N} and consider the following extremum problems:

$$
\alpha_{n}=\inf \left\{E(v) ; v \in \mathbf{E}, v=u^{+} \text {on } X \backslash X_{n}\right\} .
$$

Note that $\alpha_{n} \leq E\left(u^{+}\right) \leq E(u)$ by Corollary 3.10. By the same reasoning as in the proof of Theorem 6.1, we see that there exists a unique solution v_{n}^{*} such that $\alpha_{n}=E\left(v_{n}^{*}\right)$. Let $f \in L(X)$ satisfy $f=0$ on $X \backslash X_{n}$. Since $v_{n}^{*}+t f(\in \mathbf{E})$ is equal to u^{+}on $X \backslash X_{n}$ for any real number t, we have

$$
E\left(v_{n}^{*}\right) \leq E\left(v_{n}^{*}+t f\right)=E\left(v^{*}\right)+2 t E\left(v_{n}^{*}, f\right)+t^{2} E(f) .
$$

Letting $t \nearrow 0$ and $t \searrow 0$, we obtain $E\left(v_{n}^{*}, f\right)=0$. For any $x \in X \backslash X_{n}$, Lemma 3.3 shows

$$
0=E\left(v_{n}^{*}, \varepsilon_{x}\right)=-\Delta_{q} v_{n}^{*}(x),
$$

namely v_{n}^{*} is q-harmonic on X_{n}. Note that $-u^{+}$is q-superharmonic on X by Lemma 4.1. Since $v_{n}^{*}-u^{+}$is q-superharmonic on X_{n} and vanishes on $X \backslash X_{n}$, we have $v_{n}^{*}-u^{+} \geq 0$ on X by the minimum principle. From $v_{n+1}^{*} \geq u^{+}$on X and $v_{n}^{*}=u^{+}$on $X \backslash X_{n}$, we see that $v_{n+1}^{*}-v_{n}^{*} \geq 0$ on $X \backslash X_{n}$. Since $v_{n+1}^{*}-v_{n}^{*}$ is q-harmonic on X_{n}, we obtain by the minimum principle $v_{n+1}^{*} \geq v_{n}^{*}$ on X. Lemma 3.1 implies that, for each $x \in X$, there exists $M_{x}>0$ such that $u^{+}(x) \leq v_{n}^{*}(x) \leq M_{x} E\left(v_{n}^{*}\right)^{1 / 2} \leq M_{x} E(u)^{1 / 2}$. Therefore, the sequence $\left\{v_{n}^{*}\right\}_{n}$ converges pointwise to $v^{*} \in L^{+}(X)$. Then v^{*} is q-harmonic on X and $v^{*} \geq u^{+}$. Note that

$$
E\left(v^{*}\right) \leq \liminf _{n \rightarrow \infty} E\left(v_{n}^{*}\right) \leq E(u)<\infty
$$

so that $v^{*} \in \mathbf{H E}^{+}$. Theorem 8.5 shows that $v^{*}-u^{+}=G \mu_{1}+h_{1}$ with $\mu_{1} \in \mathcal{E}$ and $h_{1} \in \mathbf{H E}^{+}$. Similarly we find $w^{*} \in \mathbf{H E}{ }^{+}, \mu_{2} \in \mathcal{E}$, and $h_{2} \in \mathbf{H E}^{+}$such that $w^{*}-u^{-}=G \mu_{2}+h_{2}$. Let $\varphi=v^{*}-w^{*} \in \mathbf{H E}$. Then

$$
0=\Delta_{q}(\varphi-u)=\Delta_{q} G\left(\mu_{1}-\mu_{2}\right)=-\mu_{1}+\mu_{2} .
$$

Let $u_{1}=v^{*}+h_{2}$ and $u_{2}=w^{*}+h_{1}$. Then $u_{1}, u_{2} \in \mathbf{H E}^{+}$and

$$
u=\varphi-\left(h_{1}-h_{2}\right)=u_{1}-u_{2} .
$$

This completes the proof.
Next theorem gives a sufficient condition for $\mathbf{H}^{+} \neq\{0\}$.
Theorem 12.4. If \mathcal{N} is hyperbolic and $\sum_{x \in X} q(x)<\infty$, then $\mathbf{H}^{+} \neq\{0\}$.
Proof. If $\mathbf{H}^{+}=\{0\}$, then $\mathbf{H E}^{+}=\{0\}$, so that $\mathbf{H E P}=\{0\}$. Hence $\mathbf{H E}=\{0\}$ by Proposition 12.3. This contradicts Theorem 3.8.
Proposition 12.5. For every $u \in \mathbf{H E}$, there exists a sequence $\left\{h_{n}\right\}_{n}$ in HEB such that $E\left(u-h_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.
Proof. Let $u \in \mathbf{H E}$ and $u \geq 0$ and let $u_{n}(x)=\min (u(x), n)$. Then $u_{n} \in \mathbf{E}$ is nonnegative and q-superharmonic. Theorem 8.5 shows that $u_{n}=G \mu_{n}+h_{n}$ with $\mu_{n} \in \mathcal{E}$ and $h_{n} \in \mathbf{H E}^{+}$. We have $0 \leq h_{n} \leq u_{n} \leq n$ and $h_{n} \in$ HEB. Lemma 3.3 shows $E\left(u-h_{n}, G \mu_{n}\right)=0$, which leads to $E\left(u-u_{n}\right)=E\left(G \mu_{n}\right)+E\left(u-h_{n}\right) \geq E\left(u-h_{n}\right)$. Note that $D\left(u-u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ by [14, Lemma 3.1]. Since $\left\|u_{n}\right\| \leq\|u\|$ and $\left\{u_{n}\right\}_{n}$ converges pointwise to u, we see that $\left\{\left\langle u_{n}, v\right\rangle\right\}_{n}$ converges to $\langle u, v\rangle$ for every $v \in \mathbf{E}$. Furthermore, we have $\left\|u_{n}\right\|^{2} \rightarrow\|u\|^{2}$ as $n \rightarrow \infty$, and that $\left\|u-u_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$. Thus $E\left(u-u_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, which shows $E\left(u-h_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Now we consider the case where $u \in \mathbf{H E}$ is of any sign. By Proposition 12.3, there exist $u^{\prime}, u^{\prime \prime} \in \mathbf{H E}^{+}$such that $u=u^{\prime}-u^{\prime \prime}$. By the above observation, we can find sequences $\left\{h_{n}^{\prime}\right\}$ and $\left\{h_{n}^{\prime \prime}\right\}$ in HEB such that $E\left(u^{\prime}-h_{n}^{\prime}\right) \rightarrow 0$ and $E\left(u^{\prime \prime}-h_{n}^{\prime \prime}\right) \rightarrow 0$ as $n \rightarrow \infty$. Let $h_{n}=h_{n}^{\prime}-h_{n}^{\prime \prime}$. Then $h_{n} \in$ HEB and $E\left(u-h_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

Corollary 12.6. $O_{H E}=O_{H E B}$.
Thus we have the following classification of infinite networks by the classes of q-harmonic functions:
Theorem 12.7. $O_{H} \subset O_{H P} \subset O_{H B} \subset O_{H E B}=O_{H E}$.
Note that HD $=\mathbf{H E}$ if $q \in L_{0}^{+}(X)$.

13. q-Quasiharmonic Classification

We say that a function $u \in L(X)$ is q-quasiharmonic on X if $\Delta_{q} u=c \omega$ on X, where ω is the q-elliptic measure and c is a constant. Denote by \mathbf{Q} the set of q-quasiharmonic functions on X normalized by $\Delta_{q} u=-\omega$. In this section, we always assume that $\omega \neq 0$. We consider the following classes of q-quasiharmonic functions:

$$
\mathbf{Q B}=\{u \in \mathbf{Q} ; \sup \{|u(x)| ; x \in X\}<\infty\},
$$

$$
\mathbf{Q E}=\mathbf{Q} \cap \mathbf{E}, \quad \mathbf{Q}^{+}=\mathbf{Q} \cap L^{+}(X)
$$

In addition to \mathcal{M} and \mathcal{E}, we introduce

$$
\mathcal{M}_{b}=\{\mu \in \mathcal{M} ; \sup \{G \mu(x) ; x \in X\}<\infty\} .
$$

Theorem 13.1. Assume $\omega \neq 0$. The classes O_{C} for $C=\mathbf{Q}^{+}, \mathbf{Q B}, \mathbf{Q E}$ are characterized as follows:
(1) $\mathcal{N} \in O_{Q^{+}}$if and only if $\omega \notin \mathcal{M}$;
(2) $\mathcal{N} \in O_{Q B}$ if and only if $\omega \notin \mathcal{M}_{b}$;
(3) $\mathcal{N} \in O_{Q E}$ if and only if $\omega \notin \mathcal{E}$.

Proof. Let $u=G \omega$. If $\omega \in \mathcal{M}$, then $\Delta_{q} u=-\omega$ on X and $u>0$, and hence $u \in \mathbf{Q}^{+}$. If $\omega \in \mathcal{M}_{b}$, then $u \in \mathbf{Q B}$. If $\omega \in \mathcal{E}$, then $u \in \mathbf{Q E}$ by Theorem 8.4. Thus the only-if parts in (1)-(3) are proved.
(1) Assume that $\mathcal{N} \notin O_{Q^{+}}$and let $u \in \mathbf{Q}^{+}$. Since u is non-negative and $q-$ superharmonic, we see by Riesz's decomposition that there exist $\mu \in \mathcal{M}$ and $h \in$ \mathbf{H}^{+}such that $u=G \mu+h$ and $\mu=-\Delta_{q} u=\omega$. Thus $\omega \in \mathcal{M}$.
(2) Assume that $\mathcal{N} \notin O_{Q B}$ and $u \in \mathbf{Q B}$. Then there exists a positive constant c such that $|u(x)| \leq c$ on X. Lemma 10.7 shows that $u+c \omega$ is non-negative and q-superharmonic. Riesz's decomposition shows that there exist $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^{+}$ such that $u+c \omega=G \mu+h$ and $\mu=-\Delta_{q}(u+c \omega)=\omega$. Thus $G \omega \leq u+c \omega \leq 2 c$ on X and $\omega \in \mathcal{M}_{b}$.
(3) Assume that $\mathcal{N} \notin O_{Q E}$ and $u \in \mathbf{Q E}$. Royden's decomposition implies that there exist $v \in \mathbf{E}_{0}$ and $h \in \mathbf{H E}$ such that $u=v+h$. Since $\Delta_{q} v=\Delta_{q} u=-\omega$, Theorem 8.4 shows that there exists $\mu \in \mathcal{E}$ such that $v=G \mu$. We obtain $\omega=$ $-\Delta_{q} G \mu=\mu \in \mathcal{E}$.

This theorem implies
Proposition 13.2. If $\omega \neq 0$, then $O_{Q^{+}} \subset O_{Q B}$.
We have by Proposition 10.11 and Corollary 10.12
Lemma 13.3. Assume that $q \in L_{0}^{+}(X)$ and $\omega \neq 0$. Then
(1) $\omega \in \mathcal{M}$ if and only if $1 \in \mathcal{M}$;
(2) $\omega \in \mathcal{M}_{b}$ if and only if $1 \in \mathcal{M}_{b}$;
(3) $\omega \in \mathcal{E}$ if and only if $1 \in \mathcal{E}$.

We show by an example that there exists $\mathcal{N} \notin O_{Q^{+}}$such that $\mathcal{N} \in O_{Q B}$.
Example 13.4. Let \mathcal{G} be the ladder as in [16, Example 4.3]. Namely $X=$ $\left\{x_{n}, x_{n}^{\prime} ; n \geq 0\right\}, Y_{n}=\left\{y_{n}, y_{n}^{\prime}, y_{n}^{\prime \prime} ; n \geq 1\right\} \cup\left\{y_{0}^{\prime \prime}\right\}$ and $K(x, y)$ is defined by

$$
\begin{aligned}
K\left(x_{n}, y_{n+1}\right) & =K\left(x_{n}^{\prime}, y_{n+1}^{\prime}\right)=K\left(x_{n}, y_{n}^{\prime \prime}\right)=-1 \\
K\left(x_{n+1}, y_{n+1}\right) & =K\left(x_{n+1}^{\prime}, y_{n+1}^{\prime}\right)=K\left(x_{n}^{\prime}, y_{n}^{\prime \prime}\right)=1
\end{aligned}
$$

for $n \geq 0$ and $K(x, y)=0$ for any other pair. Let $q(x)=\varepsilon_{x_{0}}(x)$ and α_{0} a constant with $0<\alpha_{0}<1$. We choose $r(y)$ as follows:

$$
r_{n}=1, \quad r_{n}^{\prime}=\frac{2^{-n-1} \alpha_{0}}{2 n+1-\alpha_{0}}
$$

$$
r_{0}^{\prime \prime}=\frac{\alpha_{0}}{2\left(2-\alpha_{0}\right)}, \quad r_{n}^{\prime \prime}=\left(1-2^{-n-1}\right) \alpha_{0}+n
$$

for $n \geq 1$, where $r_{n}=r\left(y_{n}\right), r_{n}^{\prime}=r\left(y_{n}^{\prime}\right)$, and $r_{n}^{\prime \prime}=r\left(y_{n}^{\prime \prime}\right)$. This network is in $O_{Q B} \backslash O_{Q^{+}}$.

Proof. Let us consider the function $u \in L(X)$ defined by

$$
u_{n}=\alpha_{0}+n, \quad u_{n}^{\prime}=2^{-n-1} \alpha_{0} \quad \text { for } n \geq 0,
$$

where $u_{n}=u\left(x_{n}\right)$ and $u_{n}^{\prime}=u\left(x_{n}^{\prime}\right)$. We show $\Delta_{q} u=-1$. We compute

$$
\begin{aligned}
& d u\left(y_{n}\right)=-\frac{K\left(x_{n-1}, y_{n}\right) u\left(x_{n-1}\right)+K\left(x_{n}, y_{n}\right) u\left(x_{n}\right)}{r\left(y_{n}\right)}=\frac{u_{n-1}-u_{n}}{r_{n}}=-1, \\
& d u\left(y_{n}^{\prime}\right)=-\frac{K\left(x_{n-1}^{\prime}, y_{n}^{\prime}\right) u\left(x_{n-1}^{\prime}\right)+K\left(x_{n}^{\prime}, y_{n}^{\prime}\right) u\left(x_{n}^{\prime}\right)}{r\left(y_{n}^{\prime}\right)}=\frac{u_{n-1}^{\prime}-u_{n}^{\prime}}{r_{n}^{\prime}}=2 n+1-\alpha_{0}, \\
& d u\left(y_{0}^{\prime \prime}\right)=-\frac{K\left(x_{0}, y_{0}^{\prime \prime}\right) u\left(x_{0}\right)+K\left(x_{0}^{\prime}, y_{0}^{\prime \prime}\right) u\left(x_{0}^{\prime}\right)}{r\left(y_{0}^{\prime \prime}\right)}=\frac{u_{0}-u_{0}^{\prime}}{r_{0}^{\prime \prime}}=2-\alpha_{0}, \\
& d u\left(y_{n}^{\prime \prime}\right)=-\frac{K\left(x_{n}, y_{n}^{\prime \prime}\right) u\left(x_{n}\right)+K\left(x_{n}^{\prime}, y_{n}^{\prime \prime}\right) u\left(x_{n}^{\prime}\right)}{r\left(y_{n}^{\prime \prime}\right)}=\frac{u_{n}-u_{n}^{\prime}}{r_{n}^{\prime \prime}}=1
\end{aligned}
$$

for $n \geq 1$. We have

$$
\begin{aligned}
\Delta_{q} u\left(x_{0}\right) & =K\left(x_{0}, y_{1}\right) d u\left(y_{1}\right)+K\left(x_{0}, y_{0}^{\prime \prime}\right) d u\left(y_{0}^{\prime \prime}\right)-u\left(x_{0}\right) \\
& =-d u\left(y_{1}\right)-d u\left(y_{0}^{\prime \prime}\right)-u_{0}=-1, \\
\Delta_{q} u\left(x_{0}^{\prime}\right) & =K\left(x_{0}^{\prime}, y_{1}^{\prime}\right) d u\left(y_{1}^{\prime}\right)+K\left(x_{0}^{\prime}, y_{0}^{\prime \prime}\right) d u\left(y_{0}^{\prime \prime}\right) \\
& =-d u\left(y_{1}^{\prime}\right)+d u\left(y_{0}^{\prime \prime}\right)=-1, \\
\Delta_{q} u\left(x_{n}\right) & =K\left(x_{n}, y_{n}\right) d u\left(y_{n}\right)+K\left(x_{n}, y_{n+1}\right) d u\left(y_{n+1}\right)+K\left(x_{n}, y_{n}^{\prime \prime}\right) d u\left(y_{n}^{\prime \prime}\right) \\
& =d u\left(y_{n}\right)-d u\left(y_{n+1}\right)-d u\left(y_{n}^{\prime \prime}\right)=-1, \\
\Delta_{q} u\left(x_{n}^{\prime}\right) & =K\left(x_{n}^{\prime}, y_{n}^{\prime}\right) d u\left(y_{n}^{\prime}\right)+K\left(x_{n}^{\prime}, y_{n+1}^{\prime}\right) d u\left(y_{n+1}^{\prime}\right)+K\left(x_{n}^{\prime}, y_{n}^{\prime \prime}\right) d u\left(y_{n}^{\prime \prime}\right) \\
& =d u\left(y_{n}^{\prime}\right)-d u\left(y_{n+1}^{\prime}\right)+d u\left(y_{n}^{\prime \prime}\right)=-1 .
\end{aligned}
$$

By Riesz's decomposition, we have $u=G \mu+h$ with $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^{+}$. Note that $1=-\Delta_{q} u=\mu \in \mathcal{M}$. Also note that \mathcal{N} is hyperbolic because of $\sum_{n} r_{n}^{\prime}<\infty$ and [14, Theorem 4.1 and Lemma 4.3]. Proposition 10.10 shows $\omega \neq 0$.

To show $\mathcal{N} \in O_{Q B} \backslash O_{Q^{+}}$, it suffices to show that $1 \in \mathcal{M} \backslash \mathcal{M}_{b}$ by Theorem 13.3 and Lemma 13.3. We show that $v:=G 1$ is unbounded. Suppose that v is bounded, i.e., there exists a positive constant c such that $|v(x)| \leq c$ on X. Let $v_{n}=v\left(x_{n}\right)$, $v_{n}^{\prime}=v\left(x_{n}^{\prime}\right), w_{n}=d v\left(y_{n}\right), w_{n}^{\prime}=d v\left(y_{n}^{\prime}\right)$, and $w_{n}^{\prime \prime}=d v\left(y_{n}^{\prime \prime}\right)$. Then $\left|w_{n}\right| \leq 2 c$ for all n. For any ε with $0<\varepsilon<1$, there exists n_{0} such that $r_{n}^{\prime \prime} \geq 2 c / \varepsilon$ for all $n \geq n_{0}$, so that

$$
\left|w_{n}^{\prime \prime}\right|=\frac{1}{r_{n}^{\prime \prime}}\left|v_{n}^{\prime}-v_{n}\right| \leq \varepsilon .
$$

Since $1 \in \mathcal{M}$, Lemma 7.1 shows $\Delta_{q} v=-1$, which implies $w_{n}-w_{n+1}-w_{n}^{\prime \prime}=-1$, and that

$$
-1-\varepsilon \leq w_{n}-w_{n+1} \leq-1+\varepsilon
$$

for all $n \geq n_{0}$. This contradicts the boundedness of $\left\{w_{n}\right\}_{n}$. Thus v is unbounded.

Proposition 13.5. If $q \in L_{0}^{+}(X)$ and $\omega \neq 0$, then $O_{Q B} \subset O_{Q E}$.
Proof. Assume $\mathcal{N} \notin O_{Q E}$. Theorem 13.1 shows $\omega \in \mathcal{E}$. There exists a constant c with $0<c<1$ such that $\omega(x) \geq 1-c$ on X by Proposition 10.11 , so that

$$
G(\omega, \omega)=\sum_{z \in X} G \omega(z) \omega(z) \geq(1-c) \sum_{z \in X} G \omega(z) \geq(1-c) G \omega(x)
$$

for each $x \in X$. This means $\omega \in \mathcal{M}_{b}$.
Example 13.6. Let \mathcal{G} and q be the same as in Example 5.6. Define $r(y)$ by $r\left(y_{n}\right)=n^{-2}-(n+1)^{-2}$ for $n \geq 1$. Then $\omega \in \mathcal{M}_{b}$ and $\omega \notin \mathcal{E}$. Equivalently $\mathbf{Q B} \neq\{0\}$ and $\mathbf{Q E}=\{0\}$.
Proof. Let R_{n} and ρ_{n} be defined as in Example 5.6. Then

$$
R_{0}=1, \quad R_{n}=\frac{1}{(n+1)^{2}}, \quad \rho_{n}=1-\frac{1}{(n+1)^{2}}<1 .
$$

We have by Theorem 10.5

$$
\omega\left(x_{n}\right)=1-g_{x_{0}}\left(x_{n}\right)=1-\frac{\left(1+\rho_{0}\right) R_{n}}{1+R_{0}}=\frac{1+\rho_{n}}{1+R_{0}} \quad \text { for } n \geq 0
$$

We obtain

$$
\begin{aligned}
G \omega\left(x_{0}\right) & =\frac{1}{\left(1+R_{0}\right)^{2}} \sum_{n=0}^{\infty} R_{n}\left(1+\rho_{n}\right) \leq \frac{1}{2} \sum_{n=0}^{\infty} R_{n}<\infty \\
G \omega\left(x_{m}\right) & =\sum_{n=0}^{\infty} g_{x_{m}}\left(x_{n}\right) \omega\left(x_{n}\right) \\
& =\frac{1}{\left(1+R_{0}\right)^{2}}\left[R_{m} \sum_{n=0}^{m}\left(1+\rho_{n}\right)^{2}+\left(1+\rho_{m}\right) \sum_{n=m+1}^{\infty} R_{n}\left(1+\rho_{n}\right)\right] \\
& \leq(m+1) R_{m}+\sum_{n=m+1}^{\infty} R_{n} \leq \frac{1}{m+1}+\sum_{n=1}^{\infty} \frac{1}{n^{2}},
\end{aligned}
$$

so that $G \omega$ is bounded and $\omega \in \mathcal{M}_{b}$.
We have $G(\omega, \omega)=S_{1}+S_{2}$, where

$$
\begin{aligned}
& S_{1}=\frac{1}{\left(1+R_{0}\right)^{3}} \sum_{m=0}^{\infty} R_{m}\left(1+\rho_{m}\right) \sum_{n=0}^{m}\left(1+\rho_{n}\right)^{2} \\
& S_{2}=\frac{1}{\left(1+R_{0}\right)^{3}} \sum_{m=0}^{\infty}\left(1+\rho_{m}\right)^{2} \sum_{n=m+1}^{\infty} R_{n}\left(1+\rho_{n}\right) .
\end{aligned}
$$

Therefore

$$
c_{m}:=\sum_{n=m+1}^{\infty} R_{n}\left(1+\rho_{n}\right) \geq \sum_{n=m+1}^{\infty} \frac{1}{(n+1)^{2}} \geq \int_{m+2}^{\infty} \frac{1}{t^{2}} d t=\frac{1}{m+2},
$$

thus

$$
G(\omega, \omega) \geq S_{2} \geq \frac{1}{8} \sum_{m=0}^{\infty} c_{m}=\infty
$$

Acknowledgement. We would like to thank the referee for his detailed comments which improved significantly the presentation of this paper.

References

[1] Victor Anandam, Harmonic functions and potentials on finite or infinite networks, Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011. MR 2816628 (2012h:31001)
[2] Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0159935
[3] Florian Fischer and Matthias Keller, Riesz decompositions for Schrödinger operators on graphs, arXiv:1905.12474, 1-21.
[4] Takashi Kayano and Maretsugu Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), no. 2, 401-406. MR 764458
[5] Hisayasu Kurata and Maretsugu Yamasaki, The metric growth of the discrete Laplacian, Hokkaido Math. J. 45 (2016), no. 3, 399-417.
[6]_, Discrete Green potentials with finite energy, Hokkaido Math. J. 47 (2018), no. 3, 607-624. MR 3858381
[7] , Discrete q-Green potentials with finite energy, Mem. Grad. Sch. Sci. Eng. Shimane Univ. Ser. B Math. 51 (2018), 7-21. MR 3752998
[8] Fumi-Yuki Maeda, Boundary value problems for the equation $\Delta u-q u=0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ. Ser. A-I Math. 32 (1968), 85-146. MR 241677
[9] Fumi-Yuki Maeda, Non-linear classification of infinite networks, unpublished, 1976.
[10] Mitsuru Ozawa, Some classes of positive solutions of $\delta u=p u$ on riemann surfaces. I., Kodai Math. Sem. Rep. 6 (1954), no. 4, 121-126.
[11] Leo Sario, Mitsuru Nakai, Cecilia Wang, and Lung Ock Chung, Classification theory of Riemannian manifolds, Lecture Notes in Mathematics, Vol. 605, Springer-Verlag, BerlinNew York, 1977, Harmonic, quasiharmonic and biharmonic functions. MR 0508005
[12] Paolo M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, vol. 1590, Springer-Verlag, Berlin, 1994. MR 1324344
[13] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), no. 2, 223-250. MR 373784
[14] , Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), no. 1, 135-146. MR 429377
[15] , Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.
[16] , Quasiharmonic classification of infinite networks, Discrete Appl. Math. 2 (1980), no. 4, 339-344.
[17] , The equation $\Delta u=q u$ on an infinite network, Mem. Fac. Sci. Shimane Univ. 21 (1987), 31-46. MR 939561 (90b:39011)

Hisayasu Kurata: National Institute of Technology, Yonago College; Yonago, Tottori, 683-8502, JAPAN

Email address: kurata@yonago-k.ac.jp
Maretsugu Yamasaki: Matsue, Shimane, 690-0824, JAPAN
Email address: yama0565m@mable.ne.jp

[^0]: 2010 Mathematics Subject Classification. Primary 31C20; Secondary 31C25.
 Key words and phrases. discrete potential theory, classification of infinite networks, Schrödinger operator, q-Green potential, discrete q-Laplacian.

