Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics 55 (2022), pp. 1–25

POTENTIAL THEORY OF THE DISCRETE EQUATION $\Delta u = qu$

HISAYASU KURATA AND MARETSUGU YAMASAKI

Communicated by Jitsuro Sugie

(Received: November 30, 2020)

ABSTRACT. We develop a discrete potential theory for the equation $\Delta u = qu$ on an infinite network similar to the classical potential theory on Riemannian surfaces. The q-Green function for the Schrödinger operator $-\Delta + q$ plays the role of the Green function for the Laplace operator. We study some properties of q-Green potential whose kernel is the q-Green function. As an application, we give a classification of infinite networks by the classes of q-harmonic functions. We also focus on the role of the q-elliptic measure of the ideal boundary of the network.

1. INTRODUCTION

Many fruitful results in the theory of potentials related to Laplace operator had published in Constantinescu and Cornea [2]. Related to discrete Laplacian, some results were obtained by Soardi [12], Yamasaki [13], [15], and Kurata and Yamasaki [5], [6], etc. There are some papers related to Schrödinger operator $\Delta u - qu$, for instance Ozawa [10], Maeda [8] and Sario, Nakai, Wang, and Chung [11]. The discrete equation $\Delta_{q}u := \Delta u - qu = 0$ has been studied by Yamasaki [17], Kurata and Yamasaki [7], Anandam [1], and Fischer and Keller [3]. Their research methods are different. Anandam used the theory of axiomatic potentials. Our research method depends on the theory of Dirichlet space and reasoning in [2]. Fischer and Keller used semigroups of a self-adjoint realization of the Schrödinger operator. The aim of this paper is to study the discrete equation $\Delta_q u = 0$ on an infinite network along the same line in [17]. We always assume that q is a non-zero non-negative function and $q \neq 0$. We show the fundamental results relating the spaces **E** and \mathbf{E}_0 and the norm $E(\cdot)^{1/2}$ in Section 3, and properties of q-superharmonic functions in Section 4. We define the q-Green function of \mathcal{N} in Section 5. Most of these results were obtained in [17]. We give their proofs for completeness. The discrete analogues of Royden's decomposition of a function in E and Riesz's decomposition of a non-negative q-superharmonic function play the fundamental roles in our study.

²⁰¹⁰ Mathematics Subject Classification. Primary 31C20; Secondary 31C25.

Key words and phrases. discrete potential theory, classification of infinite networks, Schrödinger operator, q-Green potential, discrete q-Laplacian.

In Sections 6–9, we study potential-theoretic properties of q-Green potentials; for example, domination principle, equilibrium principle, etc. As the discrete analogy of q-elliptic measure in [11, Page 286], we introduce the q-elliptic measure ω of the ideal boundary of the network and study it in Section 10 more detail than in [17]. In case \mathcal{N} is parabolic, we give some supplementary results in Section 11. We shall give a classification of infinite networks by using the classes of q-harmonic functions in Section 12. Analogous to the classification theory in Sario, Nakai, Wang, and Chung [11], we give some results of q-quasiharmonic classification of the networks by using q-elliptic measure ω in Section 13 which is similar to Yamasaki [16].

2. Fundamental Notion

Let $\mathcal{G} = \langle X, Y, K \rangle$ be an infinite graph which is connected and locally finite without self-loops (cf. [13]). Here we denote X by the countable set of nodes, Y by the countable set of arcs, and K by the node-arc incidence matrix. Namely, K is a function on $X \times Y$ and K(x, y) = -1 if x is the initial node of y, K(x, y) = 1 if x is the terminal node of y, and K(x, y) = 0 otherwise. Now we introduce several fundamental notation used in this paper. Let L(X) be the set of all real functions on X, $L_0(X)$ the subset of L(X) with finite support, and $L^+(X)$ the set of all non-negative functions on X. We define L(Y), $L_0(Y)$, and $L^+(Y)$ similarly. Let $r \in L^+(Y)$ be a resistance, which is a strictly positive function, and let $q \in L^+(X)$ and $q \neq 0$. In this paper, we call the triple $\mathcal{N} = \langle \mathcal{G}, r, q \rangle$ an infinite network. For $x \in X$, let $Y(x) = \{y \in Y ; K(x, y) \neq 0\}$, which is the set of arcs incidence to x. We say that a sequence of finite networks $\{\mathcal{N}_n = \langle \mathcal{G}_n, r_n, q_n \rangle\}_n$ is an *exhaustion* of \mathcal{N} if the sequence $\{\mathcal{G}_n = \langle X_n, Y_n, K_n \rangle\}_n$ of connected graphs satisfies $X_n \subset X_{n+1}$, $Y_n \subset Y_{n+1}, X = \bigcup_{n=1}^{\infty} X_n, Y = \bigcup_{n=1}^{\infty} Y_n$, and $Y(x) \subset Y_{n+1}$ for all $x \in X_n$. Here denote by K_n the restriction of K onto $X_n \times Y_n$ and by r_n and q_n the restrictions of r and q onto Y_n and X_n respectively. Hereafter we write $\mathcal{N}_n = \langle X_n, Y_n \rangle$ for short. For $u \in L(X)$, let

$$\begin{split} du(y) &= -r(y)^{-1} \sum_{x \in X} K(x, y) u(x) \quad \text{(discrete derivative)}, \\ D(u) &= \sum_{y \in Y} r(y) [du(y)]^2 \quad \text{(Dirichlet sum)}, \\ E(u) &= D(u) + \sum_{x \in X} q(x) u(x)^2 \quad (q\text{-energy}), \\ \Delta u(x) &= \sum_{y \in Y} K(x, y) [du(y)] \quad \text{(discrete Laplacian)}, \\ \Delta_q u(x) &= \Delta u(x) - q(x) u(x) \quad \text{(discrete q-Laplacian)}. \end{split}$$

We say that $u \in L(X)$ is *q*-harmonic on a subset A of X if $\Delta_q u(x) = 0$ on A. For $a \in X$, denote by $\varepsilon_a \in L(X)$ the characteristic function of $\{a\}$, i.e., $\varepsilon_a(a) = 1$ and $\varepsilon_a(x) = 0$ for $x \neq a$. Also for a set $A \subset X$ denote by $\varepsilon_A \in L(X)$ the characteristic function of A.

3. The Spaces \mathbf{E} and \mathbf{E}_0

Let us put

$$\mathbf{D} = \{ u \in L(X) ; D(u) < \infty \}, \\ \mathbf{E} = \{ u \in L(X) ; E(u) < \infty \}, \\ \mathbf{H} = \{ u \in L(X) ; \Delta_q u = 0 \} \quad \text{(the set of q-harmonic functions)}, \\ \mathbf{HE} = \mathbf{H} \cap \mathbf{E}, \qquad \mathbf{HD} = \mathbf{H} \cap \mathbf{D}.$$

For simplicity, we set for $u, v \in L(X)$

$$\langle u, v \rangle = \sum_{x \in X} q(x)u(x)v(x),$$

$$\|u\|^2 = \langle u, u \rangle,$$

$$D(u, v) = \sum_{y \in Y} r(y)[du(y)][dv(y)],$$

$$E(u, v) = D(u, v) + \langle u, v \rangle.$$

Then D(u) = D(u, u) and $E(u) = D(u) + ||u||^2 = E(u, u)$.

Lemma 3.1. For $a \in X$ there exists a constant $M_a > 0$ such that $|u(a)| \leq M_a E(u)^{1/2}$ for $u \in \mathbf{E}$.

Proof. Let $a \in X$. Let $b \in X$ be such that q(b) > 0. For $u \in \mathbf{E}$ we have $q(b)u(b)^2 \leq E(u)$, or $|u(b)| \leq q(b)^{-1/2}E(u)^{1/2}$. Let P be a path between a and b. Then

$$\begin{aligned} u(a)| &\leq |u(b)| + \sum_{y \in Y(P)} r(y) |du(y)| \\ &\leq |u(b)| + \left(\sum_{y \in Y(P)} r(y)\right)^{1/2} \left(\sum_{y \in Y(P)} r(y) du(y)^2\right)^{1/2} \\ &\leq q(b)^{-1/2} E(u)^{1/2} + \left(\sum_{y \in Y(P)} r(y)\right)^{1/2} E(u)^{1/2}, \end{aligned}$$

where Y(P) is the set of arcs belonging to P.

It is easily seen that **E** is a Hilbert space with respect to the inner product $E(\cdot, \cdot)$. Note that if $u_n, u \in \mathbf{E}$ and $E(u_n - u) \to 0$ as $n \to \infty$, then $\{u_n\}_n$ converges pointwise to u. Denote by \mathbf{E}_0 the closure of $L_0(X)$ with respect to the norm $[E(\cdot)]^{1/2}$. Recall that \mathbf{D}_0 is the closure of $L_0(X)$ with respect to the norm $[D(\cdot) + u(x_0)^2]^{1/2}$, where x_0 is a fixed node of X (see [15, Theorem 1.1]). We say that \mathcal{N} is hyperbolic (parabolic resp.) if the network $\langle \mathcal{G}, r \rangle$ is hyperbolic (parabolic resp.) (cf. [14]).

Theorem 3.2. $E_0 = D_0 \cap E$.

Proof. From $\mathbf{E}_0 \subset \mathbf{D}_0$ and $\mathbf{E}_0 \subset \mathbf{E}$, it follows that $\mathbf{E}_0 \subset \mathbf{D}_0 \cap \mathbf{E}$. To prove the converse relation, let $u \in \mathbf{D}_0 \cap \mathbf{E}$. There exists a sequence $\{f_n\}_n$ in $L_0(X)$ such that $D(u - f_n) \to 0$ as $n \to \infty$, $\{f_n\}_n$ converges pointwise to u, and $|f_n(x)| \leq |u(x)|$ on X. It suffices to show that $||u - f_n|| \to 0$ as $n \to \infty$. Note that $L_2(X; q) = \{u \in L(X); ||u|| < \infty\}$ is a Hilbert space with respect to the inner product $\langle \cdot, \cdot \rangle$. Since $||f_n||^2 \leq ||u||^2$ and $\{f_n\}_n$ converges pointwise to u, we see that $\{f_n\}_n$ converges weakly to u. We have $||f_n||^2 \to ||u||^2$, so that $||u - f_n||^2 \to 0$ as $n \to \infty$.

Lemma 3.3. $E(u, f) = -\sum_{x \in X} [\Delta_q u(x)] f(x)$ for $u \in \mathbf{E}$ and $f \in L_0(X)$.

Proof. Using [13, Lemma 3] we have

$$E(u, f) = D(u, f) + \sum_{x \in X} q(x)u(x)f(x)$$

= $-\sum_{x \in X} [\Delta u(x)]f(x) + \sum_{x \in X} q(x)u(x)f(x)$
= $-\sum_{x \in X} [\Delta_q u(x)]f(x).$

Lemma 3.4. HE is the orthogonal complement of \mathbf{E}_0 in **E**.

Proof. Let $h \in \mathbf{HE}$. Then E(h, f) = 0 for every $f \in L_0(X)$ by Lemma 3.3, so that E(h, v) = 0 for every $v \in \mathbf{E}_0$. Conversely, suppose that $h \in \mathbf{E}$ satisfies E(h, v) = 0 for all $v \in \mathbf{E}_0$. Since $E(h, \varepsilon_x) = -\Delta_q h(x)$ by Lemma 3.3 for every $x \in X$, we see that $h \in \mathbf{HE}$.

By a standard argument, we obtain

Theorem 3.5 (Royden's Decomposition). Every $u \in \mathbf{E}$ is decomposed uniquely in the form u = v + h with $v \in \mathbf{E}_0$ and $h \in \mathbf{HE}$.

Corollary 3.6. $HE = \{0\}$ if and only if $E = E_0$.

We have by Theorem 3.2 and Corollary 3.6

Theorem 3.7. If \mathcal{N} is parabolic, then $\mathbf{E} = \mathbf{E}_0$ and $\mathbf{HE} = \{0\}$.

Theorem 3.8. Assume that $\sum_{x \in X} q(x) < \infty$. Then \mathcal{N} is parabolic if and only if $\mathbf{HE} = \{0\}.$

Proof. Assume that $\mathbf{HE} = \{0\}$, or $\mathbf{E} = \mathbf{E}_0$. Since $E(1) = \sum_{x \in X} q(x) < \infty$, we have $1 \in \mathbf{E} = \mathbf{E}_0 \subset \mathbf{D}_0$. Therefore \mathcal{N} is parabolic by [14, Theorem 3.2]. The converse follows from Theorem 3.7.

We say that T is a normal contraction of the real line if T0 = 0 and $|Ts_1 - Ts_2| \le |s_1 - s_2|$ for every real numbers s_1, s_2 . We define $Tu \in L(X)$ for $u \in L(X)$ by (Tu)(x) = Tu(x) for $x \in X$.

Lemma 3.9. Let T be a normal contraction of the real line. Then $E(Tu) \leq E(u)$. If $u \in \mathbf{E}_0$, then $Tu \in \mathbf{E}_0$. *Proof.* For $u \in L(X)$, we have $D(Tu) \leq D(u)$ by [13, Lemma 2] and $||Tu|| \leq ||u||$, so that

$$E(Tu) = D(Tu) + ||Tu||^2 \le D(u) + ||u||^2 = E(u).$$

Let $u \in \mathbf{E}_0$. Then $Tu \in \mathbf{E}$ by the above. We see by [15, Theorem 4.2] that $Tu \in \mathbf{D}_0$. Therefore, $Tu \in \mathbf{E}_0$ by Theorem 3.2.

Corollary 3.10. If $u \in \mathbf{E}$ (\mathbf{E}_0 resp.) and c is a positive constant, then $\max(u, 0), \min(u, c), |u| \in \mathbf{E}$ (\mathbf{E}_0 resp.). In this case,

$$E(\max(u,0)) \le E(u), \quad E(\min(u,c)) \le E(u), \quad E(|u|) \le E(u).$$

Proposition 3.11. If $u, v \in \mathbf{E}_0$, then $\min(u, v) \in \mathbf{E}_0$.

Proof. Since u+v, $|u-v| \in \mathbf{E}_0$, we see that $\min(u, v) = (u+v-|u-v|)/2 \in \mathbf{E}_0$. \Box

4. q-Superharmonic Functions

For $a \in X$, denote by U(a) the set of neighboring nodes of a and a itself, i.e., $U(a) = \{x \in X ; K(a, y)K(x, y) \neq 0 \text{ for some } y \in Y\}$. For a subset A of X, denote by U(A) the union of U(x) for $x \in A$. We say that $u \in L(X)$ is *q*-superharmonic on a subset A of X if $\Delta_q u(x) \leq 0$ on A. In order to express $\Delta_q u(x)$ in a more familiar form, let us put

$$t(x,z) = \sum_{y \in Y} |K(x,y)K(z,y)| r(y)^{-1} \quad \text{if } z \neq x, \quad t(x,x) = 0,$$
$$t(x) = \sum_{y \in Y} |K(x,y)| r(y)^{-1}.$$

Then t(x, z) = t(z, x) for all $x, z \in X$ and $t(x) = \sum_{z \in X} t(x, z)$. Now we have

$$\Delta_q u(x) = -[t(x) + q(x)]u(x) + \sum_{z \in X} t(x, z)u(z).$$

Lemma 4.1. (1) A non-negative harmonic function is q-superharmonic. Especially, a positive constant is q-superharmonic.

- (2) If u and v are q-superharmonic on A, then both u + v and $\min(u, v)$ are q-superharmonic on A.
- (3) If u is q-harmonic on X, then $-\max(u, 0)$ is q-superharmonic on X.
- (4) If c > 0 is a constant and u is q-superharmonic (q-harmonic resp.) on X, then cu is q-superharmonic (q-harmonic resp.) on X.

Proof. (1) Let h be non-negative and harmonic. Then $\Delta_q h(x) = \Delta h(x) - q(x)h(x) = -q(x)h(x) \le 0$ on X.

(2) If u and v are q-superharmonic, then $\Delta_q(u+v)(x) = \Delta_q u(x) + \Delta_q v(x) \leq 0$. Let $f = \min(u, v)$ and $a \in A$. We may assume that f(a) = u(a). Since $f(x) \leq u(x)$, we have

$$\Delta_q f(a) = \sum_{z \in X} t(z, a) f(z) - [t(a) + q(a)] f(a)$$

$$\leq \sum_{z \in X} t(z, a) u(z) - [t(a) + q(a)] u(a) = \Delta_q u(a) \le 0$$

(3) Let $f = \max(u, 0)$. Then $f \in L^+(X)$. If f(a) = 0, then $\Delta_q f(a) = \sum_{z \in X} t(a, z) f(z) \ge 0$. Let f(a) > 0, i.e., f(a) = u(a). Since $f(x) \ge u(x)$ and u is q-harmonic, we have

$$\Delta_q f(a) = \Delta_q f(a) - \Delta_q u(a) = \sum_{z \in X} t(z, a) [f(z) - u(z)] \ge 0,$$

which means $\Delta_q(-f) \leq 0$.

(4) Our assertion follows from $\Delta_q(cu) = c\Delta_q u$.

For $u \in L(X)$ and $a \in X$, we define q-Poisson modification $P_a u \in L(X)$ as

$$P_a u(a) = \frac{1}{t(a) + q(a)} \sum_{z \in X} t(z, a) u(z), \quad P_a u(x) = u(x) \quad \text{for } x \neq a.$$

Lemma 4.2. If u is q-superharmonic on X, then $P_a u$ is q-superharmonic on X and q-harmonic at a and $P_a u \leq u$ on X.

Proof. Since u is q-superharmonic at x, we have $P_a u(x) \leq u(x)$. In fact, in case $x \neq a$ our assertion is obvious. In case x = a, $\Delta_q u(a) \leq 0$ implies $\sum_{z \in X} t(z, a)u(z) \leq [q(a) + t(a)]u(a)$, so that $P_a u(a) \leq u(a)$. The proof is given in the following three cases: (1) $x \notin U(a)$, (2) x = a, and (3) $x \in U(a) \setminus \{a\}$.

- (1). For $x \notin U(a)$, it is obvious that $\Delta_q P_a u(x) = \Delta_q u(x) \leq 0$.
- (2). In case x = a, we have

$$\Delta_q P_a u(a) = -[t(a) + q(a)] P_a u(a) + \sum_{z \in X} t(z, a) P_a u(z)$$
$$= -\sum_{z \in X} t(z, a) u(z) + \sum_{z \in X} t(z, a) u(z) = 0.$$

(3). In case $x \in U(a) \setminus \{a\}$, we have

$$\Delta_q P_a u(x) = -[t(x) + q(x)] P_a u(x) + \sum_{z \in X} t(x, z) P_a u(z)$$

$$\leq -[t(x) + q(x)] u(x) + \sum_{z \in X} t(x, z) u(z) = \Delta_q u(x) \leq 0.$$

Lemma 4.3 (Local Minimum Principle). Let $u \in L(X)$ and $a \in X$. Assume that u is q-superharmonic at a and $u(z) \ge 0$ for all $z \in U(a) \setminus \{a\}$. Then $u(a) \ge 0$. Moreover, u(a) = 0 occurs only when u(z) = 0 for all $z \in U(a) \setminus \{a\}$.

Proof. Since $\Delta_q u(a) \leq 0$ and $u(z) \geq 0$ for $z \in U(a) \setminus \{a\}$, we have

$$[q(a) + t(a)]u(a) \ge \sum_{z \in U(a)} t(a, z)u(z) \ge 0,$$

so that $u(a) \ge 0$. If u(a) = 0, then u(z) = 0 for $z \in U(a) \setminus \{a\}$ by the above inequality.

Corollary 4.4. Let u be q-superharmonic on X. If $u(x) \ge 0$ on X and u(a) = 0 for some $a \in X$, then u(x) = 0 on X.

We have the following minimum principle:

Theorem 4.5 (Minimum Principle). Let A be a finite subset of X and let $u \in L(X)$ be q-superharmonic on A. If $u(x) \ge 0$ on $X \setminus A$, then $u(x) \ge 0$ on X.

Proof. Suppose that $c := \min\{u(x); x \in A\} < 0$ and put $B = \{x \in X; u(x) = c\}$. Lemma 4.1 implies that u - c is q-superharmonic on A. Since $u - c \ge 0$ on X and u - c = 0 on B, the local minimum principle implies $U(x) \subset B$ for all $x \in B$, so that $U(B) \subset B$. Since X is connected, we have B = X, which is a contradiction. \Box

Corollary 4.6. Let A be a finite subset of X. If u is q-superharmonic on A and v is q-harmonic on A and if $u(x) \ge v(x)$ on $X \setminus A$, then $u(x) \ge v(x)$ on X.

Proposition 4.7 (Harnack's Inequality). Let $a, b \in X$. There exists a positive constant α depending only on a and b such that $\alpha^{-1}u(b) \leq u(a) \leq \alpha u(b)$ for all non-negative q-superharmonic function u on X.

Proof. Let $x_0 \in X$ and $x_1 \in U(x_0) \setminus \{x_0\}$. Since $u(x) \ge 0$ and $\Delta_q u(x_0) \le 0$, we have

$$t(x_1, x_0)u(x_1) \le \sum_{x \in X} t(x, x_0)u(x) \le [t(x_0) + q(x_0)]u(x_0),$$

or

$$u(x_1) \le \frac{t(x_0) + q(x_0)}{t(x_1, x_0)} u(x_0).$$

If $x_2 \in U(x_1) \setminus \{x_1\}$, then

$$u(x_2) \le \frac{t(x_1) + q(x_1)}{t(x_2, x_1)} u(x_1).$$

Repeat this argument to obtain the result.

The following result was proved in Anandam [1, Theorem 2.4.9] in case \mathcal{N} is a finite network.

Lemma 4.8. Let \mathcal{P} be a Perron family. Namely \mathcal{P} is a non-empty family of q-superharmonic functions on X such that

- (1) $\{u(x); u \in \mathcal{P}\}$ is bounded from below for each $x \in X$,
- (2) $\min(u, v) \in \mathcal{P}$ whenever $u, v \in \mathcal{P}$,
- (3) $P_a u \in \mathcal{P}$ for any $u \in \mathcal{P}$ and $a \in X$.

Then $u^*(x) = \inf\{u(x); u \in \mathcal{P}\}\$ is q-harmonic on X.

Proof. By (1), $u^* \in L(X)$. Let $a \in X$. Since U(a) is a finite set, in view of (2), we can choose $u_n \in \mathcal{P}$ such that $u_n(z)$ converges decreasingly to $u^*(z)$ for all $z \in U(a)$. Put $v_n = P_a u_n$. Then $v_n \in \mathcal{P}$ and $u^* \leq v_n \leq u_n$. Hence $v_n(z) \to u^*(z)$ for all $z \in U(a)$. Since v_n is q-harmonic at a, so is u^* .

Denote by **SH** the set of all q-superharmonic functions on X and let

$$\mathbf{H}^+ = \mathbf{H} \cap L^+(X), \quad \mathbf{HB} = \{ u \in \mathbf{H} ; \sup\{|u(x)| ; x \in X\} < \infty \}.$$

Theorem 4.9. $H^+ = \{0\}$ implies $HB = \{0\}$.

 \square

Proof. Let $u \in \mathbf{HB}$ and consider $\mathcal{P} = \{v \in \mathbf{SH} ; v \ge u^+ := \max(u, 0)\}$. Since u is bounded, there exists c > 0 such that $|u| \le c$. Note that $c \in \mathcal{P} \neq \emptyset$. Lemma 4.8 implies $\min(v_1, v_2) \in \mathcal{P}$ for $v_1, v_2 \in \mathcal{P}$. If $v \in \mathcal{P}$ and $a \in X$, then $P_a v - u^+ = v - u^+ \ge 0$ on $X \setminus \{a\}$ and $P_a v - u^+$ is q-superharmonic at a by Lemmas 4.1 and 4.2. By the local minimum principle, $P_a v(a) - u^+(a) \ge 0$, which implies $P_a v \in \mathcal{P}$. Lemma 4.8 shows that $h^+(x) := \inf\{v(x); v \in \mathcal{P}\}$ is q-harmonic on X and $h^+ \ge u^+ \ge 0$, so that $h^+ \in \mathbf{H}^+ = \{0\}$, hence $u^+ = 0$. Similarly, $u^- := \max(-u, 0) = 0$, so that u = 0.

This result was shown in [9] for a non-linear case.

5. The q-Green Function

Lemma 3.1 shows that $u \mapsto u(a)$ is a continuous linear mapping on **E** for each $a \in X$. By F. Riesz's theorem, there exists a reproducing kernel φ_a of **E**, i.e., $\varphi_a \in \mathbf{E}$ and $E(\varphi_a, u) = u(a)$ for every $u \in \mathbf{E}$. Let $\varphi_a = g_a + \theta_a$ be Royden's decomposition, i.e., $g_a \in \mathbf{E}_0$ and $\theta_a \in \mathbf{HE}$. We call g_a the *q*-Green function of \mathcal{N} with pole at *a*. By the uniqueness of the reproducing kernel and its Royden's decomposition, the *q*-Green function g_a exists uniquely. Note that in case $\mathbf{E} = \mathbf{E}_0$, $g_a = \varphi_a$ is the *q*-Green function of \mathcal{N} with pole at *a*.

Theorem 5.1. $E(g_a, u) = u(a)$ for all $u \in \mathbf{E}_0$ and $\Delta_q g_a(x) = -\varepsilon_a(x)$ on X.

Proof. Let $u \in \mathbf{E}_0$. Then $E(\theta_a, u) = 0$ by Lemma 3.4, so that

$$E(g_a, u) = E(g_a + \theta_a, u) = E(\varphi_a, u) = u(a).$$

Since $\varepsilon_x \in L_0(X)$ for every $x \in X$, we see by Lemma 3.3 that

$$\varepsilon_x(a) = E(g_a, \varepsilon_x) = -\Delta_q g_a(x).$$

We do not use the notation \tilde{g}_a used in [17]. In what follows, every statement related to the pair (g_a, \mathbf{E}_0) remains true even in case $\mathbf{E}_0 = \mathbf{E}$. Since the reasoning related to (g_a, \mathbf{E}_0) in case $\mathbf{E} \neq \mathbf{E}_0$ holds in the case $\mathbf{E} = \mathbf{E}_0$, we do not discern these cases.

Corollary 5.2. $g_a(a) = E(g_a) > 0.$

Lemma 5.3. The function $u^* = g_a/g_a(a)$ is the unique optimal solution to the extremum problem: Minimize E(u) subject to $u \in \mathbf{E}_0$ and u(a) = 1.

Proof. Clearly, u^* is a feasible solution to our extremum problem. For any $u \in \mathbf{E}_0$ with u(a) = 1, we have

$$E(u^*) = \frac{E(g_a)}{g_a(a)^2} = \frac{1}{g_a(a)}, \quad 1 = E(g_a, u) \le E(g_a)^{1/2} E(u)^{1/2}.$$

so that $E(u) \ge 1/E(g_a) = E(u^*)$. To show the uniqueness of the optimal solution, let u_1 and u_2 be optimal solutions to our extremum problem. Then

$$\alpha := E(u_1) = E(u_2) \le E((u_1 + u_2)/2)$$

$$\le E((u_1 + u_2)/2) + E((u_1 - u_2)/2) = (E(u_1) + E(u_2))/2 = \alpha,$$

so that $E(u_1 - u_2) = 0$. Hence $u_1 = u_2$.

Theorem 5.4. (1) $g_a(b) = g_b(a)$ for every $a, b \in X$. (2) $0 < g_a(x) \le g_a(a)$ on X.

Proof. (1) $g_a(b) = E(g_b, g_a) = E(g_a, g_b) = g_b(a).$

(2) Let $u^* = g_a/g_a(a)$. Since $E(\max(u^*, 0)) \leq E(u^*)$ and $E(\min(u^*, 1)) \leq E(u^*)$ by Corollary 3.10, we have $u^* = \max(u^*, 0) = \min(u^*, 1)$ by Lemma 5.3, and hence $0 \leq u^* \leq 1$. We see $u^* > 0$ by Corollary 4.4.

Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} . There exists a unique *q*-Green function $g_a^{(n)}$ of \mathcal{N}_n with pole at $a \in X_n$. This function is defined as the reproducing kernel of the linear mapping $u \in \mathbf{E}(X_n) \mapsto u(a)$, i.e., $E(u, g_a^{(n)}) = u(a)$ for $u \in$ $\mathbf{E}(X_n)$, where $\mathbf{E}(X_n) = \{u \in L(X); u = 0 \text{ on } X \setminus X_n\}$ is a Hilbert space with respect to the inner product $E(\cdot, \cdot)$. Needless to say, $g_a^{(n)}$ is the unique function of linear equation $\Delta_q g_a^{(n)} = -\varepsilon_a$ on X_n with the boundary condition $g_a^{(n)} = 0$ on $X \setminus X_n$. We have

Theorem 5.5. (1) $g_a^{(n)}(b) = g_b^{(n)}(a)$ for every $a, b \in X_n$. (2) $0 < g_a^{(n)}(x) \le g_a^{(n)}(a)$ for $a, x \in X_n$. (3) $g_a^{(n)} \le g_a^{(n+1)} \le g_a$ on X and $\{g_a^{(n)}\}$ converges pointwise to g_a for $a \in X_n$. (4) $E(g_a^{(n)} - g_a) \to 0$ as $n \to \infty$ for $a \in X$.

Proof. (1) and (2) are shown by arguments similar to those of Theorem 5.4. Put $u_n = g_a^{(n+1)} - g_a^{(n)}$ and $v_n = g_a - g_a^{(n)}$. Then both u_n and v_n are q-harmonic on X_n and are non-negative on $X \setminus X_n$. We see by Theorem 4.5 that u_n and v_n are non-negative on X. This shows the first half of (3).

For m > n and for $a \in X_n$, we have

$$E(g_a^{(n)}, g_a^{(m)}) = g_a^{(m)}(a) = E(g_a^{(m)}) \le g_a(a),$$

$$E(g_a^{(m)} - g_a^{(n)}) = E(g_a^{(m)}) - 2E(g_a^{(m)}, g_a^{(n)}) + E(g_a^{(n)}) = E(g_a^{(n)}) - E(g_a^{(m)}).$$

It follows that $\{g_a^{(n)}\}_n$ is a Cauchy sequence in the Hilbert space \mathbf{E}_0 . There exists $f \in \mathbf{E}_0$ such that $E(g_a^{(n)} - f) \to 0$ as $n \to \infty$. Since $\{g_a^{(n)}\}_n$ converges pointwise to f, we have $\Delta_q f(x) = -\varepsilon_a(x)$ on X. Thus $f = g_a$. This shows (4) and the last half of (3).

Example 5.6. Let \mathcal{G} be the linear graph, $X = \{x_n; n \ge 0\}$, $Y = \{y_n; n \ge 1\}$, $K(x_n, y_{n+1}) = 1$, $K(x_{n+1}, y_{n+1}) = -1$ for $n \ge 0$, and K(x, y) = 0 for any other pair (x, y). Let $r_n = r(y_n)$ and assume that $R_0 := \sum_{j=1}^{\infty} r_j < \infty$. Let $q(x) = \varepsilon_{x_0}(x)$ and $\mathcal{N} = \{\mathcal{G}, r, q\}$. The q-Green function of \mathcal{N} with pole at x_m $(m \ge 0)$ is given by

$$g_{x_m}(x_n) = \frac{(1+\rho_n)R_m}{1+R_0} \quad \text{if } 0 \le n \le m,$$

$$g_{x_m}(x_n) = \frac{(1+\rho_m)R_n}{1+R_0} \quad \text{if } n \ge m,$$

where $R_n = \sum_{j=n+1}^{\infty} r_j$ and $\rho_n = R_0 - R_n$.

Proof. We prove only the case $m \ge 1$; the case m = 0 can be shown by a similar argument. Let $u_n = g_{x_m}(x_n)$ and $w_n = r_n^{-1}(u_n - u_{n-1})$. Then $\Delta_q g_{x_m}(x) = -\varepsilon_{x_m}(x)$ on X implies

$$w_1 - u_0 = 0$$
, $w_{n+1} - w_n = 0$ for $n \neq m$, $w_{m+1} - w_m = -1$

We see that $w_n = u_0$ for $1 \le n \le m$ and $w_n = u_0 - 1$ for $n \ge m + 1$, so that

$$u_n = u_0 + \rho_n u_0 \quad \text{for } 0 \le n \le m,$$

$$u_n = (u_0 - 1)(\rho_n - \rho_m) + u_m \quad \text{for } n \ge m.$$

Since \mathcal{N} is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that $u_n \to 0$ as $n \to \infty$, so that $(u_0 - 1)R_m + u_m = 0$. Therefore $u_0 = R_m/(1 + R_0)$.

Example 5.7. Let \mathcal{G} be the homogeneous tree of order 3. We assume that r = 1 on Y and q = 1 on X. Denote by $\rho(a, b)$ the geodesic metric between two nodes a and b, i.e., the number of arcs of the path between a and b. Let $C(a; n) = \{x \in X; \rho(a, x) = n\}$. Then the q-Green function of \mathcal{N} with pole at a is given by

$$g_a(x) = \frac{\alpha^n}{4 - 3\alpha}$$
 for $x \in C(a; n)$, $\alpha = 1 - \frac{1}{\sqrt{2}}$

Proof. Fix a node $a \in X$. By the symmetry, $g_a(x)$ depends only on $\rho(a, x)$. Define $u_n = g_a(x)$ for $\rho(x, a) = n$. The equation $\Delta_q g_a(x) = -\varepsilon_a(x)$ on X can be written as follows:

$$3u_1 - 4u_0 = -1$$
, $2u_{n+1} - 4u_n + u_{n-1} = 0$ for $n \ge 1$

The characteristic equation $2t^2 - 4t + 1 = 0$ gives $t = 1 \pm 1/\sqrt{2}$. Since \mathcal{N} is hyperbolic, we have that $u_n \to 0$ as $n \to \infty$, so that $u_n = A\alpha^n$ with $\alpha = 1 - 1/\sqrt{2}$ for $n \ge 0$. The condition $3u_1 - 4u_0 = -1$ shows $A = 1/(4 - 3\alpha)$.

6. A Fundamental Existence Theorem

The following theorem plays a fundamental role for the study of q-Green potentials in the succeeding sections.

Theorem 6.1. Let $f \in \mathbf{E}_0$ be non-negative and A a nonempty proper subset of X. Then there exists $u^* \in \mathbf{E}_0$ such that

(1) $\Delta_q u^*(x) \leq 0 \text{ on } X,$ (2) $\Delta_q u^*(x) = 0 \text{ on } X \setminus A,$ (3) $u^*(x) \geq f(x) \text{ on } A,$ (4) $u^*(x) = f(x) \text{ if } x \in A \text{ and } \Delta_q u^*(x) < 0.$

Proof. Let us consider the following extremum problem:

$$\alpha = \inf\{E(u) - 2E(u, f); u \in \mathcal{F}\},\$$

where $\mathcal{F} = \{ u \in \mathbf{E}_0 ; \Delta_q u \leq 0, \Delta_q u(x) = 0 \text{ on } X \setminus A \}$. Note that $\alpha < \infty$, since $g_x \in \mathcal{F}$ for $x \in A$. We see that α is finite by the inequality

$$E(u) - 2E(u, f) = E(u - f) - E(f) \ge -E(f).$$

Let $\{u_n\}_n$ be a minimizing sequence. Then

$$\alpha \leq E((u_n + u_m)/2) - 2E((u_n + u_m)/2, f)$$

$$\leq E((u_n + u_m)/2) - 2E((u_n + u_m)/2, f) + E((u_n - u_m)/2)$$

$$= [E(u_n) - 2E(u_n, f)]/2 + [E(u_m) - 2E(u_m, f)]/2 \to \alpha$$

as $n, m \to \infty$, so that $E(u_n - u_m) \to 0$ as $n, m \to \infty$. Since \mathbf{E}_0 is a Hilbert space, we see that there exists $u^* \in \mathbf{E}_0$ such that $E(u_n - u^*) \to 0$ as $n \to \infty$. Since $\{u_n\}_n$ converges pointwise to u^* , we see that $u^* \in \mathcal{F}$, which shows (1) and (2). We prove (3). Noting that

$$|E(u_n, f) - E(u^*, f)| = |E(u_n - u^*, f)| \le E(u_n - u^*)^{1/2} E(f)^{1/2} \to 0$$

as $n \to \infty$, we have $\alpha = E(u^*) - 2E(u^*, f)$. For $v \in \mathcal{F}$ and t > 0, we have $u^* + tv \in \mathcal{F}$, so that

$$\begin{aligned} \alpha &\leq E(u^* + tv) - 2E(u^* + tv, f) \\ &= E(u^*) - 2E(u^*, f) + 2t[E(u^*, v) - E(v, f)] + t^2 E(v) \\ &= \alpha + 2t[E(u^*, v) - E(v, f)] + t^2 E(v). \end{aligned}$$

Therefore $E(u^*, v) - E(v, f) \ge 0$. By taking $v = g_x$ for $x \in A$ in this inequality, we obtain $u^*(x) \ge f(x)$ on A.

To prove (4), assume $\Delta_q u^*(a) < 0$ for $a \in A$. For any t > 0 with $\Delta_q u^*(a) + t < 0$, we see that $u^* - tg_a \in \mathbf{E}_0$ and $\Delta_q (u^* - tg_a)(x) = \Delta_q u^*(x) + t\varepsilon_a(x) \leq 0$, so that $u^* - tg_a \in \mathcal{F}$. We have

$$\alpha \le E(u^* - tg_a) - 2E(u^* - tg_a, f) = \alpha - 2t[E(u^*, g_a) - E(g_a, f)] + t^2 E(g_a),$$

so that $E(u^*, g_a) - E(f, g_a) \leq 0$. Thus $u^*(a) \leq f(a)$. Hence $u^*(a) = f(a)$ by (3).

7. q-GREEN POTENTIALS

We define the q-Green potential $G\mu$ of $\mu \in L^+(X)$ and the mutual q-Green potential energy $G(\mu, \nu)$ of $\mu, \nu \in L^+(X)$ by

$$G\mu(x) = \sum_{z \in X} g_z(x)\mu(z), \quad G(\mu, \nu) = \sum_{x \in X} [G\mu(x)]\nu(x).$$

We call $G(\mu, \mu)$ the q-Green potential energy of μ . Let us put

$$\mathcal{M} = \{ \mu \in L^+(X) ; \, G\mu \in L(X) \}, \quad \mathcal{E} = \{ \mu \in L^+(X) ; \, G(\mu, \mu) < \infty \}.$$

We see easily

Lemma 7.1. $\Delta_q G\mu(x) = -\mu(x)$ on X for every $\mu \in \mathcal{M}$.

By Harnack's inequality, we note that $G\mu(a) < \infty$ for some $a \in X$ implies $G\mu(x) < \infty$ for any $x \in X$, so that $\mathcal{E} \subset \mathcal{M}$. We shall prove a discrete analogy of the Riesz decomposition theorem.

Theorem 7.2 (Riesz's Decomposition). Every non-negative q-superharmonic function u can be decomposed uniquely in the form $u = G\mu + h$, where $\mu \in \mathcal{M}$ and h is non-negative and q-harmonic on X. In this decomposition, $\mu = -\Delta_q u$ and h is the greatest q-harmonic minorant of u.

Proof. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and let $g_a^{(n)}$ be the q-Green function of \mathcal{N}_n with pole at a. Put $\mu = -\Delta_q u$,

$$u_n(x) = \sum_{z \in X_n} g_z^{(n)}(x)\mu(z), \quad h_n = u - u_n.$$

Then $\Delta_q u_n = -\mu$ on X_n and $u_n = 0$ on $X \setminus X_n$, so that h_n is q-harmonic on X_n and $h_n \ge 0$ on $X \setminus X_n$. Thus $h_n \ge 0$ on X by the minimum principle. Since $g_z^{(n)} \le g_z^{(n+1)}$ on X by Theorem 5.5, we have $u_n \le u_{n+1}$ and $h_n \ge h_{n+1}$ on X. Let hbe the pointwise limit of $\{h_n\}_n$. Then $h \in \mathbf{H}$. Since $\{u_n\}_n$ converges pointwise to $G\mu$, we have $u = G\mu + h$. The uniqueness of the decomposition is clear by Lemma 7.1. To prove the last assertion, let $h' \in \mathbf{H}$ and $0 \le h' \le u$ on X. Since $h_n - h'$ is q-harmonic on X_n and $h_n - h' = u - h' \ge 0$ on $X \setminus X_n$, we see by the minimum principle that $h_n \ge h'$ on X, and hence $h \ge h'$ on X.

By this theorem, we obtain the following.

Theorem 7.3. A non-negative q-superharmonic function u is a q-Green potential if and only if the greatest q-harmonic minorant of u is equal to zero.

Corollary 7.4. Let u be non-negative and q-superharmonic. If there exists $\mu \in \mathcal{M}$ such that $u(x) \leq G\mu(x)$ on X, then u is a q-Green potential.

8. q-Potentials with Finite Energy

We begin with the study of q-potentials with finite energy.

Lemma 8.1. If $\mu \in \mathcal{E}$, then $G\mu \in \mathbf{E}_0$ and $E(G\mu) = G(\mu, \mu)$.

Proof. First let $\mu, \nu \in L_0(X)$. Since $g_x \in \mathbf{E}_0$, we have $G\mu, G\nu \in \mathbf{E}_0$. We obtain

$$E(G\mu, G\nu) = \sum_{z \in X} E(g_z, G\nu)\mu(z) = \sum_{z \in X} [G\nu(z)]\mu(z) = G(\mu, \nu).$$

Let $\mu \in \mathcal{E}$. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and put $\mu_n = \mu \varepsilon_{X_n}$ and $u_n = G\mu_n$. Then $u_n \in \mathbf{E}_0$. For m > n we have

$$E(u_n, u_m) = G(\mu_n, \mu_m) \ge G(\mu_n, \mu_n) = E(u_n),$$

$$E(u_n - u_m) = E(u_n) - 2E(u_n, u_m) + E(u_m) \le E(u_m) - E(u_n).$$

Since $E(u_n) = G(\mu_n, \mu_n) \leq G(\mu, \mu) < \infty$, we have that $\{u_n\}_n$ is a Cauchy sequence in \mathbf{E}_0 . Thus there exists $v \in \mathbf{E}_0$ such that $E(u_n - v) \to 0$ as $n \to \infty$. We have

$$G(\mu,\mu) \le \liminf_{n\to\infty} G(\mu_n,\mu_n) = \lim_{n\to\infty} E(u_n) \le G(\mu,\mu)$$

Therefore, $E(v) = G(\mu, \mu)$. Since $\{u_n\}_n$ converges pointwise to $G\mu$, we conclude that $G\mu = v \in \mathbf{E}_0$.

Lemma 8.2. Let $\mu \in \mathcal{E}$. Then $E(G\mu, u) = \sum_{x \in X} u(x)\mu(x)$ for every $u \in \mathbf{E}_0 \cap L^+(X)$.

Proof. Since $E(g_x, u) = u(x)$ for $u \in \mathbf{E}_0$, our assertion is clear in case $\mu \in L_0(X)$ by Lemma 3.3 and Lemma 7.1. Let μ_n be the same as in the proof of the above lemma. Then $E(G\mu_n, u) = \sum_{x \in X} u(x)\mu_n(x)$. Since $E(G\mu - G\mu_n) \to 0$ as $n \to \infty$, we have $E(G\mu_n, u) \to E(G\mu, u)$ as $n \to \infty$. Since $u \in L^+(X)$, we see that

$$E(G\mu, u) = \lim_{n \to \infty} E(G\mu_n, u) = \lim_{n \to \infty} \sum_{x \in X} u(x)\mu_n(x)$$
$$= \lim_{n \to \infty} \sum_{x \in X_n} u(x)\mu(x) = \sum_{x \in X} u(x)\mu(x).$$

Lemma 8.3. If $u \in \mathbf{E}_0$ is q-superharmonic on X, then $u \in L^+(X)$.

Proof. Let $a \in X$ and $g_a^{(n)}$ be the q-Green function of \mathcal{N}_n . We may assume that $a \in X_n$ for large n. Since $E(g_a - g_a^{(n)}) \to 0$ as $n \to \infty$ and $u \in \mathbf{E}_0$, we have $E(u, g_a^{(n)} - g_a) \to 0$ as $n \to \infty$. By Lemma 3.2,

$$E(u, g_a^{(n)}) = -\sum_{z \in X} [\Delta_q u(z)] g_a^{(n)}(z) \ge 0,$$

so that $u(a) = E(u, g_a) = \lim_{n \to \infty} E(u, g_a^{(n)}) \ge 0.$

Theorem 8.4. $\{G\mu; \mu \in \mathcal{E}\} = \{u \in \mathbf{E}_0; \Delta_q u(x) \le 0\}.$

Proof. Lemmas 7.1 and 8.1 shows that $\Delta_q G\mu \leq 0$ and $G\mu \in \mathbf{E}_0$ for $\mu \in \mathcal{E}$. To show the converse, let $u \in \mathbf{E}_0$ satisfy $\Delta_q u(x) \leq 0$ on X. Lemma 8.3 shows $u \in L^+(X)$. By Riesz's decomposition, there exist $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^+$ such that $u = G\mu + h$. Consider an exhaustion $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ of \mathcal{N} and put $\mu_n = \mu \varepsilon_{X_n}$ and $u_n = G\mu_n$. Since $G\mu \leq u$, we have

$$E(u_n) = G(\mu_n, \mu_n) \le G(\mu, \mu_n) \le \sum_{x \in X} u(x)\mu_n(x)$$
$$= E(G\mu_n, u) \le E(u_n)^{1/2} E(u)^{1/2}$$

by Lemma 8.2, so that $G(\mu_n, \mu_n) \leq E(u) < \infty$. Therefore

$$G(\mu,\mu) \le \liminf_{n \to \infty} G(\mu_n,\mu_n) \le E(u),$$

hence $\mu \in \mathcal{E}$ and $G\mu \in \mathbf{E}_0$ by Lemma 8.1. It follows from Royden's decomposition that $u = G\mu$.

Let $\mathbf{HE}^+ = \mathbf{HE} \cap L^+(X)$.

Theorem 8.5. If $u \in \mathbf{E}$ is non-negative and q-superharmonic, then u is decomposed uniquely in the form $u = G\mu + h$ with $\mu \in \mathcal{E}$ and $h \in \mathbf{HE}^+$.

Proof. Royden's decomposition shows u = v + h with $v \in \mathbf{E}_0$ and $h \in \mathbf{HE}$. Using $\Delta_q v = \Delta_q u \leq 0$, we have $v = G\mu$ for some $\mu \in \mathcal{E}$ by Theorem 8.4. Riesz's decomposition shows $u = G\mu' + h'$ for some $\mu' \in \mathcal{M}$ and $h' \in \mathbf{H}^+$. Note that $\mu' = -\Delta_q u = -\Delta_q v = \mu$, so that $h = h' \geq 0$.

Lemma 8.6. Let $\mu \in \mathcal{M}$ and $\nu \in \mathcal{E}$. If $G\mu \leq G\nu$ on X, then $\mu \in \mathcal{E}$.

Proof. We have

$$\begin{aligned} G(\mu,\mu) &= \sum_{x \in X} [G\mu(x)]\mu(x) \leq \sum_{x \in X} [G\nu(x)]\mu(x) = \sum_{z \in X} [G\mu(z)]\nu(z) \\ &\leq \sum_{z \in X} [G\nu(z)]\nu(z) = G(\nu,\nu) < \infty. \end{aligned}$$

Denote by $S\mu$ the support of $\mu \in L(X)$, i.e., $S\mu = \{x \in X ; \mu(x) \neq 0\}$.

Proposition 8.7. Let $\mu, \nu \in \mathcal{E}$. If $G\mu \leq G\nu$ on $S\mu$, then the same inequality holds on X.

Proof. Let $u = \min(G\mu, G\nu)$. Since $G\mu$ and $G\nu$ are q-superharmonic, so is u by Lemma 4.1. Proposition 3.11 implies $u \in \mathbf{E}_0$, so that there exists $\lambda \in \mathcal{E}$ such that $u = G\lambda$ by Theorem 8.4. Note that $u(x) = G\mu(x)$ on $S\mu$ by our assumption. Lemma 8.2 shows

$$E(G\mu, G\mu - u) = \sum_{x \in X} (G\mu(x) - u(x))\mu(x) = 0.$$

Therefore

$$E(G\mu - u) = E(G\mu, G\mu - u) - E(G\lambda, G\mu - u)$$
$$= -\sum_{x \in X} (G\mu(x) - u(x))\lambda(x) \le 0,$$

and hence $E(G\mu - u) = 0$. Thus $u = G\mu$ and $G\mu \leq G\nu$ on X.

9. Potential Theoretic Properties of q-Green Potentials

Now we show some fundamental properties of q-Green potential which are wellknown as the domination principle, the equilibrium principle and the balayage principle.

Proposition 9.1. Let $\mu_1, \mu_2 \in \mathcal{M}$. Then there exists $\nu \in \mathcal{M}$ such that $G\nu = \min(G\mu_1, G\mu_1)$.

Proof. Let $u = \min(G\mu_1, G\mu_2)$. Then u is non-negative and q-superharmonic by Lemma 4.1. Our assertion follows from Corollary 7.4.

By Proposition 9.1 and Lemma 8.6, we have

Corollary 9.2. Let $\mu \in \mathcal{M}$ and $\nu \in \mathcal{E}$. Then there exists $\lambda \in \mathcal{E}$ such that $G\lambda = \min(G\mu, G\nu)$.

Proposition 9.3 (Domination Principle). Let $\nu \in \mathcal{E}$ and $\mu \in \mathcal{M}$. If $G\mu(x) \leq G\nu(x)$ on $S\mu$, then the same inequality holds on X.

Proof. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and let $\mu_n = \mu \varepsilon_{X_n}$. Then $S\mu_n \subset S\mu$ and $\mu_n \in \mathcal{E}$. We have $G\mu_n(x) \leq G\nu(x)$ on $S\mu_n$. By Proposition 8.7, the same inequality holds on X. Since $G\mu_n(x) \to G\mu(x)$ as $n \to \infty$, we conclude that $G\mu(x) \leq G\nu(x)$ on X.

Theorem 9.4. Let u be non-negative and q-superharmonic on X and $\mu \in \mathcal{M}$. If $G\mu(x) \leq u(x)$ on $S\mu$, then the same inequality holds on X.

Proof. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and let $\mu_n = \mu \varepsilon_{X_n}$. Then $S\mu_n \subset S\mu$ and $\mu_n \in \mathcal{E}$. Let $u_n = \min(G\mu_n, u)$. Since $u_n \leq G\mu_n$, we see by Corollary 7.4 that there exists $\lambda_n \in \mathcal{E}$ such that $G\lambda_n = u_n$. For $x \in S\mu_n$, we have $G\lambda_n(x) = \min(G\mu_n(x), u(x)) = G\mu_n(x)$, so that $G\mu_n(x) \leq G\lambda_n(x) \leq u(x)$ on X by Proposition 8.7. Since $G\mu_n(x) \to G\mu(x)$ as $n \to \infty$, we conclude that $G\mu(x) \leq u(x)$ on X.

Proposition 9.5 (Equilibrium Principle). For a nonempty finite subset A of X, there exists $\xi_A \in L^+(X)$ such that $S\xi_A \subset A$, $G\xi_A(x) = 1$ on A, and $G\xi_A(x) \leq 1$ on X.

Proof. Take $f = \varepsilon_A \in \mathbf{E}_0$ and let u^* be the function obtained in Theorem 6.1. Theorem 8.4 shows $u^* = G\xi_A$ for some $\xi_A \in \mathcal{E}$. Note that $\Delta_q u^* = -\xi_A$ by Lemma 7.1. We see that $G\xi_A(x) \ge 1$ on A and $S\xi_A \subset A$. Since $G\xi_A(x) = 1$ on $S\xi_A$, Theorem 9.4 shows that $G\xi_A(x) \le 1$ on X.

Proposition 9.6 (Balayage Principle 1). Let $\mu \in \mathcal{E}$ and A a nonempty proper subset of X. Then there exists $\mu_A \in L^+(X)$ such that $S\mu_A \subset A$, $G\mu_A(x) = G\mu(x)$ on A, and $G\mu_A(x) \leq G\mu(x)$ on X.

Proof. Since $G\mu \in \mathbf{E}_0$ by Lemma 8.1, we take $f = G\mu$ in Theorem 6.1 and obtain u^* . Theorem 8.4 shows $u^* = G\mu_A$ for some $\mu_A \in \mathcal{E}$. We see that $S\mu_A \subset A$, $G\mu_A(x) \ge G\mu(x)$ on A, and $G\mu_A(x) = G\mu(x)$ on $S\mu_A$. Proposition 9.3 shows that $G\mu_A(x) \le G\mu(x)$ on X.

Proposition 9.7 (Balayage Principle 2). Let $\mu \in \mathcal{M}$ and A a finite subset of X. If $\mu(X) := \sum_{x \in X} \mu(x) < \infty$, then there exists $\mu_A \in \mathcal{M}$ such that $S\mu_A \subset A$, $G\mu_A(x) = G\mu(x)$ on A, and $G\mu_A(x) \leq G\mu(x)$ on X.

Proof. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and let $\mu_n = \mu \varepsilon_{X_n}$. Then $\mu_n \in \mathcal{E}$, so that by Proposition 9.6 there exists $\mu_n^* \in L^+(X)$ such that $S\mu_n^* \subset A$, $G\mu_n^*(x) = G\mu_n(x)$ on A, and $G\mu_n^*(x) \leq G\mu_n(x)$ on X. Let $\xi_A \in L^+(X)$ be the function in Proposition 9.5, i.e., $S\xi_A \subset A$, $G\xi_A(x) = 1$ on A, and $G\xi_A(x) \leq 1$ on X. We have

$$\mu_n^*(A) := \sum_{x \in A} \mu_n^*(x) = \sum_{x \in A} [G\xi_A(x)]\mu_n^*(x) = G(\xi_A, \mu_n^*)$$
$$= \sum_{x \in X} [G\mu_n^*(x)]\xi_A(x) \le \sum_{x \in X} [G\mu_n(x)]\xi_A(x)$$
$$\le \sum_{x \in X} [G\mu(x)]\xi_A(x) = \sum_{x \in X} [G\xi_A(x)]\mu(x) \le \mu(X) < \infty$$

Taking a subsequence if necessary, we may assume that $\{\mu_n^*\}_n$ converges pointwise to μ^* . Since $G\mu_n^*$ ($G\mu_n$ resp.) converges pointwise to $G\mu^*$ ($G\mu$ resp.), we see that $S\mu^* \subset A$, $G\mu^*(x) = G\mu(x)$ on A, and $G\mu^*(x) \leq G\mu(x)$ on X. We may take $\mu_A = \mu^*$.

10. The q-Elliptic Measure of the Ideal Boundary of \mathcal{N}

We introduce the discrete version of q-elliptic measure in [11, Page 286]. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and let ω_n be the unique solution of the following boundary problem.

$$\Delta_q u = 0$$
 on X_n and $u = 1$ on $X \setminus X_n$.

Remark 10.1. The existence and uniqueness follows from the fact that our problem is reduced to a system of linear equations in a form: $A\mathbf{u} = \mathbf{b}$, where A is $m \times m$ -matrix and $\mathbf{u}, \mathbf{b} \in \mathbb{R}^m$ with m the number of nodes in X_n . Our assertion follows from det $A \neq 0$.

Another way to prove our assertion is to consider the extremum problem: $\beta_n = \inf\{E(u); u \in L(X), u = 1 \text{ on } X \setminus X_n\}$. We can show by a standard technique that there exists $u^* \in L(X)$ such that $u^* = 1$ on $X \setminus X_n$ and $\beta_n = E(u^*)$. By the variational technique used in the proof of Proposition 12.3 below, we see that u^* is the desired solution. In this case, the uniqueness follows from the minimum principle.

By the minimum principle, $0 \le \omega_{n+1} \le \omega_n \le 1$ on X. The limit function ω of $\{\omega_n\}_n$ exists. It is easily seen that ω does not depend on the choice of an exhaustion of \mathcal{N} and that ω is q-harmonic on X and $0 \le \omega \le 1$ on X. We call ω the q-elliptic measure of the ideal boundary of \mathcal{N} , shortly, q-elliptic measure.

Proposition 10.2. Assume that u vanishes at the ideal boundary, i.e., for any $\varepsilon > 0$, there exists a finite subset X' of X such that $|u(x)| \le \varepsilon$ on $X \setminus X'$. If u is q-harmonic on X, then u = 0.

Proof. For any $\varepsilon > 0$, there exists a finite subset X' of X such that $|u(x)| \le \varepsilon$ on $X \setminus X'$. Since both $\varepsilon \pm u$ are q-superharmonic and non-negative on $X \setminus X'$, the minimum principle shows that $\varepsilon \pm u \ge 0$ on X, i.e., $|u(x)| \le \varepsilon$ on X. By the arbitrariness of ε , we have u = 0.

Proposition 10.3. If $c := \inf\{q(x) : x \in X\} > 0$, then $\mathbf{HE} = \{0\}$.

Proof. Let $u \in \mathbf{HE}$. We have

$$c\sum_{x\in X} u(x)^2 \le \|u\|^2 \le E(u) < \infty,$$

so that u vanishes at the ideal boundary. Thus u = 0 by Proposition 10.2.

Lemma 10.4. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and $g_a^{(n)}$ be the q-Green function of \mathcal{N}_n with pole at $a \in X_n$. Then $\omega_n(x) = 1 - \sum_{z \in X_n} q(z)g_z^{(n)}(x)$.

Proof. Let $u(x) = 1 - \sum_{z \in X_n} q(z) g_z^{(n)}(x)$. Then u is q-harmonic on X_n . In fact, for $x \in X_n$, we have

$$\Delta_q u(x) = \Delta_q 1(x) - \sum_{z \in X_n} q(z) \Delta_q g_z^{(n)}(x) = -q(x) - \sum_{z \in X_n} q(z) [-\varepsilon_z(x)] = 0.$$

Since $g_z^{(n)}(x) = 0$ for $x \in X \setminus X_n$ and $z \in X_n$, we have u = 1 on $X \setminus X_n$. Hence $u = \omega_n$.

Letting $n \to \infty$ in this lemma, we obtain

Theorem 10.5. Let ω be the q-elliptic measure of the ideal boundary. Then $\omega(x) = 1 - \sum_{z \in X} q(z)g_z(x)$.

Corollary 10.6. $Gq(x) = \sum_{z \in X} q(z)g_z(x) \le 1 \text{ on } X.$

Another proof of this fact was given without using the q-elliptic measure (cf. [17, Theorem 4.5]).

Lemma 10.7. Let c be a positive constant. If u is q-superharmonic and $u(x) \ge -c$ on X, then $u(x) \ge -c\omega(x)$ on X. If u is q-harmonic and $|u(x)| \le c$ on X, then $|u(x)| \le c\omega(x)$ on X.

Proof. Let $\{\omega_n\}_n$ be the determining sequence of ω . If u is q-superharmonic such that $u(x) \geq -c$ on X, then $u + c\omega_n$ is q-superharmonic on X_n and is non-negative on $X \setminus X_n$. The minimum principle implies $u + c\omega_n \geq 0$ on X. Therefore $u + c\omega \geq 0$ on X. If u is q-harmonic such that $|u(x)| \leq c$ on X, then $u \geq -c$ and $-u \geq -c$. We have $u \geq -c\omega$ and $-u \geq -c\omega$, so that $|u(x)| \leq c\omega(x)$ on X.

Corollary 4.4, Theorem 10.5, and Lemma 10.7 imply

Theorem 10.8. The following three properties are equivalent:

- (1) $\omega = 0.$
- (2) $\mathbf{HB} = \{0\}.$
- (3) Gq(x) = 1 for some $x \in X$.

Example 10.9. Let \mathcal{G} be the same as in Example 5.6 and take $r(y_n) = 2^{-n}$ for $n \ge 1$ and $q(x_n) = 2^{n+1}$ for $n \ge 0$. Then \mathcal{N} is hyperbolic and $\mathbf{HB} = \{0\}$.

Proof. Let $u \in \mathbf{H}$ and $u_n = u(x_n)$. The equation $\Delta_q u(x) = 0$ implies

$$\frac{u_1 - u_0}{2^{-1}} = 2u_0, \quad \frac{u_{n-1} - u_n}{2^{-n}} + \frac{u_{n+1} - u_n}{2^{-n-1}} = 2^{n+1}u_n \quad \text{for } n \ge 1,$$

or

$$u_1 = 2u_0, \quad 2u_{n+1} - 5u_n + u_{n-1} = 0 \quad \text{for } n \ge 1.$$

The general solution is $u_n = A\alpha^n + B\beta^n$ for $n \ge 0$ with $\alpha = (5 - \sqrt{17})/4$, $\beta = (5 + \sqrt{17})/4$. Note that $u_n = A\alpha^n$ does not satisfy $u_1 = 2u_0$ unless A = 0, which implies **HB** = $\{0\}$. By the condition $u_1 = 2u_0$, we have $B = (7 - 3\alpha)A$, so that

 $u_n = A\alpha^n + (7 - 3\alpha)A\beta^n \quad \text{for } n \ge 0.$

Now let $v_n = g_{x_0}(x_n)$. Then the equation $\Delta_q g_{x_0} = -\varepsilon_{x_0}$ implies

$$v_1 = 2v_0 - \frac{1}{2}, \quad 2v_{n+1} - 5v_n + v_{n-1} = 0 \quad \text{for } n \ge 1.$$

Since \mathcal{N} is hyperbolic, Kayano and Yamasaki [4, Theorem 3.3] show that $v_n \to 0$ as $n \to \infty$, so that $v_n = A\alpha^n$. By the initial condition, we have $A = 1/(4 - 2\alpha)$, and hence

$$g_{x_0}(x_n) = \frac{\alpha^n}{4 - 2\alpha}$$
 for $n \ge 0$.

We have

$$Gq(x_0) = \sum_{n=0}^{\infty} q(x_n) g_{x_0}(x_n) = \sum_{n=0}^{\infty} \frac{2^{n+1} \alpha^n}{4 - 2\alpha} = \frac{1}{(2 - \alpha)(1 - 2\alpha)} = 1.$$

This also follows from Theorem 10.8.

Proposition 10.10. If \mathcal{N} is hyperbolic and $q \in L_0^+(X)$, then $\omega \neq 0$.

Proof. Suppose that $\omega = 0$. Then Gq(x) = 1 on X. Since Sq is a finite set, Kayano and Yamasaki [4, Theorem 3.3] show that there exists a sequence $\{x_n\}_n$ such that $g_z(x_n) \to 0$ as $n \to \infty$ for all $z \in Sq$, so that

$$1 = \lim_{n \to \infty} Gq(x_n) = \lim_{n \to \infty} \sum_{z \in Sq} g_z(x_n)q(z) = 0,$$

which is a contradiction.

Proposition 10.11. Assume that $q \in L_0^+(X)$ and $\omega \neq 0$. Then there exists a constant c with 0 < c < 1 such that $\omega(x) \ge 1 - c$ on X.

Proof. Let $c = \max\{Gq(x); x \in Sq\}$. We have Gq(x) < 1 on X by Theorem 10.8. Since Sq is a finite set, it follows that c < 1. Namely $Gq(x) \le c$ on Sq. We have $Gq(x) \le c$ on X by Theorem 9.4. Theorem 10.5 shows that $\omega(x) = 1 - Gq(x) \ge 1 - c$ on X.

Corollary 10.12. Assume that $q \in L_0^+(X)$ and $\omega \neq 0$. Then there exists a constant c with 0 < c < 1 such that $(1 - c)G1(x) \leq G\omega(x) \leq G1(x)$ on X.

11. The Case Where \mathcal{N} is Parabolic

In this section, we consider the case where \mathcal{N} is parabolic, i.e., $\mathbf{E} = \mathbf{E}_0$. We have

Proposition 11.1. Assume that \mathcal{N} is parabolic. Then Gq(x) = 1 on X.

Proof. By [14, Theorem 3.2], we have $1 \in \mathbf{D}_0$, so that there exists a sequence $\{f_n\}_n$ in $L_0(X)$ such that $0 \leq f_n(x) \leq 1$ on X, $D(1 - f_n) \to 0$ as $n \to \infty$, and $\{f_n\}_n$ converges pointwise to 1. Let $a \in X$. Since $\Delta_q g_a(x) = -\varepsilon_a(x)$, we have $q(x)g_a(x) = \Delta g_a(x) + \varepsilon_a(x)$ and

$$\sum_{z \in X} f_n(z)[q(z)g_a(z)] = \sum_{z \in X} f_n(z)[\Delta g_a(z) + \varepsilon_a(z)] = -D(f_n, g_a) + f_n(a).$$

Since $D(f_n) = D(1 - f_n)$, we have

$$\lim_{n \to \infty} |D(f_n, g_a)| \le \lim_{n \to \infty} D(f_n)^{1/2} D(g_a)^{1/2} = 0.$$

Since $Gq(a) \leq 1$ by Theorem 10.5, we have by Lebesgue's dominated convergence theorem

$$Gq(a) = \sum_{z \in X} q(z)g_a(z) = \lim_{n \to \infty} \sum_{z \in X} f_n(z)[q(z)g_a(z)]$$
$$= \lim_{n \to \infty} [-D(f_n, k_a) + f_n(a)] = 1$$

By Theorem 10.5 and the minimum principle, we see that Gq = 1 on X.

By Theorems 10.8 and Proposition 11.1, we have

Theorem 11.2. Assume that \mathcal{N} is parabolic. Then $HB = \{0\}$.

We show the effect of the condition Gq = 1 by examples.

Example 11.3. Let \mathcal{G} be the linear graph as in Example 5.6, $q = \varepsilon_{x_0} + \varepsilon_{x_1} + \varepsilon_{x_2}$, and r(y) = 1 on Y. Then \mathcal{N} is parabolic (cf. [15, Example 3.1]) and g_{x_0} is given by

$$g_{x_0}(x_0) = \frac{5}{8}, \quad g_{x_0}(x_1) = \frac{2}{8}, \quad g_{x_0}(x_n) = \frac{1}{8} \text{ for } n \ge 2.$$

The class \mathbf{H}^+ consists of $h \in L(X)$ defined by

$$h(x_0) = t > 0$$
, $h(x_1) = 2t$, $h(x_n) = (8n - 11)t$ for $n \ge 2$.

Proof. Let $h \in \mathbf{H}^+$ and $h_n = h(x_n)$. Then

$$h_1 - 2h_0 = 0, \quad h_2 + h_0 - 3h_1 = 0,$$

 $h_3 + h_1 - 3h_2 = 0, \quad h_{n+1} - 2h_n + h_{n-1} = 0 \text{ for } n \ge 3,$

which implies

$$h(x_0) = t > 0$$
, $h(x_1) = 2t$, $h(x_n) = (8n - 11)t$ for $n \ge 2$.

This means $\mathbf{HB} = \{0\}$. Let $u_n = g_{x_0}(x_n)$. The equation $\Delta_q g_{x_0} = -\varepsilon_{x_0}$ implies

$$u_1 - 2u_0 = -1, \quad u_2 + u_0 - 3u_1 = 0,$$

 $u_3 + u_1 - 3u_2 = 0, \quad u_{n+1} - 2u_n + u_{n-1} = 0 \text{ for } n \ge 3.$

Proposition 11.1 implies $Gq(x_0) = 1$, which means

$$u_0 + u_1 + u_2 = 1$$

These equations lead to $u_0 = 5/8$, $u_1 = 2/8$, $u_n = 1/8$ for $n \ge 2$.

Example 11.4. Let \mathcal{G} be the linear graph and let q(x) = 1 on X and r(y) = 1 on Y. Then \mathcal{N} is parabolic (cf. [15, Example 3.1]) and

$$g_{x_0}(x_n) = \frac{\alpha^n}{2-\alpha}$$
 for $n \ge 0$, $\alpha = \frac{3-\sqrt{5}}{2}$

Proof. Let $h \in \mathbf{H}^+$ and $h_n = h(x_n)$. The equation $\Delta_q h(x) = 0$ implies $h_1 = 2h_0$ and $h_{n+1} - 3h_n + h_{n-1} = 0$ for $n \ge 1$. The general solution is $u_n = A\alpha^n + B\beta^n$ for $n \ge 0$, where $\alpha = (3 - \sqrt{5})/2$ and $\beta = (3 + \sqrt{5})/2$ are solutions of the characteristic equation $t^2 - 3t + 1 = 0$. The initial condition shows $B = (3 - \alpha)A$ and $\mathbf{H} = \{A\alpha^n + (3 - \alpha)A\beta^n; n \ge 0\}$. This means $\mathbf{HB} = \{0\}$. Let $u_n = g_{x_0}(x_n)$. The equation $\Delta_q g_{x_0} = -\varepsilon_{x_0}$ implies

$$u_1 - 2u_0 = -1$$
, $u_{n+1} - 3u_n + u_{n-1} = 0$ for $n \ge 1$.

Since Gq(x) = 1, we obtain $u_n = A\alpha^n$. By the condition $u_1 = 2u_0 - 1$, we have $A = 1/(2 - \alpha)$.

Recall $\mathbf{HE}^+ = \mathbf{HE} \cap L^+(X)$ and let

$$HP = H^{+} - H^{+} = \{h = h_{1} - h_{2}; h_{1}, h_{2} \in H^{+}\},\$$
$$HEP = HE^{+} - HE^{+}.$$

For a class C of L(X), denote by O_C the collection of those infinite networks \mathcal{N} for which C consists only of 0. Since $\mathbf{HP} \subset \mathbf{H}$, we have $O_H \subset O_{HP}$.

Proposition 12.1. $HB \subset HP$.

Proof. Let $u \in \mathbf{HB}$. Then there exists a constant such that $|u(x)| \leq c$ on X. By Lemma 10.7, $|u(x)| \leq c\omega(x)$ on X. Let $u_1 = (c\omega + u)/2$ and $u_2 = (c\omega - u)/2$. By Lemma 4.1, u_1 and u_2 are non-negative and q-harmonic and $u_1 - u_2 = u$.

Corollary 12.2. $O_{HP} \subset O_{HB}$.

Clearly **HEB** \subset **HB**, so that $O_{HB} \subset O_{HEB}$.

Proposition 12.3. $HE = HEP = \{u_1 - u_2; u_1, u_2 \in HE^+\}.$

Proof. Since **HEP** \subset **HE** is clear, we prove the converse inclusion. Let $u \in$ **HE** and $u^+ = \max(u, 0)$, $u^- = \max(-u, 0)$. For our purpose, we may assume that both u^+ and u^- are non-zero. Let $\{\mathcal{N}_n = \langle X_n, Y_n \rangle\}_n$ be an exhaustion of \mathcal{N} and consider the following extremum problems:

$$\alpha_n = \inf\{E(v); v \in \mathbf{E}, v = u^+ \text{ on } X \setminus X_n\}.$$

Note that $\alpha_n \leq E(u^+) \leq E(u)$ by Corollary 3.10. By the same reasoning as in the proof of Theorem 6.1, we see that there exists a unique solution v_n^* such that $\alpha_n = E(v_n^*)$. Let $f \in L(X)$ satisfy f = 0 on $X \setminus X_n$. Since $v_n^* + tf \in E$ is equal to u^+ on $X \setminus X_n$ for any real number t, we have

$$E(v_n^*) \le E(v_n^* + tf) = E(v^*) + 2tE(v_n^*, f) + t^2E(f).$$

Letting $t \nearrow 0$ and $t \searrow 0$, we obtain $E(v_n^*, f) = 0$. For any $x \in X \setminus X_n$, Lemma 3.3 shows

$$0 = E(v_n^*, \varepsilon_x) = -\Delta_q v_n^*(x),$$

namely v_n^* is q-harmonic on X_n . Note that $-u^+$ is q-superharmonic on X by Lemma 4.1. Since $v_n^* - u^+$ is q-superharmonic on X_n and vanishes on $X \setminus X_n$, we have $v_n^* - u^+ \ge 0$ on X by the minimum principle. From $v_{n+1}^* \ge u^+$ on X and $v_n^* = u^+$ on $X \setminus X_n$, we see that $v_{n+1}^* - v_n^* \ge 0$ on $X \setminus X_n$. Since $v_{n+1}^* - v_n^*$ is q-harmonic on X_n , we obtain by the minimum principle $v_{n+1}^* \ge v_n^*$ on X. Lemma 3.1 implies that, for each $x \in X$, there exists $M_x > 0$ such that $u^+(x) \le v_n^*(x) \le M_x E(v_n^*)^{1/2} \le M_x E(u)^{1/2}$. Therefore, the sequence $\{v_n^*\}_n$ converges pointwise to $v^* \in L^+(X)$. Then v^* is q-harmonic on X and $v^* \ge u^+$. Note that

$$E(v^*) \le \liminf_{n \to \infty} E(v_n^*) \le E(u) < \infty,$$

so that $v^* \in \mathbf{HE}^+$. Theorem 8.5 shows that $v^* - u^+ = G\mu_1 + h_1$ with $\mu_1 \in \mathcal{E}$ and $h_1 \in \mathbf{HE}^+$. Similarly we find $w^* \in \mathbf{HE}^+$, $\mu_2 \in \mathcal{E}$, and $h_2 \in \mathbf{HE}^+$ such that $w^* - u^- = G\mu_2 + h_2$. Let $\varphi = v^* - w^* \in \mathbf{HE}$. Then

$$0 = \Delta_q(\varphi - u) = \Delta_q G(\mu_1 - \mu_2) = -\mu_1 + \mu_2.$$

Let $u_1 = v^* + h_2$ and $u_2 = w^* + h_1$. Then $u_1, u_2 \in \mathbf{HE}^+$ and

$$u = \varphi - (h_1 - h_2) = u_1 - u_2$$

This completes the proof.

Next theorem gives a sufficient condition for $\mathbf{H}^+ \neq \{0\}$.

Theorem 12.4. If \mathcal{N} is hyperbolic and $\sum_{x \in X} q(x) < \infty$, then $\mathbf{H}^+ \neq \{0\}$.

Proof. If $\mathbf{H}^+ = \{0\}$, then $\mathbf{HE}^+ = \{0\}$, so that $\mathbf{HEP} = \{0\}$. Hence $\mathbf{HE} = \{0\}$ by Proposition 12.3. This contradicts Theorem 3.8.

Proposition 12.5. For every $u \in \text{HE}$, there exists a sequence $\{h_n\}_n$ in HEB such that $E(u - h_n) \to 0$ as $n \to \infty$.

Proof. Let $u \in \mathbf{HE}$ and $u \ge 0$ and let $u_n(x) = \min(u(x), n)$. Then $u_n \in \mathbf{E}$ is nonnegative and q-superharmonic. Theorem 8.5 shows that $u_n = G\mu_n + h_n$ with $\mu_n \in \mathcal{E}$ and $h_n \in \mathbf{HE}^+$. We have $0 \le h_n \le u_n \le n$ and $h_n \in \mathbf{HEB}$. Lemma 3.3 shows $E(u - h_n, G\mu_n) = 0$, which leads to $E(u - u_n) = E(G\mu_n) + E(u - h_n) \ge E(u - h_n)$. Note that $D(u - u_n) \to 0$ as $n \to \infty$ by [14, Lemma 3.1]. Since $||u_n|| \le ||u||$ and $\{u_n\}_n$ converges pointwise to u, we see that $\{\langle u_n, v \rangle\}_n$ converges to $\langle u, v \rangle$ for every $v \in \mathbf{E}$. Furthermore, we have $||u_n||^2 \to ||u||^2$ as $n \to \infty$, and that $||u - u_n||^2 \to 0$ as $n \to \infty$. Thus $E(u - u_n) \to 0$ as $n \to \infty$, which shows $E(u - h_n) \to 0$ as $n \to \infty$.

Now we consider the case where $u \in \mathbf{HE}$ is of any sign. By Proposition 12.3, there exist $u', u'' \in \mathbf{HE}^+$ such that u = u' - u''. By the above observation, we can find sequences $\{h'_n\}$ and $\{h''_n\}$ in **HEB** such that $E(u'-h'_n) \to 0$ and $E(u''-h''_n) \to 0$ as $n \to \infty$. Let $h_n = h'_n - h''_n$. Then $h_n \in \mathbf{HEB}$ and $E(u - h_n) \to 0$ as $n \to \infty$. \Box

Corollary 12.6. $O_{HE} = O_{HEB}$.

Thus we have the following classification of infinite networks by the classes of q-harmonic functions:

Theorem 12.7. $O_H \subset O_{HP} \subset O_{HB} \subset O_{HEB} = O_{HE}$.

Note that $\mathbf{HD} = \mathbf{HE}$ if $q \in L_0^+(X)$.

13. q-Quasiharmonic Classification

We say that a function $u \in L(X)$ is *q*-quasiharmonic on X if $\Delta_q u = c\omega$ on X, where ω is the *q*-elliptic measure and c is a constant. Denote by **Q** the set of *q*-quasiharmonic functions on X normalized by $\Delta_q u = -\omega$. In this section, we always assume that $\omega \neq 0$. We consider the following classes of *q*-quasiharmonic functions:

$$\mathbf{QB} = \{ u \in \mathbf{Q} \, ; \, \sup\{ |u(x)| \, ; \, x \in X \} < \infty \},\$$

$$\mathbf{QE} = \mathbf{Q} \cap \mathbf{E}, \quad \mathbf{Q}^+ = \mathbf{Q} \cap L^+(X).$$

In addition to \mathcal{M} and \mathcal{E} , we introduce

$$\mathcal{M}_b = \{ \mu \in \mathcal{M} \, ; \, \sup\{G\mu(x) \, ; \, x \in X\} < \infty \}.$$

Theorem 13.1. Assume $\omega \neq 0$. The classes O_C for $C = \mathbf{Q}^+, \mathbf{QB}, \mathbf{QE}$ are characterized as follows:

- (1) $\mathcal{N} \in O_{Q^+}$ if and only if $\omega \notin \mathcal{M}$;
- (2) $\mathcal{N} \in O_{QB}$ if and only if $\omega \notin \mathcal{M}_b$;
- (3) $\mathcal{N} \in O_{QE}$ if and only if $\omega \notin \mathcal{E}$.

Proof. Let $u = G\omega$. If $\omega \in \mathcal{M}$, then $\Delta_q u = -\omega$ on X and u > 0, and hence $u \in \mathbf{Q}^+$. If $\omega \in \mathcal{M}_b$, then $u \in \mathbf{QB}$. If $\omega \in \mathcal{E}$, then $u \in \mathbf{QE}$ by Theorem 8.4. Thus the only-if parts in (1)–(3) are proved.

(1) Assume that $\mathcal{N} \notin O_{Q^+}$ and let $u \in \mathbf{Q}^+$. Since u is non-negative and q-superharmonic, we see by Riesz's decomposition that there exist $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^+$ such that $u = G\mu + h$ and $\mu = -\Delta_q u = \omega$. Thus $\omega \in \mathcal{M}$.

(2) Assume that $\mathcal{N} \notin O_{QB}$ and $u \in \mathbf{QB}$. Then there exists a positive constant c such that $|u(x)| \leq c$ on X. Lemma 10.7 shows that $u + c\omega$ is non-negative and q-superharmonic. Riesz's decomposition shows that there exist $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^+$ such that $u + c\omega = G\mu + h$ and $\mu = -\Delta_q(u + c\omega) = \omega$. Thus $G\omega \leq u + c\omega \leq 2c$ on X and $\omega \in \mathcal{M}_b$.

(3) Assume that $\mathcal{N} \notin O_{QE}$ and $u \in \mathbf{QE}$. Royden's decomposition implies that there exist $v \in \mathbf{E}_0$ and $h \in \mathbf{HE}$ such that u = v + h. Since $\Delta_q v = \Delta_q u = -\omega$, Theorem 8.4 shows that there exists $\mu \in \mathcal{E}$ such that $v = G\mu$. We obtain $\omega = -\Delta_q G\mu = \mu \in \mathcal{E}$.

This theorem implies

Proposition 13.2. If $\omega \neq 0$, then $O_{Q^+} \subset O_{QB}$.

We have by Proposition 10.11 and Corollary 10.12

Lemma 13.3. Assume that $q \in L_0^+(X)$ and $\omega \neq 0$. Then

(1) $\omega \in \mathcal{M}$ if and only if $1 \in \mathcal{M}$;

- (2) $\omega \in \mathcal{M}_b$ if and only if $1 \in \mathcal{M}_b$;
- (3) $\omega \in \mathcal{E}$ if and only if $1 \in \mathcal{E}$.

We show by an example that there exists $\mathcal{N} \notin O_{Q^+}$ such that $\mathcal{N} \in O_{QB}$.

Example 13.4. Let \mathcal{G} be the ladder as in [16, Example 4.3]. Namely $X = \{x_n, x'_n; n \ge 0\}, Y_n = \{y_n, y'_n, y''_n; n \ge 1\} \cup \{y''_0\}$ and K(x, y) is defined by

$$K(x_n, y_{n+1}) = K(x'_n, y'_{n+1}) = K(x_n, y''_n) = -1,$$

$$K(x_{n+1}, y_{n+1}) = K(x'_{n+1}, y'_{n+1}) = K(x'_n, y''_n) = 1$$

for $n \ge 0$ and K(x, y) = 0 for any other pair. Let $q(x) = \varepsilon_{x_0}(x)$ and α_0 a constant with $0 < \alpha_0 < 1$. We choose r(y) as follows:

$$r_n = 1, \quad r'_n = \frac{2^{-n-1}\alpha_0}{2n+1-\alpha_0},$$

$$r_0'' = \frac{\alpha_0}{2(2-\alpha_0)}, \quad r_n'' = (1-2^{-n-1})\alpha_0 + n$$

for $n \ge 1$, where $r_n = r(y_n)$, $r'_n = r(y'_n)$, and $r''_n = r(y''_n)$. This network is in $O_{QB} \setminus O_{Q^+}$.

Proof. Let us consider the function $u \in L(X)$ defined by

$$u_n = \alpha_0 + n, \quad u'_n = 2^{-n-1} \alpha_0 \quad \text{for } n \ge 0,$$

where $u_n = u(x_n)$ and $u'_n = u(x'_n)$. We show $\Delta_q u = -1$. We compute

$$du(y_n) = -\frac{K(x_{n-1}, y_n)u(x_{n-1}) + K(x_n, y_n)u(x_n)}{r(y_n)} = \frac{u_{n-1} - u_n}{r_n} = -1,$$

$$du(y'_n) = -\frac{K(x'_{n-1}, y'_n)u(x'_{n-1}) + K(x'_n, y'_n)u(x'_n)}{r(y'_n)} = \frac{u'_{n-1} - u'_n}{r'_n} = 2n + 1 - \alpha_0,$$

$$du(y''_0) = -\frac{K(x_0, y''_0)u(x_0) + K(x'_0, y''_0)u(x'_0)}{r(y''_0)} = \frac{u_0 - u'_0}{r''_0} = 2 - \alpha_0,$$

$$du(y''_n) = -\frac{K(x_n, y''_n)u(x_n) + K(x'_n, y''_n)u(x'_n)}{r(y''_n)} = \frac{u_n - u'_n}{r''_n} = 1$$

for $n \ge 1$. We have

$$\begin{split} \Delta_q u(x_0) &= K(x_0, y_1) du(y_1) + K(x_0, y_0'') du(y_0'') - u(x_0) \\ &= -du(y_1) - du(y_0'') - u_0 = -1, \\ \Delta_q u(x_0') &= K(x_0', y_1') du(y_1') + K(x_0', y_0'') du(y_0'') \\ &= -du(y_1') + du(y_0'') = -1, \\ \Delta_q u(x_n) &= K(x_n, y_n) du(y_n) + K(x_n, y_{n+1}) du(y_{n+1}) + K(x_n, y_n'') du(y_n'') \\ &= du(y_n) - du(y_{n+1}) - du(y_n'') = -1, \\ \Delta_q u(x_n') &= K(x_n', y_n') du(y_n') + K(x_n', y_{n+1}') du(y_{n+1}') + K(x_n', y_n'') du(y_n'') \\ &= du(y_n') - du(y_{n+1}') + du(y_n'') = -1. \end{split}$$

By Riesz's decomposition, we have $u = G\mu + h$ with $\mu \in \mathcal{M}$ and $h \in \mathbf{H}^+$. Note that $1 = -\Delta_q u = \mu \in \mathcal{M}$. Also note that \mathcal{N} is hyperbolic because of $\sum_n r'_n < \infty$ and [14, Theorem 4.1 and Lemma 4.3]. Proposition 10.10 shows $\omega \neq 0$.

To show $\mathcal{N} \in O_{QB} \setminus O_{Q^+}$, it suffices to show that $1 \in \mathcal{M} \setminus \mathcal{M}_b$ by Theorem 13.3 and Lemma 13.3. We show that v := G1 is unbounded. Suppose that v is bounded, i.e., there exists a positive constant c such that $|v(x)| \leq c$ on X. Let $v_n = v(x_n)$, $v'_n = v(x'_n), w_n = dv(y_n), w'_n = dv(y'_n)$, and $w''_n = dv(y''_n)$. Then $|w_n| \leq 2c$ for all n. For any ε with $0 < \varepsilon < 1$, there exists n_0 such that $r''_n \geq 2c/\varepsilon$ for all $n \geq n_0$, so that

$$|w_n''| = \frac{1}{r_n''}|v_n' - v_n| \le \varepsilon.$$

Since $1 \in \mathcal{M}$, Lemma 7.1 shows $\Delta_q v = -1$, which implies $w_n - w_{n+1} - w''_n = -1$, and that

$$-1 - \varepsilon \le w_n - w_{n+1} \le -1 + \varepsilon$$

for all $n \ge n_0$. This contradicts the boundedness of $\{w_n\}_n$. Thus v is unbounded.

Proposition 13.5. If $q \in L_0^+(X)$ and $\omega \neq 0$, then $O_{QB} \subset O_{QE}$.

Proof. Assume $\mathcal{N} \notin O_{QE}$. Theorem 13.1 shows $\omega \in \mathcal{E}$. There exists a constant cwith 0 < c < 1 such that $\omega(x) \ge 1 - c$ on X by Proposition 10.11, so that

$$G(\omega, \omega) = \sum_{z \in X} G\omega(z)\omega(z) \ge (1 - c) \sum_{z \in X} G\omega(z) \ge (1 - c)G\omega(x)$$

$$z \in X. \text{ This means } \omega \in \mathcal{M}_b.$$

for each $x \in X$. This means $\omega \in \mathcal{M}_b$.

Example 13.6. Let \mathcal{G} and q be the same as in Example 5.6. Define r(y) by $r(y_n) = n^{-2} - (n+1)^{-2}$ for $n \ge 1$. Then $\omega \in \mathcal{M}_b$ and $\omega \notin \mathcal{E}$. Equivalently $\mathbf{QB} \neq \{0\}$ and $\mathbf{QE} = \{0\}$.

Proof. Let R_n and ρ_n be defined as in Example 5.6. Then

$$R_0 = 1, \quad R_n = \frac{1}{(n+1)^2}, \quad \rho_n = 1 - \frac{1}{(n+1)^2} < 1.$$

We have by Theorem 10.5

$$\omega(x_n) = 1 - g_{x_0}(x_n) = 1 - \frac{(1+\rho_0)R_n}{1+R_0} = \frac{1+\rho_n}{1+R_0} \quad \text{for } n \ge 0.$$

We obtain

$$G\omega(x_0) = \frac{1}{(1+R_0)^2} \sum_{n=0}^{\infty} R_n (1+\rho_n) \le \frac{1}{2} \sum_{n=0}^{\infty} R_n < \infty,$$

$$G\omega(x_m) = \sum_{n=0}^{\infty} g_{x_m}(x_n) \omega(x_n)$$

$$= \frac{1}{(1+R_0)^2} \left[R_m \sum_{n=0}^m (1+\rho_n)^2 + (1+\rho_m) \sum_{n=m+1}^{\infty} R_n (1+\rho_n) \right]$$

$$\le (m+1)R_m + \sum_{n=m+1}^{\infty} R_n \le \frac{1}{m+1} + \sum_{n=1}^{\infty} \frac{1}{n^2},$$

so that $G\omega$ is bounded and $\omega \in \mathcal{M}_b$.

We have $G(\omega, \omega) = S_1 + S_2$, where

$$S_1 = \frac{1}{(1+R_0)^3} \sum_{m=0}^{\infty} R_m (1+\rho_m) \sum_{n=0}^m (1+\rho_n)^2,$$
$$S_2 = \frac{1}{(1+R_0)^3} \sum_{m=0}^{\infty} (1+\rho_m)^2 \sum_{n=m+1}^{\infty} R_n (1+\rho_n)$$

Therefore

$$c_m := \sum_{n=m+1}^{\infty} R_n (1+\rho_n) \ge \sum_{n=m+1}^{\infty} \frac{1}{(n+1)^2} \ge \int_{m+2}^{\infty} \frac{1}{t^2} \, dt = \frac{1}{m+2},$$

thus

$$G(\omega, \omega) \ge S_2 \ge \frac{1}{8} \sum_{m=0}^{\infty} c_m = \infty.$$

Acknowledgement. We would like to thank the referee for his detailed comments which improved significantly the presentation of this paper.

References

- Victor Anandam, Harmonic functions and potentials on finite or infinite networks, Lecture Notes of the Unione Matematica Italiana, vol. 12, Springer, Heidelberg, 2011. MR 2816628 (2012h:31001)
- [2] Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0159935
- [3] Florian Fischer and Matthias Keller, Riesz decompositions for Schrödinger operators on graphs, arXiv:1905.12474, 1-21.
- [4] Takashi Kayano and Maretsugu Yamasaki, Boundary limit of discrete Dirichlet potentials, Hiroshima Math. J. 14 (1984), no. 2, 401–406. MR 764458
- [5] Hisayasu Kurata and Maretsugu Yamasaki, The metric growth of the discrete Laplacian, Hokkaido Math. J. 45 (2016), no. 3, 399–417.
- [6] _____, Discrete Green potentials with finite energy, Hokkaido Math. J. 47 (2018), no. 3, 607–624. MR 3858381
- [7] _____, Discrete q-Green potentials with finite energy, Mem. Grad. Sch. Sci. Eng. Shimane Univ. Ser. B Math. 51 (2018), 7–21. MR 3752998
- [8] Fumi-Yuki Maeda, Boundary value problems for the equation $\Delta u qu = 0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ. Ser. A-I Math. **32** (1968), 85–146. MR 241677
- [9] Fumi-Yuki Maeda, Non-linear classification of infinite networks, unpublished, 1976.
- [10] Mitsuru Ozawa, Some classes of positive solutions of $\delta u = pu$ on riemann surfaces. I., Kodai Math. Sem. Rep. 6 (1954), no. 4, 121–126.
- [11] Leo Sario, Mitsuru Nakai, Cecilia Wang, and Lung Ock Chung, Classification theory of Riemannian manifolds, Lecture Notes in Mathematics, Vol. 605, Springer-Verlag, Berlin-New York, 1977, Harmonic, quasiharmonic and biharmonic functions. MR 0508005
- [12] Paolo M. Soardi, Potential theory on infinite networks, Lecture Notes in Mathematics, vol. 1590, Springer-Verlag, Berlin, 1994. MR 1324344
- [13] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), no. 2, 223–250. MR 373784
- [14] _____, Parabolic and hyperbolic infinite networks, Hiroshima Math. J. 7 (1977), no. 1, 135–146. MR 429377
- [15] _____, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31–44.
- [16] _____, Quasiharmonic classification of infinite networks, Discrete Appl. Math. 2 (1980), no. 4, 339–344.
- [17] _____, The equation $\Delta u = qu$ on an infinite network, Mem. Fac. Sci. Shimane Univ. **21** (1987), 31–46. MR 939561 (90b:39011)

HISAYASU KURATA: NATIONAL INSTITUTE OF TECHNOLOGY, YONAGO COLLEGE; YONAGO, TOTTORI, 683-8502, JAPAN

Email address: kurata@yonago-k.ac.jp

MARETSUGU YAMASAKI: MATSUE, SHIMANE, 690-0824, JAPAN *Email address*: yama0565m@mable.ne.jp