DISCRETE MULTI-HARMONIC GREEN FUNCTIONS

HISAYASU KURATA AND MARETSUGU YAMASAKI
Communicated by Jitsuro Sugie
(Received: January 10, 2020)

Abstract

The harmonic Green function g_{a} of an infinite network defined as the unique Dirichlet potential which satisfies $\Delta g_{a}=-\delta_{a}$. The biharmonic Green function $g_{a}^{(2)}(x)$ is defined by the convolution of g_{x} and g_{a} in [6]. It is known that $\Delta^{2} g_{a}^{(2)}=\delta_{a}$ if $g_{a}^{(2)}$ is finite and that $g_{a}^{(2)}$ is a Dirichlet potential if g_{a} has a finite Green energy. In this paper, we define the k-harmonic Green function $g_{a}^{(k)}(x)$ as the convolution of $g_{x}^{(k-1)}$ and g_{a} if it converges. We study some potential theoretic properties related to $g_{a}^{(k)}$.

1. Introduction with Preliminaries

Let $\mathcal{N}=\langle V, E, K, r\rangle$ be an infinite network which is connected and locally finite and has no self-loop, where V is the set of nodes, E is the set of arcs, and the resistance r is a strictly positive function on E. For $x \in V$ and for $e \in E$ the node-arc incidence matrix K is defined by $K(x, e)=1$ if x is the initial node of $e ; K(x, e)=-1$ if x is the terminal node of $e ; K(x, e)=0$ otherwise. Let $L(V)$ be the set of all real valued functions on $V, L^{+}(V)$ the set of all non-negative real valued functions on V, and $L_{0}(V)$ the set of all $u \in L(V)$ with finite support. We similarly define $L(E), L^{+}(E)$, and $L_{0}(E)$. For $u \in L(V)$ we define the discrete derivative $\nabla u \in L(E)$ and the Laplacian $\Delta u \in L(V)$ as

$$
\begin{gathered}
\nabla u(e)=-r(e)^{-1} \sum_{x \in V} K(x, e) u(x), \\
\Delta u(x)=\sum_{e \in E} K(x, e) \nabla u(e) .
\end{gathered}
$$

For convenience we give specific forms. For $e \in E$ let $x^{+} \in V$ be the initial node of e and $x^{-} \in V$ the terminal node of e. Then

$$
\nabla u(e)=\frac{u\left(x^{-}\right)-u\left(x^{+}\right)}{r(e)}
$$

[^0]For $x \in V$ let $\left\{e_{1}, \ldots, e_{d}\right\}$ be the set of arcs adjacent to x and let y_{j} be the other node of e_{j} for each j. Then

$$
\Delta u(x)=\sum_{j=1}^{d} \frac{u\left(y_{j}\right)-u(x)}{r\left(e_{j}\right)}
$$

We denote by

$$
\Delta^{0} u=u, \quad \Delta^{k} u=\Delta\left(\Delta^{k-1} u\right)
$$

for $k \in \mathbb{N}$. For $u, v \in L(V)$ we put

$$
\begin{gathered}
\langle u, v\rangle_{\mathbf{D}}=\sum_{e \in E} r(e) \nabla u(e) \nabla v(e) \\
\|u\|_{\mathbf{D}}=\langle u, u\rangle_{\mathbf{D}}^{1 / 2} \quad(\text { Dirichlet sum }) \\
\langle u, v\rangle_{l^{2}}=\sum_{x \in V} u(x) v(x) \\
\|u\|_{l^{2}}=\langle u, u\rangle_{l^{2}}^{1 / 2}
\end{gathered}
$$

We define two classes of functions on V as

$$
\begin{aligned}
\mathbf{D} & =\left\{u \in L(V) \mid\|u\|_{\mathbf{D}}<\infty\right\}, \\
\mathbf{H}^{(k)} & =\left\{u \in L(V) \mid \Delta^{k} u=0 \text { on } V\right\} .
\end{aligned}
$$

Note that $\langle u, v\rangle_{\mathbf{D}}$ is a degenerate bilinear form in \mathbf{D}; for example, $\langle 1, u\rangle_{\mathbf{D}}=0$ and $\|u+1\|_{\mathbf{D}}=\|u\|_{\mathbf{D}}$ for $u \in \mathbf{D}$, where 1 stands for the constant function. It was shown in $[5$, Theorem 1.1] that \mathbf{D} is a Hilbert space with respect to the inner product $\langle u, v\rangle_{\mathbf{D}}+u(o) v(o)$ for a fixed node $o \in V$. We easily verify that a sequence $\left\{u_{n}\right\}_{n} \subset \mathbf{D}$ converges to u in \mathbf{D} if and only if $\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{\mathbf{D}}=0$ and $\left\{u_{n}\right\}_{n}$ converges pointwise to u. Denote by \mathbf{D}_{0} the closure of $L_{0}(V)$ in \mathbf{D}. We call a function in \mathbf{D} and in \mathbf{D}_{0} a Dirichlet function and a Dirichlet potential, respectively.

We always assume that the network is hyperbolic, i.e., for each $a \in V$ there exists the harmonic Green function g_{a} with pole at a. Also we assume that the network satisfies the following condition: There exists a constant $c_{\mathrm{LD}}>0$ such that

$$
\begin{equation*}
\|\Delta f\|_{\mathbf{D}} \leq c_{\mathrm{LD}}\|f\|_{\mathbf{D}} \quad \text { for all } f \in L_{0}(V) \tag{LD}
\end{equation*}
$$

We define the k-harmonic Green function $g_{a}^{(k)}(x)$ in Section 2 as a convolution of $g_{x}^{(k-1)}$ and g_{a} and study some fundamental relations between these functions under the assumption that $g_{a}^{(k)}$ is finite. In Section 3 we see that $g_{a}^{(k)}$ is a Dirichlet potential if \mathcal{N} satisfies conditions (LD) and (CLD) studied in [2]. Some potential theoretic results related to multi-harmonic Green functions in Section 4. We propose some sufficient conditions which assure the finiteness of $g_{a}^{(k)}$ in case where \mathcal{N} does not satisfy (LD) or (CLD) in Section 5. As for the limit of $\left\{g_{a}^{(k)}\right\}_{k}$, we show a partial result in Section 6. The explicit form of $g_{a}^{(2)}$ is given in Section 7 for the infinite linear network and in Section 8 for the homogeneous tree of order three.

2. Multi-Harmonic Green Functions

We construct an multi-harmonic Green function as follows. For $a \in V$ let $g_{a}^{(0)}=$ δ_{a}, where δ_{a} is the characteristic function of the singleton $\{a\}$, and let $g_{a}^{(1)}$ be the harmonic Green function g_{a} of \mathcal{N} with pole at $a \in V$, i.e., $g_{a} \in \mathbf{D}_{0}$ is a unique function with $\Delta g_{a}=-\delta_{a}$. For $k \geq 2$ we define the k-harmonic Green function $g_{a}^{(k)}$ of \mathcal{N} with pole at a as the convolution of $g_{x}^{(k-1)}$ and g_{a}, i.e.,

$$
g_{a}^{(k)}(x)=\left\langle g_{x}^{(k-1)}, g_{a}\right\rangle_{l^{2}}
$$

if it converges.
Theorem 2.1. If $g_{a}^{(k)}$ is finite, then $g_{a}^{(k)}(b)=g_{b}^{(k)}(a)$ for every $a, b \in V$.
Proof. It is obvious for $k=0$. It is well-known that $g_{a}(b)=g_{b}(a)$ holds, which shows the case $k=1$. Let $k \geq 2$ and assume $g_{a}^{(j)}(b)=g_{b}^{(j)}(a)$ for $j \leq k-1$ and for $a, b \in V$. Then

$$
\begin{aligned}
g_{a}^{(k)}(b) & =\sum_{x \in V} g_{b}^{(k-1)}(x) g_{a}(x)=\sum_{x \in V} g_{a}(x) \sum_{y \in V} g_{x}^{(k-2)}(y) g_{b}(y) \\
& =\sum_{y \in V} \sum_{x \in V} g_{a}(x) g_{y}^{(k-2)}(x) g_{b}(y)=\sum_{y \in V} g_{a}^{(k-1)}(y) g_{b}(y) \\
& =g_{b}^{(k)}(a) .
\end{aligned}
$$

Corollary 2.2. $g_{a}^{(k)}(x)=\left\langle g_{a}^{(k-1)}, g_{x}\right\rangle_{l^{2}}$.
Lemma 2.3. If $g_{a}^{(k)}$ is finite, then $g_{a}^{(k)}$ is superharmonic and satisfies $\Delta g_{a}^{(k)}=$ $-g_{a}^{(k-1)}$ for $k \geq 1$.

Proof. Theorem 2.1 shows that

$$
\begin{aligned}
\Delta g_{a}^{(k)}(x) & =\sum_{y \in V}\left(\Delta g_{y}(x)\right) g_{a}^{(k-1)}(y)=-\sum_{y \in V} \delta_{y}(x) g_{a}^{(k-1)}(y) \\
& =-g_{a}^{(k-1)}(x) \leq 0
\end{aligned}
$$

as required.
Theorem 2.4. If $g_{a}^{(k)}$ is finite, then $\Delta^{k} g_{a}^{(k)}=(-1)^{k} \delta_{a}$.
Proof. Applying Lemma 2.3 repeatedly we have the result.
Proposition 2.5. If $g_{a}^{(k+l)}$ is finite, then $g_{a}^{(k+l)}(b)=\left\langle g_{a}^{(k)}, g_{b}^{(l)}\right\rangle_{l^{2}}$.

Proof. We show it by induction on l. It is obvious for each k if $l=0$. We assume the assertion holds for $l-1$. Then

$$
\begin{aligned}
g_{a}^{(k+l)}(b) & =\sum_{x \in V} g_{a}^{(k+l-1)}(x) g_{b}(x)=\sum_{x \in V} \sum_{y \in V} g_{a}^{(k)}(y) g_{x}^{(l-1)}(y) g_{b}(x) \\
& =\sum_{y \in V} g_{a}^{(k)}(y) \sum_{x \in V} g_{y}^{(l-1)}(x) g_{b}(x)=\sum_{y \in V} g_{a}^{(k)}(y) g_{b}^{(l)}(y) \\
& =\left\langle g_{a}^{(k)}, g_{b}^{(l)}\right\rangle_{l^{2}} .
\end{aligned}
$$

Proposition 2.6. If $g_{a}^{(k)}, g_{b}^{(l)} \in \mathbf{D}_{0}$, then $\left\langle g_{a}^{(k)}, g_{b}^{(l)}\right\rangle_{\mathbf{D}}=g_{a}^{(k+l-1)}(b)$.
Proof. Note that $\langle u, v\rangle_{\mathbf{D}}=-\langle u, \Delta v\rangle_{l^{2}}$ for $u, v \in \mathbf{D}_{0}$ (see [4, Lemma 3]). Using Lemma 2.3 and Proposition 2.5, we obtain

$$
\left\langle g_{a}^{(k)}, g_{b}^{(l)}\right\rangle_{\mathbf{D}}=-\left\langle g_{a}^{(k)}, \Delta g_{b}^{(l)}\right\rangle_{l^{2}}=\left\langle g_{a}^{(k)}, g_{b}^{(l-1)}\right\rangle_{l^{2}}=g_{a}^{(k+l-1)}(b)
$$

3. Conditions for $g_{a}^{(k)} \in \mathbf{D}_{0}$

For $\mu, \nu \in L^{+}(V)$ we define the Green potential $G \mu$ and the mutual Green energy $G(\mu, \nu)$ by

$$
\begin{aligned}
G \mu(x) & =\left\langle g_{x}, \mu\right\rangle_{l^{2}}, \\
G(\mu, \nu) & =\langle G \mu, \nu\rangle_{l^{2}} .
\end{aligned}
$$

Let

$$
\begin{aligned}
\mathcal{M} & =\left\{\mu \in L^{+}(V) \mid G \mu<\infty \text { on } V\right\} \\
\mathcal{E} & =\left\{\mu \in L^{+}(V) \mid G(\mu, \mu)<\infty\right\}
\end{aligned}
$$

Corollary 2.2 shows that
Lemma 3.1. $g_{a}^{(k)}=G g_{a}^{(k-1)}$.
We recall a lemma.
Lemma 3.2 ([6, Lemma 3.1]). Let $\mu \in L^{+}(V)$. If $G \mu \in \mathbf{D}$, then $\mu \in \mathcal{E}, G \mu \in \mathbf{D}_{0}$, and $\|G \mu\|_{\mathrm{D}}^{2}=G(\mu, \mu)$.
Proposition 3.3. $g_{a}^{(k)} \in \mathbf{D}$ implies $g_{a}^{(k)} \in \mathbf{D}_{0}$.
Proof. Since $g_{a}^{(k-1)} \in L^{+}(V)$, Lemmas 3.1 and 3.2 show the assertion.
Theorem 3.4. $g_{a}^{(k)} \in \mathbf{D}_{0}$ if and only if $g_{a}^{(k-1)} \in \mathcal{E}$. In this case the formula $\left\|g_{a}^{(k)}\right\|_{\mathbf{D}}^{2}=G\left(g_{a}^{(k-1)}, g_{a}^{(k-1)}\right)$ holds.
Proof. First assume $g_{a}^{(k)} \in \mathbf{D}_{0}$. Lemmas 3.1 and 3.2 show $g_{a}^{(k-1)} \in \mathcal{E}$. Next assume $g_{a}^{(k-1)} \in \mathcal{E}$. Then $G g_{a}^{(k-1)} \in \mathbf{D}_{0}$ by [5, Theorem 5.2]. Lemma 3.1 implies $g_{a}^{(k)} \in \mathbf{D}_{0}$. In this case Lemma 3.2 shows $\left\|g_{a}^{(k)}\right\|_{\mathbf{D}}^{2}=G\left(g_{a}^{(k-1)}, g_{a}^{(k-1)}\right)$.

Lemma 3.5. $\mathbf{D}_{0} \cap \mathbf{H}^{(k)}=\{0\}$.
Proof. Let $u \in \mathbf{D}_{0} \cap \mathbf{H}^{(k)}$ and $u_{j}=\Delta^{j} u$ for $0 \leq j \leq k$. Then $u_{j} \in \mathbf{D}_{0}$ by [1, Lemma 3.1]. Since $u_{k}=0$, we have $u_{k-1} \in \mathbf{D}_{0} \cap \mathbf{H}^{(1)}$, so that $u_{k-1}=0$ by [5, Lemma 1.3]. Repeating this argument we have $u=u_{0}=0$

Corollary 3.6. If $g_{a}^{(k-1)} \in \mathcal{E}$, then $g_{a}^{(k)}$ is the unique function $u \in \mathbf{D}_{0}$ with $\Delta^{k} u=$ $(-1)^{k} \delta_{a}$.

Proof. Theorems 3.4 and 2.4 show that $g_{a}^{(k)} \in \mathbf{D}_{0}$ and $\Delta^{k} g_{a}^{(k)}=(-1)^{k} \delta_{a}$. Lemma 3.5 implies the uniqueness.

We introduced in [2] the following condition: There exists a constant $c_{\text {CLD }}>0$ such that

$$
\begin{equation*}
\|f\|_{\mathbf{D}} \leq c_{\mathrm{CLD}}\|\Delta f\|_{\mathbf{D}} \quad \text { for all } f \in L_{0}(V) \tag{CLD}
\end{equation*}
$$

We need a lemma.
Lemma 3.7 ([2, Theorem 3.2]). If (LD) and (CLD) are fulfilled, then $\mathbf{D}_{0} \cap$ $L^{+}(V)=\mathcal{E}$.

Theorem 3.8. If (LD) and (CLD) are fulfilled, then $g_{a}^{(k)} \in \mathcal{E}$ for $k \in \mathbb{N}$.
Proof. Since $g_{a}^{(1)} \in \mathbf{D}_{0}$, Lemma 3.7 implies $g_{a}^{(1)} \in \mathcal{E}$. Theorem 3.4 shows $g_{a}^{(2)} \in \mathbf{D}_{0}$. Repeating this argument, we have our assertion.

4. Multi-Harmonic Green Potential

We define the k-harmonic Green potential $G^{(k)} \mu$ of $\mu \in L^{+}(V)$ and the mutual k-harmonic Green energy $G^{(k)}(\mu, \nu)$ of $\mu, \nu \in L^{+}(V)$ as

$$
\begin{aligned}
G^{(k)} \mu(x) & =\left\langle g_{x}^{(k)}, \mu\right\rangle_{l^{2}} \\
G^{(k)}(\mu, \nu) & =\left\langle G^{(k)} \mu, \nu\right\rangle_{l^{2}} .
\end{aligned}
$$

It is obvious to see that

$$
G^{(1)} \mu=G \mu, \quad G^{(1)}(\mu, \nu)=G(\mu, \nu)
$$

We put

$$
\begin{aligned}
\mathcal{M}^{(k)} & =\left\{\mu \in L^{+}(V) \mid G^{(k)} \mu<\infty \text { on } V\right\}, \\
\mathcal{E}^{(k)} & =\left\{\mu \in L^{+}(V) \mid G^{(k)}(\mu, \mu)<\infty\right\} .
\end{aligned}
$$

Proposition 4.1. For $\mu, \nu \in L^{+}(V)$ we have
(1) $\Delta G^{(k)} \mu=-G^{(k-1)} \mu$ if $\mu \in \mathcal{M}^{(k)}$;
(2) $G^{(k+l)} \mu=G^{(k)} G^{(l)} \mu$ if $\mu \in \mathcal{M}^{(k+l)}$;
(3) $G^{(k+l)}(\mu, \nu)=\left\langle G^{(k)} \mu, G^{(l)} \nu\right\rangle_{l^{2}}$.

Proof. Lemma 2.3 shows

$$
\begin{aligned}
\Delta G^{(k)} \mu(x) & =\Delta \sum_{y \in V} g_{x}^{(k)}(y) \mu(y)=\sum_{y \in V}\left(\Delta g_{y}^{(k)}(x)\right) \mu(y) \\
& =-\sum_{y \in V} g_{y}^{(k-1)}(x) \mu(y)=-G^{(k-1)} \mu(x) .
\end{aligned}
$$

Proposition 2.5 implies

$$
\begin{aligned}
G^{(k+l)} \mu(x) & =\sum_{y \in V} g_{x}^{(k+l)}(y) \mu(y)=\sum_{y \in V} \sum_{z \in V} g_{x}^{(k)}(z) g_{y}^{(l)}(z) \mu(y) \\
& =\sum_{z \in V} g_{x}^{(k)}(z) G^{(l)} \mu(z)=G^{(k)} G^{(l)} \mu(x)
\end{aligned}
$$

By Proposition 2.5 again

$$
\begin{aligned}
G^{(k+l)}(\mu, \nu) & =\sum_{x \in V} \sum_{y \in V} g_{x}^{(k+l)}(y) \mu(x) \nu(y) \\
& =\sum_{x \in V} \sum_{y \in V} \sum_{z \in V} g_{x}^{(k)}(z) g_{y}^{(l)}(z) \mu(x) \nu(y) \\
& =\sum_{z \in V}\left(G^{(k)} \mu(z)\right)\left(G^{(l)} \nu(z)\right) .
\end{aligned}
$$

Corollary 4.2. The following statements hold:
(1) $\mu \in \mathcal{M}^{(k+l)}$ if and only if $G^{(l)} \mu \in \mathcal{M}^{(k)}$;
(2) $g_{a}^{(k+l)}$ is finite if and only if $g_{a}^{(l)} \in \mathcal{M}^{(k)}$.
(3) $\mu \in \mathcal{E}^{(k+l)}$ if and only if $\left\langle G^{(k)} \mu, G^{(l)} \mu\right\rangle_{l^{2}}$ converges.

Proof. Proposition 4.1 (2) and (3) immediately show (1) and (3). Using Lemma 3.1 and Proposition 4.1 (2) we have $g_{a}^{(k+l)}=G^{(k)} g_{a}^{(l)}$, which shows (2).

5. Sufficient Conditions for the Finiteness of Multi-Harmonic Green Functions

Even in the case where \mathcal{N} does not satisfy (LD) or (CLD), some conditions are sufficient to assure the finiteness of multi-harmonic Green function. We say that condition (GB) is fulfilled if

$$
\begin{equation*}
c_{\mathrm{GB}}:=\sup _{x \in V} G 1(x)=\sup _{x \in V} \sum_{y \in V} g_{x}(y)<\infty . \tag{GB}
\end{equation*}
$$

Proposition 5.1. (GB) implies $g_{x}^{(k)}(y) \leq c_{\mathrm{GB}}^{k}$ for $k \geq 1$.
Proof. Let (GB) be fulfilled. We show that $g_{x}^{(k)}(y) \leq c_{\mathrm{GB}}^{k}$ for $x, y \in V$ by induction on k. The base case $k=1$ is trivial. Assume that $g_{x}^{(k-1)}(y) \leq c_{\mathrm{GB}}^{k-1}$ for $x, y \in V$.

Then

$$
g_{x}^{(k)}(y)=\sum_{z \in V} g_{x}^{(k-1)}(z) g_{y}(z) \leq c_{\mathrm{GB}}^{k-1} \sum_{z \in V} g_{y}(z)=c_{\mathrm{GB}}^{k-1} G 1(y) \leq c_{\mathrm{GB}}^{k} .
$$

Let

$$
\beta(x)=\sum_{y \in V} g_{x}(y)^{2}
$$

and consider a condition

$$
\begin{equation*}
B:=\sum_{x \in V} \beta(x)<\infty . \tag{SG}
\end{equation*}
$$

Proposition 5.2. (SG) implies $g_{x}^{(k)}(y)^{2} \leq \beta(x) \beta(y) B^{k-2}$ for $x, y \in V$ and for $k \geq 2$.

Proof. We show the assertion by induction on k. If $k=2$, then

$$
\begin{aligned}
g_{x}^{(2)}(y)^{2} & =\left(\sum_{z \in V} g_{x}(z) g_{y}(z)\right)^{2} \leq\left(\sum_{z \in V} g_{x}(z)^{2}\right)\left(\sum_{z \in V} g_{y}(z)^{2}\right) \\
& =\beta(x) \beta(y) .
\end{aligned}
$$

Suppose that $g_{x}^{(k-1)}(y)^{2} \leq \beta(x) \beta(y) B^{k-3}$ for $x, y \in V$. Then

$$
\begin{aligned}
g_{x}^{(k)}(y)^{2} & =\left(\sum_{z \in V} g_{x}(z) g_{y}^{(k-1)}(z)\right)^{2} \leq\left(\sum_{z \in V} g_{x}(z)^{2}\right)\left(\sum_{z \in V} g_{y}^{(k-1)}(z)^{2}\right) \\
& \leq \beta(x) \sum_{z \in V} \beta(y) \beta(z) B^{k-3}=\beta(x) \beta(y) B^{k-2} .
\end{aligned}
$$

Corollary 5.3. (SG) implies $g_{x}^{(k)}(y) \leq B^{k / 2}$ for $x, y \in V$ and for $k \geq 2$.
Proposition 5.4. $1 \in \mathcal{E}$ implies $g_{x} \in \mathcal{E}$ for $x \in V$.
Proof. Since $g_{x}(y) \leq g_{x}(x)$ for all $y \in V$,

$$
G\left(g_{x}, g_{x}\right)=\sum_{y \in V} \sum_{z \in V} g_{y}(z) g_{x}(z) g_{x}(y) \leq g_{x}(x)^{2} G(1,1) .
$$

Proposition 5.5. (GB) implies $g_{x} \in \mathcal{E}$ for $x \in V$.
Proof. (GB) shows $g_{y}(z) \leq c_{\mathrm{GB}}$, and that

$$
G\left(g_{x}, g_{x}\right)=\sum_{y \in V} \sum_{z \in V} g_{y}(z) g_{x}(y) g_{x}(z) \leq c_{\mathrm{GB}} \sum_{y \in V} g_{x}(y) \sum_{z \in V} g_{x}(z) \leq c_{\mathrm{GB}}^{3} .
$$

Proposition 5.6. (SG) implies $g_{x} \in \mathcal{E}$ for $x \in V$.

Proof.

$$
\begin{aligned}
G\left(g_{x}, g_{x}\right)^{2} & =\left(\sum_{y \in V} \sum_{z \in V} g_{y}(z) g_{x}(y) g_{x}(z)\right)^{2} \\
& \leq\left(\sum_{y \in V} \sum_{z \in V} g_{y}(z)^{2}\right)\left(\sum_{y \in V} \sum_{z \in V} g_{x}(y)^{2} g_{x}(z)^{2}\right) \\
& =\left(\sum_{y \in V} \beta(y)\right) \beta(x)^{2} \leq B^{3} .
\end{aligned}
$$

6. The Limit of Multi-Harmonic Green Functions

We give some general results related to the limit function of $\left\{g_{a}^{(k)}\right\}_{k}$. Propositions 5.1 and 5.2 show

Theorem 6.1. If $c_{\mathrm{GB}}<1$ or $B<1$, then $\lim _{k \rightarrow \infty} g_{x}^{(k)}(y)=0$.
Lemma 6.2. Let $\left\{u_{k}\right\}_{k}$ be a sequence of non-negative superharmonic functions on V. If $\lim _{k \rightarrow \infty} u_{k}\left(x_{0}\right)=\infty$ for some $x_{0} \in V$, then $\lim _{k \rightarrow \infty} u_{k}(x)=\infty$ for each $x \in V$.

Proof. Let x_{1} be a node adjacent to x_{0}. Let $\left\{e_{0}, \ldots, e_{d-1}\right\}$ be the set of arcs adjacent to x_{1} and let y_{j} be the other node of e_{j} for each j. We assume $y_{0}=x_{0}$. Since $\Delta u_{k}\left(x_{1}\right)=\sum_{j=0}^{d-1} r\left(e_{j}\right)^{-1}\left(u_{k}\left(y_{j}\right)-u_{k}\left(x_{1}\right)\right) \leq 0$, we have

$$
r\left(e_{0}\right)^{-1} u_{k}\left(x_{0}\right) \leq \sum_{j=0}^{d-1} r\left(e_{j}\right)^{-1} u_{k}\left(y_{j}\right) \leq\left(\sum_{j=0}^{d-1} r\left(e_{j}\right)^{-1}\right) u_{k}\left(x_{1}\right)
$$

which implies $\lim _{k \rightarrow \infty} u_{k}\left(x_{1}\right)=\infty$. Repeating this argument, we have the assertion.

Proposition 6.3. If $g_{x_{0}}^{\left(k_{0}\right)}\left(x_{0}\right)>1$ for some $x_{0} \in V$ and $k_{0} \in \mathbb{N}$, then $\lim _{k \rightarrow \infty} g_{x}^{(k)}(y)=\infty$ for each $x, y \in V$.

Proof. By Proposition 2.5 we have

$$
g_{x}^{(k)}(x)=\sum_{y \in V} g_{x}^{(k-l)}(y) g_{x}^{(l)}(y) \geq g_{x}^{(k-l)}(x) g_{x}^{(l)}(x)
$$

for $l<k$. Let $\alpha=g_{x_{0}}^{\left(k_{0}\right)}\left(x_{0}\right)>1$. For each $k \in \mathbb{N}$ we take $p, q \in \mathbb{N} \cup\{0\}$ such that $k=p k_{0}+q$ and $0 \leq q<k_{0}$. We have

$$
g_{x_{0}}^{(k)}\left(x_{0}\right) \geq \alpha^{p} \cdot g_{x_{0}}^{(q)}\left(x_{0}\right) \geq \alpha^{p} \cdot \min _{0 \leq q<k_{0}} g_{x_{0}}^{(q)}\left(x_{0}\right) \rightarrow \infty
$$

as $k \rightarrow \infty$. Lemma 6.2 implies $\lim _{k \rightarrow \infty} g_{x}^{(k)}\left(x_{0}\right)=\lim _{k \rightarrow \infty} g_{x_{0}}^{(k)}(x)=\infty$. Using Lemma 6.2 again, we have $\lim _{k \rightarrow \infty} g_{x}^{(k)}(y)=\infty$.

Let

$$
\lambda(\mathcal{N})=\inf \left\{\left.\frac{\|f(x)\|_{\mathbf{D}}^{2}}{\|f(x)\|_{l^{2}}^{2}} \right\rvert\, f \in L_{0}(V)\right\}
$$

and recall the following:
Lemma 6.4 ([3, Theorem 3.3]). The largest number of $\lambda \geq 0$ for which the equation $\Delta u+\lambda u=0$ has a positive solution is equal to $\lambda(\mathcal{N})$.

Theorem 6.5. Assume $\lambda(\mathcal{N})<1$. If $u(x):=\lim _{k \rightarrow \infty} g_{x_{0}}^{(k)}(x)$ is finite for each $x \in V$, then $u=0$.

Proof. Lemma 2.3 shows $\Delta u=-u$, which means that the equation $\Delta u+\lambda u=0$ has a non-negative solution for $\lambda=1$. Lemma 6.4 implies $u=0$.

Lemma 6.6. If $g_{a} \leq g_{a}^{(2)}$ on V, then $g_{a}^{(k)} \leq g_{a}^{(k+1)}$ on V. Especially, $u(x)=$ $\lim _{k \rightarrow \infty} g_{a}^{(k)}(x)$ exists for each $x \in V$ and $0<u(x) \leq \infty$.

Proof. We show the assertion by induction on k. The base case $k=1$ is the assumption. Assume that $g_{a}^{(k-1)} \leq g_{a}^{(k)}$ on V. Then

$$
g_{a}^{(k)}(x)=\left\langle g_{a}^{(k-1)}, g_{x}\right\rangle_{l^{2}} \leq\left\langle g_{a}^{(k)}, g_{x}\right\rangle_{l^{2}}=g_{a}^{(k+1)}(x)
$$

Let $u(x)=\lim _{k \rightarrow \infty} g_{a}^{(k)}(x)$. Then $u(x) \geq g_{a}(x)>0$.

7. The Case of the Linear Network

Let $\mathcal{N}=\langle V, E, K, r\rangle$ be the linear network; $V=\left\{x_{n} \mid n \geq 0\right\}$ and $E=\left\{e_{n} \mid n \geq\right.$ $1\}$. Let $K\left(x_{n-1}, e_{n}\right)=1$ and $K\left(x_{n}, e_{n}\right)=-1$ for each $n \geq 1$, and let $K(x, e)=0$ for any other pairs. Suppose $\sum_{j=1}^{\infty} r\left(e_{j}\right)<\infty$ and let $\rho_{n}:=\sum_{j=n+1}^{\infty} r\left(e_{j}\right)$. Then

$$
\begin{gathered}
g_{x_{m}}\left(x_{n}\right)= \begin{cases}\rho_{m} & \text { if } 0 \leq n<m ; \\
\rho_{n} & \text { if } n \geq m,\end{cases} \\
g_{x_{m}}^{(2)}\left(x_{n}\right)= \begin{cases}n \rho_{m} \rho_{n}+\rho_{m} \sum_{j=n}^{m-1} \rho_{j}+\sum_{j=m}^{\infty} \rho_{j}^{2} & \text { if } 0 \leq n<m ; \\
m \rho_{m}^{2}+\sum_{j=m}^{\infty} \rho_{j}^{2} & \text { if } n=m ; \\
m \rho_{m} \rho_{n}+\rho_{n} \sum_{j=m}^{n-1} \rho_{j}+\sum_{j=n}^{\infty} \rho_{j}^{2} & \text { if } n>m,\end{cases} \\
g_{x_{0}}^{(3)}\left(x_{0}\right)=\sum_{j=0}^{\infty} \rho_{j}^{2} \rho_{0}+\sum_{n=1}^{\infty}\left(\rho_{n} \sum_{j=0}^{n-1} \rho_{j}+\sum_{j=n}^{\infty} \rho_{j}^{2}\right) \rho_{n} .
\end{gathered}
$$

7.1. In the Case $r\left(e_{n}\right)=n^{-\alpha}$. We show $g_{a}^{(2)} \in L(V) \backslash \mathbf{D}_{0}$.

Proposition 7.1. If $r\left(e_{n}\right)=n^{-\alpha}$ for $n \geq 1$ with $3 / 2<\alpha<5 / 3$, then $g_{x_{m}}^{(2)}\left(x_{n}\right)<\infty$ for each m and n and $g_{x_{0}}^{(2)} \notin \mathbf{D}_{0}$.

Proof. Observe that

$$
\begin{equation*}
\frac{(n+1)^{1-\alpha}}{\alpha-1} \leq \rho_{n} \leq \frac{n^{1-\alpha}}{\alpha-1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j=0}^{n-1} \rho_{j} \geq \frac{1}{(\alpha-1)(2-\alpha)}\left((n+1)^{2-\alpha}-1\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{n}^{2} \sum_{j=0}^{n-1} \rho_{j} \geq \frac{1}{(\alpha-1)^{3}(2-\alpha)}\left((n+1)^{4-3 \alpha}-(n+1)^{2-2 \alpha}\right) \tag{3}
\end{equation*}
$$

for $n \geq 1$. Since $2(1-\alpha)<-1$, (1) shows that $\sum_{j=0}^{\infty} \rho_{j}^{2}<\infty$, which assures $g_{x_{m}}^{(2)}\left(x_{n}\right)<\infty$ for each m and n. Since $4-3 \alpha>-1$, (3) implies that $g_{x_{0}}^{(3)}\left(x_{0}\right)=\infty$. Proposition 2.6 shows $g_{x_{0}}^{(2)} \notin \mathbf{D}_{0}$.

7.2. In the Case $r\left(e_{n}\right)=t^{n}$.

Lemma 7.2. If $r\left(e_{n}\right)=t^{n}$ with $0<t<1$, then

$$
c_{\mathrm{GB}}=\frac{t}{(1-t)^{2}} \quad \text { and } \quad B=\frac{t^{2}\left(t^{2}+1\right)}{(1-t)^{4}(1+t)^{2}}
$$

Proof. Let $c(x)=\sum_{y \in V} g_{x}(y)$. Then $c_{\mathrm{GB}}=\sup _{x \in V} c(x)$. We know that $\rho_{n}=$ $t^{n+1} /(1-t)$ and

$$
\begin{aligned}
c\left(x_{m}\right) & =\sum_{n=0}^{\infty} g_{x_{m}}\left(x_{n}\right)=m \rho_{m}+\sum_{n=m}^{\infty} \rho_{n}=\frac{m t^{m+1}}{1-t}+\sum_{n=m}^{\infty} \frac{t^{n+1}}{1-t} \\
& =\frac{m t^{m+1}}{1-t}+\frac{t^{m+1}}{(1-t)^{2}} .
\end{aligned}
$$

We easily have that $\left\{c\left(x_{m}\right)\right\}_{m}$ decreases and that

$$
c_{\mathrm{GB}}=c\left(x_{0}\right)=\frac{t}{(1-t)^{2}} .
$$

Next we have

$$
\begin{aligned}
& \beta\left(x_{m}\right)=m \rho_{m}^{2}+\sum_{n=m}^{\infty} \rho_{n}^{2}=\frac{m t^{2(m+1)}}{(1-t)^{2}}+\sum_{n=m}^{\infty} \frac{t^{2(n+1)}}{(1-t)^{2}} \\
& =\frac{m t^{2(m+1)}}{(1-t)^{2}}+\frac{t^{2(m+1)}}{(1-t)^{2}\left(1-t^{2}\right)}
\end{aligned}
$$

and

$$
B=\sum_{m=0}^{\infty}\left(\frac{m t^{2(m+1)}}{(1-t)^{2}}+\frac{t^{2(m+1)}}{(1-t)^{2}\left(1-t^{2}\right)}\right)=\frac{t^{2}\left(t^{2}+1\right)}{(1-t)^{4}(1+t)^{2}}
$$

There exists a unique solution $t=t_{1} \approx 0.428$ to $B=1$ with $0<t<1$. Theorem 6.1 shows that

Proposition 7.3. If $r\left(e_{n}\right)=t^{n}$ with $0<t<t_{1}$, then $\lim _{k \rightarrow \infty} g_{x_{m}}^{(k)}\left(x_{n}\right)=0$.

Remark 7.4. There exists a unique solution $t=t_{1}^{\prime} \approx 0.382$ to $c_{\mathrm{GB}}=1$ with $0<t<1$. Theorem 6.1 shows that $\lim _{k \rightarrow \infty} g_{x_{m}}^{(k)}\left(x_{n}\right)=0$ if $0<t<t_{1}^{\prime}$; this is a weaker result than Proposition 7.3.
Proposition 7.5. Assume that $\left\{g_{x_{0}}^{(k)}\left(x_{n}\right)\right\}_{k}$ converges to a finite value $u\left(x_{n}\right)$ for each n. If $r\left(e_{n}\right)=t^{n}$ with $t_{2} \approx 0.4331<t<1$, then $u\left(x_{n}\right)=0$.
Proof. Since $\Delta g_{x_{0}}^{(k)}=-g_{x_{0}}^{(k-1)}$, we have

$$
\Delta u=-u \quad \text { on } V .
$$

For simplicity we let $u_{n}=u\left(x_{n}\right)$. By the definition we have

$$
\begin{gathered}
\frac{u_{1}-u_{0}}{t}=-u_{0} \\
\frac{u_{n+1}-u_{n}}{t^{n+1}}+\frac{u_{n-1}-u_{n}}{t^{n}}=-u_{n} \quad \text { for } n \geq 1
\end{gathered}
$$

so that

$$
\begin{gathered}
u_{1}=(1-t) u_{0} \\
u_{n+1}=\left(1+t-t^{n+1}\right) u_{n}-t u_{n-1} \quad \text { for } n \geq 1 .
\end{gathered}
$$

Let $f_{n}(t)$ be the polynomials defined by

$$
\begin{gathered}
f_{0}(t)=1, \quad f_{1}(t)=1-t \\
f_{n+1}(t)=\left(1+t-t^{n+1}\right) f_{n}(t)-t f_{n-1}(t) \quad \text { for } n \geq 1 .
\end{gathered}
$$

Then $u_{n}=f_{n}(t) u_{0}$. Since $u(x) \geq 0$, we must have $f_{n}(t) \geq 0$ unless $u_{0}=0$. On the other hand Mathematica teaches us that $f_{2}(t)<0$ if $0.6<t<1$ and $f_{12}(t)<0$ if $0.4331<t<0.7$. These imply that $u_{0}=0$ if $t_{2}<t<1$, and that $u_{n}=0$ for all n.
Proposition 7.6. Let $t_{3} \approx 0.445$ be a unique solution to $t^{3}-t^{2}-2 t+1=0$ with $0<t<1$. If $t_{3}<t<1$, then $\lim _{k \rightarrow \infty} g_{x_{0}}^{(k)}\left(x_{n}\right)=\infty$ for each n.

Proof. First observe that

$$
\begin{gathered}
g_{x_{0}}\left(x_{n}\right)=\rho_{n}=\frac{t^{n+1}}{1-t} \\
g_{x_{0}}^{(2)}\left(x_{n}\right)=\rho_{n} \sum_{j=0}^{n-1} \rho_{j}+\sum_{j=n}^{\infty} \rho_{j}^{2}=\frac{t^{n+2}\left(1+t-t^{n+1}\right)}{(1-t)^{3}(1+t)}
\end{gathered}
$$

Let $\varphi_{n}(t)=-t^{n+2}-t^{3}+2 t^{2}+2 t-1$. Then

$$
g_{x_{0}}^{(2)}\left(x_{n}\right)-g_{x_{0}}\left(x_{n}\right)=\frac{t^{n+1} \varphi_{n}(t)}{(1-t)^{3}(1+t)}
$$

and $\left\{\varphi_{n}(t)\right\}_{n}$ increases for each $0<t<1$. The fact $\varphi_{0}(t)>0$ for $t_{3}<t<1$ implies $\varphi_{n}(t)>0$ for each n, and $g_{x_{0}} \leq g_{x_{0}}^{(2)}$ on V. Lemma 6.6 shows that $u(x)=$ $\lim _{k \rightarrow \infty} g_{x_{0}}^{(k)}(x)$ exists and $0<u(x) \leq \infty$. Proposition 7.5 implies $u(x)=\infty$.

Remark 7.7. In summary

If
$0<t<0.428$
$0.428 \leq t \leq 0.4331$
$0.4331<t \leq 0.445$
$0.445<t<1 \quad \lim _{k \rightarrow \infty} g_{a}^{(k)}=\infty$.
8. The Case of the Homogeneous Tree of Order Three

In this section let \mathcal{N} be the homogeneous tree of order three with $r(e)=1$ for all $e \in E$. In this case [2, Example 4.4] shows that (LD) and (CLD) are fulfilled. Theorem 3.8 and Lemma 3.7 imply $g_{a}^{(k)} \in \mathbf{D}_{0}$.

Denote by $d(a, b)$ the geodesic metric between nodes a and b and by $C_{n}(a)=$ $\{x \in V \mid d(a, x)=n\}$ the discrete circle around $a \in V$ with radius $n \in \mathbb{N}$. We set $C_{0}(a)=\{a\}$.
Lemma 8.1. The harmonic Green function g_{a} is given by

$$
g_{a}(x)=\frac{2^{1-m}}{3} \quad \text { for } x \in C_{m}(a) .
$$

Proof. By the symmetricity of \mathcal{N} we may set $g_{a}(x)=t_{m}$ for $x \in C_{m}(a)$ with $m \geq 0$. The equations $\Delta g_{a}(a)=-1$ and $\Delta g_{a}(x)=0$ for $x \in C_{m}(a)$ with $m \geq 1$ imply

$$
3\left(t_{1}-t_{0}\right)=-1, \quad 2 t_{m+1}+t_{m-1}-3 t_{m}=0 \quad \text { for } m \geq 1
$$

These lead to

$$
t_{m}=t_{0}-\frac{2}{3}+\frac{2^{1-m}}{3}
$$

The condition $g_{a} \in \mathbf{D}_{0}$ gives $\lim _{m \rightarrow \infty} t_{m}=0$. We have $t_{0}=2 / 3$ and $t_{m}=2^{1-m} / 3$.

Remark 8.2. We see easily $\sum_{x \in V} g_{a}(x)=\infty$, which means $c_{\mathrm{GB}}=\infty$.
Proposition 8.3. The 2-harmonic Green function $g_{a}^{(2)}$ is given by

$$
\begin{gathered}
g_{a}^{(2)}(a)=10 / 9 \\
g_{a}^{(2)}(x)=\frac{2^{1-m}(3 m+5)}{9} \quad \text { for } x \in C_{m}(a) \text { with } m \geq 1
\end{gathered}
$$

Proof. We denote by $|A|$ the cardinality of a set A. We have $\left|C_{m}(a)\right|=3 \cdot 2^{m-1}$ and

$$
g_{a}^{(2)}(a)=\sum_{x \in V} g_{a}(x)^{2}=t_{0}^{2}+\sum_{m=1}^{\infty}\left|C_{m}(a)\right| t_{m}^{2}=\frac{4}{9}+\sum_{m=1}^{\infty} \frac{2^{1-m}}{3}=\frac{10}{9} .
$$

Fix $a \in V$ and put $\mu\left(C_{n}(x)\right)=\sum_{y \in C_{n}(x)} g_{a}(y)$. Let $x \in C_{m}(a)$ with $m \geq 1$. We claim

$$
\mu\left(C_{n}(x)\right)= \begin{cases}2^{1-m} / 3 & \text { if } n=0 \\ 2^{n-m} & \text { if } 1 \leq n<m \\ 1 & \text { if } n \geq m\end{cases}
$$

Indeed, first we see that $\mu\left(C_{0}(x)\right)=g_{a}(x)=t_{m}=2^{1-m} / 3$. For $1 \leq n<m$ we have

$$
\mu\left(C_{n}(x)\right)=t_{m-n}+\sum_{j=1}^{n-1} 2^{j-1} t_{m-n+2 j}+2^{n} t_{m+n}=2^{n-m} .
$$

For $n \geq m$ we have

$$
\mu\left(C_{n}(x)\right)=2^{n-m} t_{n-m}+\sum_{j=1}^{m-1} 2^{j-1+n-m} t_{n-m+2 j}+2^{n} t_{m+n}=1 .
$$

The symmetricity of the network implies $g_{x}(y)=t_{n}$ for $y \in C_{n}(x)$. We have

$$
\begin{aligned}
g_{a}^{(2)}(x) & =\sum_{n=0}^{\infty} \sum_{y \in C_{n}(x)} g_{x}(y) g_{a}(y)=\sum_{n=0}^{\infty} t_{n} \mu\left(C_{n}(x)\right) \\
& =\frac{2}{3} \frac{2^{1-m}}{3}+\sum_{n=1}^{m-1} \frac{2^{1-n}}{3} 2^{n-m}+\sum_{n=m}^{\infty} \frac{2^{1-n}}{3} \\
& =\frac{2^{1-m}(3 m+5)}{9} .
\end{aligned}
$$

Remark 8.4. It is easy to see that $g_{a}^{(2)}(x)$ is decreasing with respect to m. Especially $g_{a}^{(2)}(a) \geq g_{a}^{(2)}(x)$.

Proposition 8.5. $u(x)=\lim _{k \rightarrow \infty} g_{a}^{(k)}(x)$ exists for each $x \in V$ and $0<u(x) \leq \infty$. Proof. We see that $g_{a}(a)=2 / 3<10 / 9=g_{a}^{(2)}(a)$ and that

$$
g_{a}(x)=\frac{2^{1-m}}{3}<\frac{2^{1-m}(3 m+5)}{9}=g_{a}^{(2)}(x)
$$

for $x \in C_{m}(a)$ with $m \geq 1$. Lemma 6.6 shows the assertion.
Recall that

$$
\lambda(\mathcal{N})=\inf \left\{\left.\frac{\|f(x)\|_{\mathbf{D}}^{2}}{\|f(x)\|_{l^{2}}^{2}} \right\rvert\, f \in L_{0}(V)\right\} .
$$

Proposition 8.6. $\lambda(\mathcal{N})=3-2 \sqrt{2}$.
Proof. Let $\lambda^{*}=3-2 \sqrt{2}$. We consider the recurrence equations

$$
3\left(t_{1}^{*}-t_{0}^{*}\right)=-\lambda^{*} t_{0}^{*}, \quad 2 t_{m+1}^{*}+t_{m-1}^{*}-3 t_{m}^{*}=-\lambda^{*} t_{m}^{*} \quad \text { for } m \geq 1,
$$

which have a solution

$$
t_{m}^{*}=(1+m / 3) 2^{-m / 2} t_{0}^{*} \quad \text { for } m \geq 0
$$

Define u^{*} as the function $u^{*}(x)=t_{m}^{*}$ for $x \in C_{m}(a)$. Then u^{*} is positive and satisfies $\Delta u^{*}=-\lambda^{*} u^{*}$. Lemma 6.4 shows $\lambda^{*} \leq \lambda(\mathcal{N})$.

On the other hand we consider a sequence $\left\{u^{(n)}\right\}_{n}$ defined by $u^{(n)}(x)=2^{-m / 2}$ if $0 \leq m \leq n$ and $u^{(n)}(x)=0$ if $m>n$ for $x \in C_{m}(a)$. Then $u^{(n)} \in L_{0}(V)$ and

$$
\begin{aligned}
\left\|u^{(n)}\right\|_{l^{2}}^{2} & =1+\sum_{m=1}^{n} 3 \cdot 2^{m-1}\left(2^{-m / 2}\right)^{2}=1+\frac{3 n}{2} \\
\left\|u^{(n)}\right\|_{\mathbf{D}}^{2} & =\sum_{m=0}^{n-1} 3 \cdot 2^{m}\left(2^{-m / 2}-2^{-(m+1) / 2}\right)^{2}+3 \cdot 2^{n}\left(2^{-n / 2}-0\right)^{2} \\
& =3 n\left(1-2^{-1 / 2}\right)^{2}+3 .
\end{aligned}
$$

We have

$$
\begin{aligned}
\lambda(\mathcal{N}) & \leq \frac{\left\|u^{(n)}\right\|_{\mathbf{D}}^{2}}{\left\|u^{(n)}\right\|_{l^{2}}^{2}}=\left(3 n\left(1-2^{-1 / 2}\right)^{2}+3\right) \cdot \frac{2}{3 n+2} \\
& \rightarrow 2\left(1-2^{-1 / 2}\right)^{2}=\lambda^{*}
\end{aligned}
$$

as $n \rightarrow \infty$. Therefore $\lambda(\mathcal{N})=\lambda^{*}$.
Proposition 8.7. $\lim _{k \rightarrow \infty} g_{a}^{(k)}(x)=\infty$.
Proof. Propositions 8.3 and 6.3 show the assertion.
Remark 8.8. The proposition above can be obtained by Propositions 8.5 and 8.6 and Theorem 6.5.

References

[1] Hisayasu Kurata and Maretsugu Yamasaki, The metric growth of the discrete Laplacian, Hokkaido Math. J. 45 (2016), no. 3, 399-417.
[2] , Discrete Green potentials with finite energy, Hokkaido Math. J. 47 (2018), no. 3, 607-624.
[3] Atsushi Murakami and Maretsugu Yamasaki, A weighted Sobolev-Poincaré's inequality on infinite networks, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 34 (2001), 45-52.
[4] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), no. 2, 223-250.
[5] , Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31-44.
[6] , Biharmonic Green function of an infinite network, Mem. Fac. Sci. Shimane Univ. 14 (1980), 55-62.

Hisayasu Kurata: National Institute of Technology, Yonago College; Yonago, Tottori, 683-8502, JAPAN

Email address: kurata@yonago-k.ac.jp
Maretsugu Yamasaki: Matsue, Shimane, 690-0824, JAPAN
Email address: yama0565m@mable.ne.jp

[^0]: 2010 Mathematics Subject Classification. Primary 31C20; Secondary 31C25.
 Key words and phrases. discrete potential theory, multi-harmonic Green functions, multiharmonic Green potential, mutual multi-harmonic Green energy, discrete Laplacian.

