Mem. Gra. Sci. Eng. Shimane Univ. Series B: Mathematics 54 (2021), pp. 1–14

DISCRETE MULTI-HARMONIC GREEN FUNCTIONS

HISAYASU KURATA AND MARETSUGU YAMASAKI

Communicated by Jitsuro Sugie

(Received: January 10, 2020)

ABSTRACT. The harmonic Green function g_a of an infinite network defined as the unique Dirichlet potential which satisfies $\Delta g_a = -\delta_a$. The biharmonic Green function $g_a^{(2)}(x)$ is defined by the convolution of g_x and g_a in [6]. It is known that $\Delta^2 g_a^{(2)} = \delta_a$ if $g_a^{(2)}$ is finite and that $g_a^{(2)}$ is a Dirichlet potential if g_a has a finite Green energy. In this paper, we define the k-harmonic Green function $g_a^{(k)}(x)$ as the convolution of $g_x^{(k-1)}$ and g_a if it converges. We study some potential theoretic properties related to $g_a^{(k)}$.

1. INTRODUCTION WITH PRELIMINARIES

Let $\mathcal{N} = \langle V, E, K, r \rangle$ be an infinite network which is connected and locally finite and has no self-loop, where V is the set of nodes, E is the set of arcs, and the resistance r is a strictly positive function on E. For $x \in V$ and for $e \in E$ the node-arc incidence matrix K is defined by K(x, e) = 1 if x is the initial node of e; K(x, e) = -1 if x is the terminal node of e; K(x, e) = 0 otherwise. Let L(V)be the set of all real valued functions on V, $L^+(V)$ the set of all non-negative real valued functions on V, and $L_0(V)$ the set of all $u \in L(V)$ with finite support. We similarly define L(E), $L^+(E)$, and $L_0(E)$. For $u \in L(V)$ we define the discrete derivative $\nabla u \in L(E)$ and the Laplacian $\Delta u \in L(V)$ as

$$\nabla u(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) u(x)$$
$$\Delta u(x) = \sum_{e \in E} K(x, e) \nabla u(e).$$

For convenience we give specific forms. For $e \in E$ let $x^+ \in V$ be the initial node of e and $x^- \in V$ the terminal node of e. Then

$$\nabla u(e) = \frac{u(x^-) - u(x^+)}{r(e)}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 31C20; Secondary 31C25.

Key words and phrases. discrete potential theory, multi-harmonic Green functions, multi-harmonic Green potential, mutual multi-harmonic Green energy, discrete Laplacian.

For $x \in V$ let $\{e_1, \ldots, e_d\}$ be the set of arcs adjacent to x and let y_j be the other node of e_j for each j. Then

$$\Delta u(x) = \sum_{j=1}^{d} \frac{u(y_j) - u(x)}{r(e_j)}$$

We denote by

$$\Delta^0 u = u, \qquad \Delta^k u = \Delta(\Delta^{k-1} u)$$

for $k \in \mathbb{N}$. For $u, v \in L(V)$ we put

$$\begin{aligned} \langle u, v \rangle_{\mathbf{D}} &= \sum_{e \in E} r(e) \nabla u(e) \nabla v(e), \\ \|u\|_{\mathbf{D}} &= \langle u, u \rangle_{\mathbf{D}}^{1/2} \quad \text{(Dirichlet sum)}, \\ \langle u, v \rangle_{l^2} &= \sum_{x \in V} u(x) v(x), \\ \|u\|_{l^2} &= \langle u, u \rangle_{l^2}^{1/2}. \end{aligned}$$

We define two classes of functions on V as

$$\mathbf{D} = \{ u \in L(V) \mid ||u||_{\mathbf{D}} < \infty \},\$$
$$\mathbf{H}^{(k)} = \{ u \in L(V) \mid \Delta^k u = 0 \text{ on } V \}.$$

Note that $\langle u, v \rangle_{\mathbf{D}}$ is a degenerate bilinear form in **D**; for example, $\langle 1, u \rangle_{\mathbf{D}} = 0$ and $||u + 1||_{\mathbf{D}} = ||u||_{\mathbf{D}}$ for $u \in \mathbf{D}$, where 1 stands for the constant function. It was shown in [5, Theorem 1.1] that **D** is a Hilbert space with respect to the inner product $\langle u, v \rangle_{\mathbf{D}} + u(o)v(o)$ for a fixed node $o \in V$. We easily verify that a sequence $\{u_n\}_n \subset \mathbf{D}$ converges to u in **D** if and only if $\lim_{n\to\infty} ||u_n - u||_{\mathbf{D}} = 0$ and $\{u_n\}_n$ converges pointwise to u. Denote by \mathbf{D}_0 the closure of $L_0(V)$ in **D**. We call a function in **D** and in \mathbf{D}_0 a Dirichlet function and a Dirichlet potential, respectively.

We always assume that the network is hyperbolic, i.e., for each $a \in V$ there exists the harmonic Green function g_a with pole at a. Also we assume that the network satisfies the following condition: There exists a constant $c_{\text{LD}} > 0$ such that

(LD)
$$\|\Delta f\|_{\mathbf{D}} \le c_{\mathrm{LD}} \|f\|_{\mathbf{D}}$$
 for all $f \in L_0(V)$.

We define the k-harmonic Green function $g_a^{(k)}(x)$ in Section 2 as a convolution of $g_x^{(k-1)}$ and g_a and study some fundamental relations between these functions under the assumption that $g_a^{(k)}$ is finite. In Section 3 we see that $g_a^{(k)}$ is a Dirichlet potential if \mathcal{N} satisfies conditions (LD) and (CLD) studied in [2]. Some potential theoretic results related to multi-harmonic Green functions in Section 4. We propose some sufficient conditions which assure the finiteness of $g_a^{(k)}$ in case where \mathcal{N} does not satisfy (LD) or (CLD) in Section 5. As for the limit of $\{g_a^{(k)}\}_k$, we show a partial result in Section 6. The explicit form of $g_a^{(2)}$ is given in Section 7 for the infinite linear network and in Section 8 for the homogeneous tree of order three.

2. Multi-Harmonic Green Functions

We construct an multi-harmonic Green function as follows. For $a \in V$ let $g_a^{(0)} = \delta_a$, where δ_a is the characteristic function of the singleton $\{a\}$, and let $g_a^{(1)}$ be the harmonic Green function g_a of \mathcal{N} with pole at $a \in V$, i.e., $g_a \in \mathbf{D}_0$ is a unique function with $\Delta g_a = -\delta_a$. For $k \geq 2$ we define the k-harmonic Green function $g_a^{(k)}$ of \mathcal{N} with pole at a as the convolution of $g_x^{(k-1)}$ and g_a , i.e.,

$$g_a^{(k)}(x) = \langle g_x^{(k-1)}, g_a \rangle_{l^2}$$

if it converges.

Theorem 2.1. If $g_a^{(k)}$ is finite, then $g_a^{(k)}(b) = g_b^{(k)}(a)$ for every $a, b \in V$.

Proof. It is obvious for k = 0. It is well-known that $g_a(b) = g_b(a)$ holds, which shows the case k = 1. Let $k \ge 2$ and assume $g_a^{(j)}(b) = g_b^{(j)}(a)$ for $j \le k - 1$ and for $a, b \in V$. Then

$$g_a^{(k)}(b) = \sum_{x \in V} g_b^{(k-1)}(x) g_a(x) = \sum_{x \in V} g_a(x) \sum_{y \in V} g_x^{(k-2)}(y) g_b(y)$$

= $\sum_{y \in V} \sum_{x \in V} g_a(x) g_y^{(k-2)}(x) g_b(y) = \sum_{y \in V} g_a^{(k-1)}(y) g_b(y)$
= $g_b^{(k)}(a).$

Corollary 2.2. $g_a^{(k)}(x) = \langle g_a^{(k-1)}, g_x \rangle_{l^2}$.

Lemma 2.3. If $g_a^{(k)}$ is finite, then $g_a^{(k)}$ is superharmonic and satisfies $\Delta g_a^{(k)} = -g_a^{(k-1)}$ for $k \ge 1$.

Proof. Theorem 2.1 shows that

$$\Delta g_a^{(k)}(x) = \sum_{y \in V} (\Delta g_y(x)) g_a^{(k-1)}(y) = -\sum_{y \in V} \delta_y(x) g_a^{(k-1)}(y)$$
$$= -g_a^{(k-1)}(x) \le 0$$

as required.

Theorem 2.4. If $g_a^{(k)}$ is finite, then $\Delta^k g_a^{(k)} = (-1)^k \delta_a$.

Proof. Applying Lemma 2.3 repeatedly we have the result.

Proposition 2.5. If $g_a^{(k+l)}$ is finite, then $g_a^{(k+l)}(b) = \langle g_a^{(k)}, g_b^{(l)} \rangle_{l^2}$.

Proof. We show it by induction on l. It is obvious for each k if l = 0. We assume the assertion holds for l - 1. Then

$$g_a^{(k+l)}(b) = \sum_{x \in V} g_a^{(k+l-1)}(x) g_b(x) = \sum_{x \in V} \sum_{y \in V} g_a^{(k)}(y) g_x^{(l-1)}(y) g_b(x)$$

= $\sum_{y \in V} g_a^{(k)}(y) \sum_{x \in V} g_y^{(l-1)}(x) g_b(x) = \sum_{y \in V} g_a^{(k)}(y) g_b^{(l)}(y)$
= $\langle g_a^{(k)}, g_b^{(l)} \rangle_{l^2}.$

Proposition 2.6. If $g_a^{(k)}, g_b^{(l)} \in \mathbf{D}_0$, then $\langle g_a^{(k)}, g_b^{(l)} \rangle_{\mathbf{D}} = g_a^{(k+l-1)}(b)$.

Proof. Note that $\langle u, v \rangle_{\mathbf{D}} = -\langle u, \Delta v \rangle_{l^2}$ for $u, v \in \mathbf{D}_0$ (see [4, Lemma 3]). Using Lemma 2.3 and Proposition 2.5, we obtain

$$\langle g_a^{(k)}, g_b^{(l)} \rangle_{\mathbf{D}} = -\langle g_a^{(k)}, \Delta g_b^{(l)} \rangle_{l^2} = \langle g_a^{(k)}, g_b^{(l-1)} \rangle_{l^2} = g_a^{(k+l-1)}(b).$$

3. Conditions for $g_a^{(k)} \in \mathbf{D}_0$

For $\mu, \nu \in L^+(V)$ we define the Green potential $G\mu$ and the mutual Green energy $G(\mu, \nu)$ by

$$G\mu(x) = \langle g_x, \mu \rangle_{l^2},$$

$$G(\mu, \nu) = \langle G\mu, \nu \rangle_{l^2}.$$

Let

$$\mathcal{M} = \{ \mu \in L^+(V) \mid G\mu < \infty \text{ on } V \},\$$
$$\mathcal{E} = \{ \mu \in L^+(V) \mid G(\mu, \mu) < \infty \}.$$

Corollary 2.2 shows that

Lemma 3.1. $g_a^{(k)} = G g_a^{(k-1)}$.

We recall a lemma.

Lemma 3.2 ([6, Lemma 3.1]). Let $\mu \in L^+(V)$. If $G\mu \in \mathbf{D}$, then $\mu \in \mathcal{E}$, $G\mu \in \mathbf{D}_0$, and $\|G\mu\|_{\mathbf{D}}^2 = G(\mu, \mu)$.

Proposition 3.3. $g_a^{(k)} \in \mathbf{D}$ implies $g_a^{(k)} \in \mathbf{D}_0$.

Proof. Since $g_a^{(k-1)} \in L^+(V)$, Lemmas 3.1 and 3.2 show the assertion.

Theorem 3.4. $g_a^{(k)} \in \mathbf{D}_0$ if and only if $g_a^{(k-1)} \in \mathcal{E}$. In this case the formula $\|g_a^{(k)}\|_{\mathbf{D}}^2 = G(g_a^{(k-1)}, g_a^{(k-1)})$ holds.

Proof. First assume $g_a^{(k)} \in \mathbf{D}_0$. Lemmas 3.1 and 3.2 show $g_a^{(k-1)} \in \mathcal{E}$. Next assume $g_a^{(k-1)} \in \mathcal{E}$. Then $Gg_a^{(k-1)} \in \mathbf{D}_0$ by [5, Theorem 5.2]. Lemma 3.1 implies $g_a^{(k)} \in \mathbf{D}_0$. In this case Lemma 3.2 shows $\|g_a^{(k)}\|_{\mathbf{D}}^2 = G(g_a^{(k-1)}, g_a^{(k-1)})$.

Lemma 3.5. $D_0 \cap H^{(k)} = \{0\}.$

Proof. Let $u \in \mathbf{D}_0 \cap \mathbf{H}^{(k)}$ and $u_i = \Delta^j u$ for $0 \leq j \leq k$. Then $u_i \in \mathbf{D}_0$ by [1, Lemma 3.1]. Since $u_k = 0$, we have $u_{k-1} \in \mathbf{D}_0 \cap \mathbf{H}^{(1)}$, so that $u_{k-1} = 0$ by [5, Lemma 1.3]. Repeating this argument we have $u = u_0 = 0$ \square

Corollary 3.6. If $g_a^{(k-1)} \in \mathcal{E}$, then $g_a^{(k)}$ is the unique function $u \in \mathbf{D}_0$ with $\Delta^k u =$ $(-1)^k \delta_a$.

Proof. Theorems 3.4 and 2.4 show that $g_a^{(k)} \in \mathbf{D}_0$ and $\Delta^k g_a^{(k)} = (-1)^k \delta_a$. Lemma 3.5 implies the uniqueness.

We introduced in [2] the following condition: There exists a constant $c_{\text{CLD}} > 0$ such that

(CLD)
$$||f||_{\mathbf{D}} \le c_{\text{CLD}} ||\Delta f||_{\mathbf{D}}$$
 for all $f \in L_0(V)$.

We need a lemma.

Lemma 3.7 ([2, Theorem 3.2]). If (LD) and (CLD) are fulfilled, then $\mathbf{D}_0 \cap$ $L^+(V) = \mathcal{E}.$

Theorem 3.8. If (LD) and (CLD) are fulfilled, then $g_a^{(k)} \in \mathcal{E}$ for $k \in \mathbb{N}$.

Proof. Since $g_a^{(1)} \in \mathbf{D}_0$, Lemma 3.7 implies $g_a^{(1)} \in \mathcal{E}$. Theorem 3.4 shows $g_a^{(2)} \in \mathbf{D}_0$. Repeating this argument, we have our assertion.

4. Multi-Harmonic Green Potential

We define the k-harmonic Green potential $G^{(k)}\mu$ of $\mu \in L^+(V)$ and the mutual k-harmonic Green energy $G^{(k)}(\mu,\nu)$ of $\mu,\nu\in L^+(V)$ as

$$G^{(k)}\mu(x) = \langle g_x^{(k)}, \mu \rangle_{l^2},$$
$$G^{(k)}(\mu, \nu) = \langle G^{(k)}\mu, \nu \rangle_{l^2}.$$

It is obvious to see that

$$G^{(1)}\mu = G\mu, \qquad G^{(1)}(\mu, \nu) = G(\mu, \nu).$$

We put

$$\mathcal{M}^{(k)} = \{ \mu \in L^+(V) \mid G^{(k)}\mu < \infty \text{ on } V \},\$$
$$\mathcal{E}^{(k)} = \{ \mu \in L^+(V) \mid G^{(k)}(\mu,\mu) < \infty \}.$$

Proposition 4.1. For $\mu, \nu \in L^+(V)$ we have

- (1) $\Delta G^{(k)}\mu = -G^{(k-1)}\mu \text{ if } \mu \in \mathcal{M}^{(k)};$ (2) $G^{(k+l)}\mu = G^{(k)}G^{(l)}\mu \text{ if } \mu \in \mathcal{M}^{(k+l)};$
- (3) $G^{(k+l)}(\mu,\nu) = \langle G^{(k)}\mu, G^{(l)}\nu \rangle_{l^2}.$

Proof. Lemma 2.3 shows

$$\begin{split} \Delta G^{(k)} \mu(x) &= \Delta \sum_{y \in V} g_x^{(k)}(y) \mu(y) = \sum_{y \in V} (\Delta g_y^{(k)}(x)) \mu(y) \\ &= -\sum_{y \in V} g_y^{(k-1)}(x) \mu(y) = -G^{(k-1)} \mu(x). \end{split}$$

Proposition 2.5 implies

$$\begin{split} G^{(k+l)}\mu(x) &= \sum_{y \in V} g_x^{(k+l)}(y)\mu(y) = \sum_{y \in V} \sum_{z \in V} g_x^{(k)}(z)g_y^{(l)}(z)\mu(y) \\ &= \sum_{z \in V} g_x^{(k)}(z)G^{(l)}\mu(z) = G^{(k)}G^{(l)}\mu(x). \end{split}$$

By Proposition 2.5 again

$$\begin{aligned} G^{(k+l)}(\mu,\nu) &= \sum_{x \in V} \sum_{y \in V} g_x^{(k+l)}(y)\mu(x)\nu(y) \\ &= \sum_{x \in V} \sum_{y \in V} \sum_{z \in V} g_x^{(k)}(z)g_y^{(l)}(z)\mu(x)\nu(y) \\ &= \sum_{z \in V} (G^{(k)}\mu(z))(G^{(l)}\nu(z)). \end{aligned}$$

Corollary 4.2. The following statements hold:

(1) $\mu \in \mathcal{M}^{(k+l)}$ if and only if $G^{(l)}\mu \in \mathcal{M}^{(k)}$; (2) $g_a^{(k+l)}$ is finite if and only if $g_a^{(l)} \in \mathcal{M}^{(k)}$. (3) $\mu \in \mathcal{E}^{(k+l)}$ if and only if $\langle G^{(k)}\mu, G^{(l)}\mu \rangle_{l^2}$ converges.

Proof. Proposition 4.1 (2) and (3) immediately show (1) and (3). Using Lemma 3.1 and Proposition 4.1 (2) we have $g_a^{(k+l)} = G^{(k)}g_a^{(l)}$, which shows (2).

5. Sufficient Conditions for the Finiteness of Multi-Harmonic Green Functions

Even in the case where \mathcal{N} does not satisfy (LD) or (CLD), some conditions are sufficient to assure the finiteness of multi-harmonic Green function. We say that condition (GB) is fulfilled if

(GB)
$$c_{\text{GB}} := \sup_{x \in V} G1(x) = \sup_{x \in V} \sum_{y \in V} g_x(y) < \infty.$$

Proposition 5.1. (GB) implies $g_x^{(k)}(y) \le c_{\text{GB}}^k$ for $k \ge 1$.

Proof. Let (GB) be fulfilled. We show that $g_x^{(k)}(y) \leq c_{\text{GB}}^k$ for $x, y \in V$ by induction on k. The base case k = 1 is trivial. Assume that $g_x^{(k-1)}(y) \leq c_{\text{GB}}^{k-1}$ for $x, y \in V$.

Then

$$g_x^{(k)}(y) = \sum_{z \in V} g_x^{(k-1)}(z) g_y(z) \le c_{\text{GB}}^{k-1} \sum_{z \in V} g_y(z) = c_{\text{GB}}^{k-1} G1(y) \le c_{\text{GB}}^k.$$

Let

$$\beta(x) = \sum_{y \in V} g_x(y)^2$$

and consider a condition

(SG) $B := \sum_{x \in V} \beta(x) < \infty.$

Proposition 5.2. (SG) implies $g_x^{(k)}(y)^2 \leq \beta(x)\beta(y)B^{k-2}$ for $x, y \in V$ and for $k \geq 2$.

Proof. We show the assertion by induction on k. If k = 2, then

$$g_x^{(2)}(y)^2 = \left(\sum_{z \in V} g_x(z)g_y(z)\right)^2 \le \left(\sum_{z \in V} g_x(z)^2\right) \left(\sum_{z \in V} g_y(z)^2\right)$$
$$= \beta(x)\beta(y).$$

Suppose that $g_x^{(k-1)}(y)^2 \leq \beta(x)\beta(y)B^{k-3}$ for $x, y \in V$. Then

$$g_x^{(k)}(y)^2 = \left(\sum_{z \in V} g_x(z)g_y^{(k-1)}(z)\right)^2 \le \left(\sum_{z \in V} g_x(z)^2\right) \left(\sum_{z \in V} g_y^{(k-1)}(z)^2\right)$$
$$\le \beta(x)\sum_{z \in V} \beta(y)\beta(z)B^{k-3} = \beta(x)\beta(y)B^{k-2}.$$

Corollary 5.3. (SG) implies $g_x^{(k)}(y) \leq B^{k/2}$ for $x, y \in V$ and for $k \geq 2$. **Proposition 5.4.** $1 \in \mathcal{E}$ implies $g_x \in \mathcal{E}$ for $x \in V$. *Proof.* Since $g_x(y) \leq g_x(x)$ for all $y \in V$,

$$G(g_x, g_x) = \sum_{y \in V} \sum_{z \in V} g_y(z) g_x(z) g_x(y) \le g_x(x)^2 G(1, 1).$$

Proposition 5.5. (GB) implies $g_x \in \mathcal{E}$ for $x \in V$.

Proof. (GB) shows $g_y(z) \leq c_{\text{GB}}$, and that

$$G(g_x, g_x) = \sum_{y \in V} \sum_{z \in V} g_y(z) g_x(y) g_x(z) \le c_{\text{GB}} \sum_{y \in V} g_x(y) \sum_{z \in V} g_x(z) \le c_{\text{GB}}^3.$$

Proposition 5.6. (SG) implies $g_x \in \mathcal{E}$ for $x \in V$.

Proof.

$$G(g_x, g_x)^2 = \left(\sum_{y \in V} \sum_{z \in V} g_y(z) g_x(y) g_x(z)\right)^2$$

$$\leq \left(\sum_{y \in V} \sum_{z \in V} g_y(z)^2\right) \left(\sum_{y \in V} \sum_{z \in V} g_x(y)^2 g_x(z)^2\right)$$

$$= \left(\sum_{y \in V} \beta(y)\right) \beta(x)^2 \leq B^3.$$

6. The Limit of Multi-Harmonic Green Functions

We give some general results related to the limit function of $\{g_a^{(k)}\}_k$. Propositions 5.1 and 5.2 show

Theorem 6.1. If $c_{\text{GB}} < 1$ or B < 1, then $\lim_{k \to \infty} g_x^{(k)}(y) = 0$.

Lemma 6.2. Let $\{u_k\}_k$ be a sequence of non-negative superharmonic functions on V. If $\lim_{k\to\infty} u_k(x_0) = \infty$ for some $x_0 \in V$, then $\lim_{k\to\infty} u_k(x) = \infty$ for each $x \in V$.

Proof. Let x_1 be a node adjacent to x_0 . Let $\{e_0, \ldots, e_{d-1}\}$ be the set of arcs adjacent to x_1 and let y_j be the other node of e_j for each j. We assume $y_0 = x_0$. Since $\Delta u_k(x_1) = \sum_{j=0}^{d-1} r(e_j)^{-1}(u_k(y_j) - u_k(x_1)) \leq 0$, we have

$$r(e_0)^{-1}u_k(x_0) \le \sum_{j=0}^{d-1} r(e_j)^{-1}u_k(y_j) \le \left(\sum_{j=0}^{d-1} r(e_j)^{-1}\right)u_k(x_1)$$

which implies $\lim_{k\to\infty} u_k(x_1) = \infty$. Repeating this argument, we have the assertion.

Proposition 6.3. If $g_{x_0}^{(k_0)}(x_0) > 1$ for some $x_0 \in V$ and $k_0 \in \mathbb{N}$, then $\lim_{k\to\infty} g_x^{(k)}(y) = \infty$ for each $x, y \in V$.

Proof. By Proposition 2.5 we have

$$g_x^{(k)}(x) = \sum_{y \in V} g_x^{(k-l)}(y) g_x^{(l)}(y) \ge g_x^{(k-l)}(x) g_x^{(l)}(x)$$

for l < k. Let $\alpha = g_{x_0}^{(k_0)}(x_0) > 1$. For each $k \in \mathbb{N}$ we take $p, q \in \mathbb{N} \cup \{0\}$ such that $k = pk_0 + q$ and $0 \le q < k_0$. We have

$$g_{x_0}^{(k)}(x_0) \ge \alpha^p \cdot g_{x_0}^{(q)}(x_0) \ge \alpha^p \cdot \min_{0 \le q < k_0} g_{x_0}^{(q)}(x_0) \to \infty$$

as $k \to \infty$. Lemma 6.2 implies $\lim_{k\to\infty} g_x^{(k)}(x_0) = \lim_{k\to\infty} g_{x_0}^{(k)}(x) = \infty$. Using Lemma 6.2 again, we have $\lim_{k\to\infty} g_x^{(k)}(y) = \infty$.

Let

$$\lambda(\mathcal{N}) = \inf \left\{ \frac{\|f(x)\|_{\mathbf{D}}^2}{\|f(x)\|_{l^2}^2} \, | \, f \in L_0(V) \right\}.$$

and recall the following:

Lemma 6.4 ([3, Theorem 3.3]). The largest number of $\lambda \ge 0$ for which the equation $\Delta u + \lambda u = 0$ has a positive solution is equal to $\lambda(\mathcal{N})$.

Theorem 6.5. Assume $\lambda(\mathcal{N}) < 1$. If $u(x) := \lim_{k\to\infty} g_{x_0}^{(k)}(x)$ is finite for each $x \in V$, then u = 0.

Proof. Lemma 2.3 shows $\Delta u = -u$, which means that the equation $\Delta u + \lambda u = 0$ has a non-negative solution for $\lambda = 1$. Lemma 6.4 implies u = 0.

Lemma 6.6. If $g_a \leq g_a^{(2)}$ on V, then $g_a^{(k)} \leq g_a^{(k+1)}$ on V. Especially, $u(x) = \lim_{k\to\infty} g_a^{(k)}(x)$ exists for each $x \in V$ and $0 < u(x) \leq \infty$.

Proof. We show the assertion by induction on k. The base case k = 1 is the assumption. Assume that $g_a^{(k-1)} \leq g_a^{(k)}$ on V. Then

$$g_a^{(k)}(x) = \langle g_a^{(k-1)}, g_x \rangle_{l^2} \le \langle g_a^{(k)}, g_x \rangle_{l^2} = g_a^{(k+1)}(x)$$

Let $u(x) = \lim_{k \to \infty} g_a^{(k)}(x)$. Then $u(x) \ge g_a(x) > 0$.

7. The Case of the Linear Network

Let $\mathcal{N} = \langle V, E, K, r \rangle$ be the linear network; $V = \{x_n \mid n \ge 0\}$ and $E = \{e_n \mid n \ge 1\}$. 1}. Let $K(x_{n-1}, e_n) = 1$ and $K(x_n, e_n) = -1$ for each $n \ge 1$, and let K(x, e) = 0 for any other pairs. Suppose $\sum_{j=1}^{\infty} r(e_j) < \infty$ and let $\rho_n := \sum_{j=n+1}^{\infty} r(e_j)$. Then

$$g_{x_m}(x_n) = \begin{cases} \rho_m & \text{if } 0 \le n < m;\\ \rho_n & \text{if } n \ge m, \end{cases}$$
$$g_{x_m}^{(2)}(x_n) = \begin{cases} n\rho_m\rho_n + \rho_m \sum_{j=n}^{m-1} \rho_j + \sum_{j=m}^{\infty} \rho_j^2 & \text{if } 0 \le n < m;\\ m\rho_m^2 + \sum_{j=m}^{\infty} \rho_j^2 & \text{if } n = m;\\ m\rho_m\rho_n + \rho_n \sum_{j=m}^{n-1} \rho_j + \sum_{j=n}^{\infty} \rho_j^2 & \text{if } n > m, \end{cases}$$
$$g_{x_0}^{(3)}(x_0) = \sum_{j=0}^{\infty} \rho_j^2 \rho_0 + \sum_{n=1}^{\infty} \left(\rho_n \sum_{j=0}^{n-1} \rho_j + \sum_{j=n}^{\infty} \rho_j^2\right) \rho_n.$$

7.1. In the Case $r(e_n) = n^{-\alpha}$. We show $g_a^{(2)} \in L(V) \setminus \mathbf{D}_0$.

Proposition 7.1. If $r(e_n) = n^{-\alpha}$ for $n \ge 1$ with $3/2 < \alpha < 5/3$, then $g_{x_m}^{(2)}(x_n) < \infty$ for each m and n and $g_{x_0}^{(2)} \notin \mathbf{D}_0$.

Proof. Observe that

(1)
$$\frac{(n+1)^{1-\alpha}}{\alpha-1} \le \rho_n \le \frac{n^{1-\alpha}}{\alpha-1},$$

(2)
$$\sum_{j=0}^{n-1} \rho_j \ge \frac{1}{(\alpha-1)(2-\alpha)}((n+1)^{2-\alpha}-1),$$

(3)
$$\rho_n^2 \sum_{j=0}^{n-1} \rho_j \ge \frac{1}{(\alpha-1)^3(2-\alpha)} ((n+1)^{4-3\alpha} - (n+1)^{2-2\alpha})$$

for $n \geq 1$. Since $2(1 - \alpha) < -1$, (1) shows that $\sum_{j=0}^{\infty} \rho_j^2 < \infty$, which assures $g_{x_m}^{(2)}(x_n) < \infty$ for each m and n. Since $4 - 3\alpha > -1$, (3) implies that $g_{x_0}^{(3)}(x_0) = \infty$. Proposition 2.6 shows $g_{x_0}^{(2)} \notin \mathbf{D}_0$.

7.2. In the Case $r(e_n) = t^n$.

Lemma 7.2. If $r(e_n) = t^n$ with 0 < t < 1, then

$$c_{\rm GB} = \frac{t}{(1-t)^2}$$
 and $B = \frac{t^2(t^2+1)}{(1-t)^4(1+t)^2}.$

Proof. Let $c(x) = \sum_{y \in V} g_x(y)$. Then $c_{\text{GB}} = \sup_{x \in V} c(x)$. We know that $\rho_n = t^{n+1}/(1-t)$ and

$$c(x_m) = \sum_{n=0}^{\infty} g_{x_m}(x_n) = m\rho_m + \sum_{n=m}^{\infty} \rho_n = \frac{mt^{m+1}}{1-t} + \sum_{n=m}^{\infty} \frac{t^{n+1}}{1-t}$$
$$= \frac{mt^{m+1}}{1-t} + \frac{t^{m+1}}{(1-t)^2}.$$

We easily have that $\{c(x_m)\}_m$ decreases and that

$$c_{\rm GB} = c(x_0) = \frac{t}{(1-t)^2}.$$

Next we have

$$\beta(x_m) = m\rho_m^2 + \sum_{n=m}^{\infty} \rho_n^2 = \frac{mt^{2(m+1)}}{(1-t)^2} + \sum_{n=m}^{\infty} \frac{t^{2(n+1)}}{(1-t)^2}$$
$$= \frac{mt^{2(m+1)}}{(1-t)^2} + \frac{t^{2(m+1)}}{(1-t)^2(1-t^2)}$$

and

$$B = \sum_{m=0}^{\infty} \left(\frac{mt^{2(m+1)}}{(1-t)^2} + \frac{t^{2(m+1)}}{(1-t)^2(1-t^2)} \right) = \frac{t^2(t^2+1)}{(1-t)^4(1+t)^2}.$$

There exists a unique solution $t = t_1 \approx 0.428$ to B = 1 with 0 < t < 1. Theorem 6.1 shows that

Proposition 7.3. If $r(e_n) = t^n$ with $0 < t < t_1$, then $\lim_{k \to \infty} g_{x_m}^{(k)}(x_n) = 0$.

Remark 7.4. There exists a unique solution $t = t'_1 \approx 0.382$ to $c_{\text{GB}} = 1$ with 0 < t < 1. Theorem 6.1 shows that $\lim_{k\to\infty} g_{x_m}^{(k)}(x_n) = 0$ if $0 < t < t'_1$; this is a weaker result than Proposition 7.3.

Proposition 7.5. Assume that $\{g_{x_0}^{(k)}(x_n)\}_k$ converges to a finite value $u(x_n)$ for each n. If $r(e_n) = t^n$ with $t_2 \approx 0.4331 < t < 1$, then $u(x_n) = 0$.

Proof. Since $\Delta g_{x_0}^{(k)} = -g_{x_0}^{(k-1)}$, we have

 $\Delta u = -u \quad \text{on } V.$

For simplicity we let $u_n = u(x_n)$. By the definition we have

$$\begin{aligned} \frac{u_1 - u_0}{t} &= -u_0, \\ \frac{u_{n+1} - u_n}{t^{n+1}} + \frac{u_{n-1} - u_n}{t^n} &= -u_n \quad \text{for } n \geq 1, \end{aligned}$$

so that

$$u_1 = (1 - t)u_0,$$

$$u_{n+1} = (1 + t - t^{n+1})u_n - tu_{n-1} \text{ for } n \ge 1.$$

Let $f_n(t)$ be the polynomials defined by

$$f_0(t) = 1, \qquad f_1(t) = 1 - t,$$

$$f_{n+1}(t) = (1 + t - t^{n+1})f_n(t) - tf_{n-1}(t) \quad \text{for } n \ge 1.$$

Then $u_n = f_n(t)u_0$. Since $u(x) \ge 0$, we must have $f_n(t) \ge 0$ unless $u_0 = 0$. On the other hand Mathematica teaches us that $f_2(t) < 0$ if 0.6 < t < 1 and $f_{12}(t) < 0$ if 0.4331 < t < 0.7. These imply that $u_0 = 0$ if $t_2 < t < 1$, and that $u_n = 0$ for all n.

Proposition 7.6. Let $t_3 \approx 0.445$ be a unique solution to $t^3 - t^2 - 2t + 1 = 0$ with 0 < t < 1. If $t_3 < t < 1$, then $\lim_{k \to \infty} g_{x_0}^{(k)}(x_n) = \infty$ for each n.

Proof. First observe that

$$g_{x_0}(x_n) = \rho_n = \frac{t^{n+1}}{1-t},$$
$$g_{x_0}^{(2)}(x_n) = \rho_n \sum_{j=0}^{n-1} \rho_j + \sum_{j=n}^{\infty} \rho_j^2 = \frac{t^{n+2}(1+t-t^{n+1})}{(1-t)^3(1+t)}$$

Let $\varphi_n(t) = -t^{n+2} - t^3 + 2t^2 + 2t - 1$. Then

$$g_{x_0}^{(2)}(x_n) - g_{x_0}(x_n) = \frac{t^{n+1}\varphi_n(t)}{(1-t)^3(1+t)}$$

and $\{\varphi_n(t)\}_n$ increases for each 0 < t < 1. The fact $\varphi_0(t) > 0$ for $t_3 < t < 1$ implies $\varphi_n(t) > 0$ for each n, and $g_{x_0} \leq g_{x_0}^{(2)}$ on V. Lemma 6.6 shows that $u(x) = \lim_{k \to \infty} g_{x_0}^{(k)}(x)$ exists and $0 < u(x) \leq \infty$. Proposition 7.5 implies $u(x) = \infty$. Remark 7.7. In summary

 $\begin{array}{ll} \text{If} & \text{then} \\ 0 < t < 0.428 & \lim_{k \to \infty} g_a^{(k)} = 0; \\ 0.428 \le t \le 0.4331 & \text{no information}; \\ 0.4331 < t \le 0.445 & \lim_{k \to \infty} g_a^{(k)} = 0 \text{ provided that it is finite}; \\ 0.445 < t < 1 & \lim_{k \to \infty} g_a^{(k)} = \infty. \end{array}$

8. The Case of the Homogeneous Tree of Order Three

In this section let \mathcal{N} be the homogeneous tree of order three with r(e) = 1 for all $e \in E$. In this case [2, Example 4.4] shows that (LD) and (CLD) are fulfilled. Theorem 3.8 and Lemma 3.7 imply $g_a^{(k)} \in \mathbf{D}_0$.

Denote by d(a, b) the geodesic metric between nodes a and b and by $C_n(a) = \{x \in V \mid d(a, x) = n\}$ the discrete circle around $a \in V$ with radius $n \in \mathbb{N}$. We set $C_0(a) = \{a\}$.

Lemma 8.1. The harmonic Green function g_a is given by

$$g_a(x) = \frac{2^{1-m}}{3} \quad for \ x \in C_m(a).$$

Proof. By the symmetricity of \mathcal{N} we may set $g_a(x) = t_m$ for $x \in C_m(a)$ with $m \ge 0$. The equations $\Delta g_a(a) = -1$ and $\Delta g_a(x) = 0$ for $x \in C_m(a)$ with $m \ge 1$ imply

 $3(t_1 - t_0) = -1,$ $2t_{m+1} + t_{m-1} - 3t_m = 0$ for $m \ge 1.$

These lead to

$$t_m = t_0 - \frac{2}{3} + \frac{2^{1-m}}{3}.$$

The condition $g_a \in \mathbf{D}_0$ gives $\lim_{m\to\infty} t_m = 0$. We have $t_0 = 2/3$ and $t_m = 2^{1-m}/3$.

Remark 8.2. We see easily $\sum_{x \in V} g_a(x) = \infty$, which means $c_{\text{GB}} = \infty$.

Proposition 8.3. The 2-harmonic Green function $g_a^{(2)}$ is given by

$$g_a^{(2)}(a) = 10/9,$$

$$g_a^{(2)}(x) = \frac{2^{1-m}(3m+5)}{9} \quad for \ x \in C_m(a) \ with \ m \ge 1.$$

Proof. We denote by |A| the cardinality of a set A. We have $|C_m(a)| = 3 \cdot 2^{m-1}$ and

$$g_a^{(2)}(a) = \sum_{x \in V} g_a(x)^2 = t_0^2 + \sum_{m=1}^{\infty} |C_m(a)| t_m^2 = \frac{4}{9} + \sum_{m=1}^{\infty} \frac{2^{1-m}}{3} = \frac{10}{9}.$$

Fix $a \in V$ and put $\mu(C_n(x)) = \sum_{y \in C_n(x)} g_a(y)$. Let $x \in C_m(a)$ with $m \ge 1$. We claim

$$\mu(C_n(x)) = \begin{cases} 2^{1-m}/3 & \text{if } n = 0; \\ 2^{n-m} & \text{if } 1 \le n < m; \\ 1 & \text{if } n \ge m. \end{cases}$$

Indeed, first we see that $\mu(C_0(x)) = g_a(x) = t_m = 2^{1-m}/3$. For $1 \le n < m$ we have

$$\mu(C_n(x)) = t_{m-n} + \sum_{j=1}^{n-1} 2^{j-1} t_{m-n+2j} + 2^n t_{m+n} = 2^{n-m}.$$

For $n \geq m$ we have

$$\mu(C_n(x)) = 2^{n-m} t_{n-m} + \sum_{j=1}^{m-1} 2^{j-1+n-m} t_{n-m+2j} + 2^n t_{m+n} = 1.$$

The symmetricity of the network implies $g_x(y) = t_n$ for $y \in C_n(x)$. We have

$$g_a^{(2)}(x) = \sum_{n=0}^{\infty} \sum_{y \in C_n(x)} g_x(y) g_a(y) = \sum_{n=0}^{\infty} t_n \mu(C_n(x))$$
$$= \frac{2}{3} \frac{2^{1-m}}{3} + \sum_{n=1}^{m-1} \frac{2^{1-n}}{3} 2^{n-m} + \sum_{n=m}^{\infty} \frac{2^{1-n}}{3}$$
$$= \frac{2^{1-m}(3m+5)}{9}.$$

Remark 8.4. It is easy to see that $g_a^{(2)}(x)$ is decreasing with respect to m. Especially $g_a^{(2)}(a) \ge g_a^{(2)}(x)$.

Proposition 8.5. $u(x) = \lim_{k\to\infty} g_a^{(k)}(x)$ exists for each $x \in V$ and $0 < u(x) \le \infty$. *Proof.* We see that $g_a(a) = 2/3 < 10/9 = g_a^{(2)}(a)$ and that

$$g_a(x) = \frac{2^{1-m}}{3} < \frac{2^{1-m}(3m+5)}{9} = g_a^{(2)}(x)$$

for $x \in C_m(a)$ with $m \ge 1$. Lemma 6.6 shows the assertion.

Recall that

$$\lambda(\mathcal{N}) = \inf \left\{ \frac{\|f(x)\|_{\mathbf{D}}^2}{\|f(x)\|_{l^2}^2} \, | \, f \in L_0(V) \right\}.$$

Proposition 8.6. $\lambda(\mathcal{N}) = 3 - 2\sqrt{2}$.

Proof. Let $\lambda^* = 3 - 2\sqrt{2}$. We consider the recurrence equations

$$3(t_1^* - t_0^*) = -\lambda^* t_0^*, \qquad 2t_{m+1}^* + t_{m-1}^* - 3t_m^* = -\lambda^* t_m^* \quad \text{for } m \ge 1,$$

which have a solution

$$t_m^* = (1 + m/3)2^{-m/2}t_0^* \text{ for } m \ge 0.$$

Define u^* as the function $u^*(x) = t_m^*$ for $x \in C_m(a)$. Then u^* is positive and satisfies $\Delta u^* = -\lambda^* u^*$. Lemma 6.4 shows $\lambda^* \leq \lambda(\mathcal{N})$.

On the other hand we consider a sequence $\{u^{(n)}\}_n$ defined by $u^{(n)}(x) = 2^{-m/2}$ if $0 \le m \le n$ and $u^{(n)}(x) = 0$ if m > n for $x \in C_m(a)$. Then $u^{(n)} \in L_0(V)$ and

$$\begin{aligned} \|u^{(n)}\|_{l^{2}}^{2} &= 1 + \sum_{m=1}^{n} 3 \cdot 2^{m-1} (2^{-m/2})^{2} = 1 + \frac{3n}{2}, \\ \|u^{(n)}\|_{\mathbf{D}}^{2} &= \sum_{m=0}^{n-1} 3 \cdot 2^{m} (2^{-m/2} - 2^{-(m+1)/2})^{2} + 3 \cdot 2^{n} (2^{-n/2} - 0)^{2} \\ &= 3n(1 - 2^{-1/2})^{2} + 3. \end{aligned}$$

We have

$$\lambda(\mathcal{N}) \le \frac{\|u^{(n)}\|_{\mathbf{D}}^2}{\|u^{(n)}\|_{l^2}^2} = (3n(1-2^{-1/2})^2+3) \cdot \frac{2}{3n+2}$$

$$\to 2(1-2^{-1/2})^2 = \lambda^*$$

as $n \to \infty$. Therefore $\lambda(\mathcal{N}) = \lambda^*$.

Proposition 8.7. $\lim_{k\to\infty} g_a^{(k)}(x) = \infty$.

Proof. Propositions 8.3 and 6.3 show the assertion.

Remark 8.8. The proposition above can be obtained by Propositions 8.5 and 8.6 and Theorem 6.5.

References

- Hisayasu Kurata and Maretsugu Yamasaki, The metric growth of the discrete Laplacian, Hokkaido Math. J. 45 (2016), no. 3, 399–417.
- [2] _____, Discrete Green potentials with finite energy, Hokkaido Math. J. 47 (2018), no. 3, 607–624.
- [3] Atsushi Murakami and Maretsugu Yamasaki, A weighted Sobolev-Poincaré's inequality on infinite networks, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. **34** (2001), 45–52.
- [4] Maretsugu Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5 (1975), no. 2, 223–250.
- [5] _____, Discrete potentials on an infinite network, Mem. Fac. Sci. Shimane Univ. 13 (1979), 31–44.
- [6] _____, Biharmonic Green function of an infinite network, Mem. Fac. Sci. Shimane Univ. 14 (1980), 55–62.

HISAYASU KURATA: NATIONAL INSTITUTE OF TECHNOLOGY, YONAGO COLLEGE; YONAGO, TOTTORI, 683-8502, JAPAN

Email address: kurata@yonago-k.ac.jp

MARETSUGU YAMASAKI: MATSUE, SHIMANE, 690-0824, JAPAN *Email address*: yama0565m@mable.ne.jp