DISCRETE q-GREEN POTENTIALS WITH FINITE ENERGY

HISAYASU KURATA AND MARETSUGU YAMASAKI

Communicated by Toshihiro Nakanishi
(Received: November 21, 2017)

ABSTRACT. Discrete q-Green potentials related to the equation $\Delta u - qu = 0$ on an infinite network were studied in [12] as a discrete analogue to [9]. We study some properties of q-Green potentials with finite q-Green energy. The q-Dirichlet energy plays an important role instead of the Dirichlet sum. Our aim is to show that results obtained in [7] in case $q = 0$ hold similarly even in case $q \geq 0$. We show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy.

1. INTRODUCTION WITH PRELIMINARIES

Discrete potential theory on infinite networks related to the discrete Laplacian Δ has been studied by many authors; for example, Anandam [1], Ayadi [2], Kasue [3], Kumaresan and Narayanaraju [4], Lyons and Peres [8], and Yamasaki [11].

Many potential theoretic results related to the equation $\Delta_q u := \Delta u - qu = 0$ on a Riemann surface were given in [9]. The q-harmonic Green function (q-Green function, for short) implies the Green function related to Δ_q. As for the q-Green function of an infinite network, some results which have counterparts in [9] were shown in [12]. Our aim of this paper is to show that every q-Dirichlet potential can be expressed as a difference of two q-Green potentials with finite q-Green energy. We proved in [7] that this property holds in case $q = 0$.

More precisely, let $\mathcal{N} = \langle V, E, K, r \rangle$ be an infinite network which is connected and locally finite and has no self-loop, where V is the set of nodes, E is the set of arcs, and the resistance r is a strictly positive function on E. For $x \in V$ and for $e \in E$ the node-arc incidence matrix K is defined by $K(x, e) = 1$ if x is the initial node of e; $K(x, e) = -1$ if x is the terminal node of e; $K(x, e) = 0$ otherwise. Let $L(V)$ be the set of all real valued functions on V, $L^+(V)$ the set of all non-negative real valued functions on V, and $L_0(V)$ the set of all $u \in L(V)$ with finite support. We similarly define $L(E)$, $L^+(E)$, and $L_0(E)$. Let q be a non-negative function on E.
V with \(q \neq 0 \). For \(u \in L(V) \) we define the discrete derivative \(\nabla u \in L(E) \), the Laplacian \(\Delta u \in L(V) \), and the \(q \)-Laplacian \(\Delta_q u \in L(V) \) as

\[
\nabla u(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) u(x),
\]

\[
\Delta u(x) = \sum_{e \in E} K(x, e) \nabla u(e),
\]

\[
\Delta_q u(x) = \Delta u(x) - q(x) u(x).
\]

For convenience we give specific forms. For \(e \in E \) let \(x^+ \in V \) be the initial node of \(e \) and \(x^- \in V \) the terminal node of \(e \). Then

\[
\nabla u(e) = \frac{u(x^-) - u(x^+)}{r(e)}.
\]

For \(x \in V \) let \(\{e_1, \ldots, e_d\} \) be the set of arcs adjacent to \(x \) and let \(y_j \) be the other node of \(e_j \) for each \(j \). Then

\[
\Delta u(x) = \sum_{j=1}^d \frac{u(y_j) - u(x)}{r(e_j)},
\]

\[
\Delta_q u(x) = \sum_{j=1}^d \frac{u(y_j) - u(x)}{r(e_j)} - q(x) u(x).
\]

For \(u, v \in L(V) \), we put

\[
(u, v)_D = \sum_{e \in E} r(e) \nabla u(e) \nabla v(e),
\]

\[
\|u\|_D = (u, u)_D^{1/2} \quad \text{(Dirichlet sum),}
\]

\[
(u, v)_E = \sum_{e \in E} r(e) \nabla u(e) \nabla v(e) + \sum_{x \in V} q(x) u(x) v(x),
\]

\[
\|u\|_E = (u, u)_E^{1/2} \quad \text{(q-Dirichlet energy)}.
\]

We define some classes of functions on \(V \) as

\[
D = \{ u \in L(V) \mid \|u\|_D < \infty \},
\]

\[
E = \{ u \in L(V) \mid \|u\|_E < \infty \},
\]

\[
H_q = \{ u \in L(V) \mid \Delta_q u = 0 \}.
\]

It is easy to see that \(E \) is a Hilbert space with respect to the inner product \((u, v)_E \). On the other hand, \((u, v)_D \) is a degenerate bilinear form in \(D \); for example, \((1, u)_D = 0 \) and \(\|u + 1\|_D = \|u\|_D \) for \(u \in D \). It was shown in [11, Theorem 1.1] that \(D \) is a Hilbert space with respect to the inner product \((u, v)_D + u(o)v(o) \) for a fixed node \(o \in V \). We easily verify that a sequence \(\{u_n\} \subseteq D \) converges to \(u \) in \(D \) if and only if \(\lim_{n \to \infty} \|u_n - u\|_D = 0 \) and \(\{u_n\} \) converges pointwise to \(u \). Denote by \(D_0 \) and \(E_0 \) the closure of \(L_0(V) \) in \(D \) and in \(E \) respectively. We call a function in \(D \), in \(D_0 \), in \(E \), and in \(E_0 \) a Dirichlet function, a Dirichlet potential, a q-Dirichlet function, and a q-Dirichlet potential, respectively.
It was shown in [7] that the space D_0 is equal to the space of the differences of Green potentials with finite energy provided that conditions (LD) and (CLD) are fulfilled. As an application, we showed a Riesz decomposition of a function whose Laplacian is a Dirichlet function. Our aim is to verify that similar results for q-Green potentials are also valid by replacing conditions (LD) and (CLD) by (LD)$_q$ and (CLD)$_q$, which are defined in Section 3. In contrast with (LD) and (CLD), our modified conditions contain some barriers caused by the term $q u$. We shall discuss in Section 4 some relations among these conditions.

2. The q-Green function

Let us recall some fundamental results related to the q-Dirichlet functions established in [12].

Lemma 2.1 ([12, Theorem 3.1]). $E_0 = D_0 \cap E$.

Lemma 2.2 ([12, Lemma 3.1]). $(u, h)_E = 0$ for every $u \in E_0$ and $h \in H_q \cap E$.

Lemma 2.3 ([12, Theorem 3.2]). Every $u \in E$ is decomposed uniquely into the form $u = v + h$ with $v \in E_0$ and $h \in H_q \cap E$.

We give a fundamental property of the norm in E, which is used repeatedly in the following.

Lemma 2.4. If $\{u_n\}_n \subset E$ converges to $u \in E$ in the norm of E, then $\{u_n\}_n$ converges pointwise to u.

Proof. Let $v_n = u_n - u$ and assume that $\|v_n\|_E \to 0$ as $n \to \infty$. There exists $x_0 \in V$ such that $q(x_0) > 0$. The fact $q(x_0)|v_n(x_0)|^2 \leq \|v_n\|^2_E$ shows that $v_n(x_0) \to 0$ as $n \to \infty$. Since $\|v_n\|_D \leq \|v_n\|_E \to 0$ as $n \to \infty$, by [10, Corollary 2 of Lemma 1] it follows that $\{v_n\}_n$ converges pointwise to 0.

We call a function T defined on \mathbb{R} into \mathbb{R} a normal contraction of \mathbb{R} if $T0 = 0$ and $|Ts_1 - Ts_2| \leq |s_1 - s_2|$ for $s_1, s_2 \in \mathbb{R}$. For example, $Ts = \max\{s, 0\}$ is a normal contraction of \mathbb{R}.

Lemma 2.5 ([12, Lemma 4.2 and before it]). Let T be a normal contraction of \mathbb{R}. Then $\|T \circ u\|_E \leq \|u\|_E$ for $u \in E$. Moreover, $T \circ u \in E_0$ if $u \in E_0$.

Lemma 2.6. Let $f \in L_0(V)$ and $u \in E$. Then

$$(u, f)_E = -\sum_{x \in V} (\Delta_q u(x)) f(x).$$

Proof. Since $(u, f)_D = -\sum_{x \in V} (\Delta u(x)) f(x)$ by [10, Lemma 3], we have

$$
(u, f)_E = -\sum_{x \in V} (\Delta u(x)) f(x) + \sum_{x \in V} q(x) u(x) f(x)
$$

$$= -\sum_{x \in V} (\Delta_q u(x)) f(x)
$$
as required. □
Lemma 3.4. Letting

\[f \]

\[\text{especially converges to} \ G \]

which are similar to those considered in [7].

Conversely, if \(u \) is [12, Theorem 7.2]...Lemma 3.1.

We call \(\text{Green energy} \ G \)

\[q \]

Similarly we define the \(q \)-Green energy \(G_q \)

\[\mu \]

\[\nu \]

\[\text{for each} \ x \in V \}, \]

\[\text{for some} \ q \in \mathbb{N} \text{.} \]

Lemma 3.1 ([12, Lemma 7.1]). \(\Delta q \mu = -\mu \) for \(\mu \in \mathcal{M}_q \).

Lemma 3.2 ([12, Theorem 7.2]). If \(\mu \in \mathcal{E}_q \), then \(G_q \mu \in \mathcal{E}_0 \) and \(\Delta q G_q \mu \leq 0 \). Conversely, if \(u \in \mathcal{E}_0 \) satisfies \(\Delta q u \leq 0 \), then \(u = G_q \mu \) for some \(\mu \in \mathcal{E}_q \).

We show some results for the \(q \)-Green potential and the mutual \(q \)-Green energy, which are similar to those considered in [7].

Lemma 3.3. For \(\mu, \nu \in L_0(V) \cap L^+(V) \) we have

\[(G_q \mu, G_q \nu)_E = G_q(\mu, \nu). \]

Proof. Let \(\mu, \nu \in L_0(V) \cap L^+(V) \). Lemma 3.2 shows that \(G_q \mu \in \mathcal{E}_0 \), so that there exists a sequence \(\{f_n\}_n \subset L_0(V) \) which converges to \(G_q \mu \) in the norm of \(\mathcal{E} \). Especially \(\{f_n\}_n \) converges pointwise to \(G_q \mu \). Lemmas 2.6 and 3.1 imply that

\[(f_n, G_q \nu)_E = -\sum_{x \in V} f_n(x)(\Delta q G_q \nu(x)) = \sum_{x \in V} f_n(x)\nu(x). \]

Letting \(n \to \infty \), we have the assertion.

Lemma 3.4. For \(\mu \in \mathcal{E}_q \), there exists \(\{\mu_n\}_n \subset L_0(V) \cap L^+(V) \) such that \(G_q \mu_n \)

converges to \(G_q \mu \) in the norm of \(\mathcal{E} \) and that \(\{\mu_n\}_n \) converges pointwise to \(\mu \).
Proof. Let $\mu \in \mathcal{E}_q$. Let $\{\mathcal{N}_n\}_n$ be an exhaustion of \mathcal{N} with $\mathcal{N}_n = (V_n, E_n)$. We put $\mu_n = \mu$ on V_n and $\mu_n = 0$ on $V \setminus V_n$. Clearly, $\{\mu_n\}_n$ increases monotonically and converges pointwise to μ. Fatou’s lemma shows that
\[G_q\mu(x) \leq \liminf_{n \to \infty} G_q\mu_n(x) = \lim_{n \to \infty} G_q\mu_n(x) \leq G_q\mu(x), \]
so that $\{G_q\mu_n\}_n$ converges pointwise to $G_q\mu$.

For $m < n$, the monotonicity of $\{\mu_n\}_n$ implies that $\|G_q\mu_n\|_E$ converges and, together with Lemma 3.3, that
\[(G_q\mu_m, G_q\mu_n)_E = G_q(\mu_m, \mu_n) \geq G_q(\mu_m, \mu_m) = \|G_q\mu_m\|_E^2. \]
Consequently
\[\|G_q\mu_n - G_q\mu_m\|_E^2 = \|G_q\mu_n\|_E^2 - 2(G_q\mu_n, G_q\mu_m)_E + \|G_q\mu_m\|_E^2 \]
\[\leq \|G_q\mu_n\|_E^2 - \|G_q\mu_m\|_E^2. \]
Since $G_q\mu_n \in \mathcal{E}_0$ by Lemma 3.2, it follows that $\{G_q\mu_n\}_n$ converges to some $v \in \mathcal{E}_0$ in the norm of E. This means that $v = G_q\mu$, and that $\{G_q\mu_n\}_n$ converges to $G_q\mu$ in the norm of E. \hfill \square

Proposition 3.5. Let $\{\mu_n\}_n \subset \mathcal{E}_q$. If $\{G_q\mu_n\}_n$ converges to some $u \in E$ in the norm of E, then $u = G_q\mu$ for some $\mu \in \mathcal{E}_q$.

Proof. Let $\{\mu_n\}_n \subset \mathcal{E}_q$. Lemma 3.2 implies that $G_q\mu_n \in \mathcal{E}_0$, so that $u \in \mathcal{E}_0$. Lemma 3.1 shows
\[\Delta_q u(x) = \lim_{n \to \infty} \Delta_q G_q\mu_n(x) = - \lim_{n \to \infty} \mu_n(x) \leq 0. \]
Again by Lemma 3.2 we have that $u = G_q\mu$ for some $\mu \in \mathcal{E}_q$. \hfill \square

Now we introduce two conditions which are similar to conditions (LD) and (CLD) considered in [7]. We say that \mathcal{N} satisfies condition (LD)$_q$ if there exists a constant $c > 0$ such that
\[(LD)_q \quad \|\Delta_q f\|_E \leq c\|f\|_E \quad \text{for all } f \in L_0(V). \]
We say that \mathcal{N} satisfies condition (CLD)$_q$ if there exists a constant $c > 0$ such that
\[(CLD)_q \quad \|f\|_E \leq c\|\Delta_q f\|_E \quad \text{for all } f \in L_0(V). \]

Lemma 3.6. Assume (LD)$_q$. Then there exists a constant $c > 0$ such that $\|\Delta_q u\|_E \leq c\|u\|_E$ for all $u \in E$.

Proof. Let $u \in E$. By Lemma 2.3 we find $v \in \mathcal{E}_0$ and $h \in H_q \cap E$ such that $u = v + h$. Lemma 2.2 shows that
\[\|u\|_E^2 = \|v\|_E^2 + 2(v, h)_E + \|h\|_E^2 \]
\[= \|v\|_E^2 + \|h\|_E^2 \geq \|v\|_E^2. \]
Let $\{f_n\}_n$ be a sequence in $L_0(V)$ which converges to v in the norm of E. Then (LD)$_q$ implies that $\|\Delta_q f_n\|_E \leq c\|f_n\|_E$ for all n. Since $\{\Delta_q f_n\}_n$ converges pointwise
to $\Delta_q v$, Fatou’s lemma gives
\[
\|\Delta_q u\|_E = \|\Delta_q v\|_E \leq \liminf_{n \to \infty} \|\Delta_q f_n\|_E \\
\leq c \liminf_{n \to \infty} \|f_n\|_E = \|v\|_E \leq c \|u\|_E
\]
as required. \qed

Lemma 3.7. Assume (LD)$_q$. Then $\Delta_q u \in E_0$ for $u \in E_0$.

Proof. Let $u \in E_0$ and \(\{f_n\} \) a sequence in $L_0(V)$ which converges to u in the norm of E. Then $\|f_n - f_m\|_E \to 0$ as $n, m \to \infty$. Condition (LD)$_q$ implies that
\[
\|\Delta_q f_n - \Delta_q f_m\|_E \leq c \|f_n - f_m\|_E \to 0
\]
as $n, m \to \infty$. Thus $\{\Delta_q f_n\}$ is a Cauchy sequence in E and converges to some $v \in E_0$ in the norm of E. Since $\{\Delta_q f_n\}$ converges pointwise to $\Delta_q u$, we see that $\Delta_q u = v \in E_0$. \qed

Proposition 3.8. Assume both (LD)$_q$ and (CLD)$_q$. Then there exists a constant $c > 0$ such that
\[
\|u\|_E \leq c \|\Delta_q u\|_E \quad \text{for all } u \in E_0.
\]

Proof. Let $u \in E_0$. There exists a sequence $\{f_n\} \subset L_0(V)$ which converges to u in the norm of E. Lemma 3.6 shows that there exists $c_1 > 0$ such that $\|\Delta_q u - \Delta_q f_n\|_E \leq c_1 \|u - f_n\|_E$ for all n, so that $\|\Delta_q f_n\|_E \to \|\Delta_q u\|_E$ as $n \to \infty$. By (CLD)$_q$, there exists $c_2 > 0$ such that $\|f_n\|_E \leq c_2 \|\Delta_q f_n\|_E$ for all n. We have
\[
\|u\|_E = \lim_{n \to \infty} \|f_n\|_E \leq c_2 \lim_{n \to \infty} \|\Delta_q f_n\|_E = c_2 \|\Delta_q u\|_E,
\]
as required. \qed

Lemma 3.9. Let $\{u_n\}$ be a sequence in E_0 such that $\|u_n\|_E$ is bounded and that $\{u_n\}$ converges pointwise to a function $u \in E$. Then $\lim_{n \to \infty} (u_n, v)_E = (u, v)_E$ for $v \in E_0$.

Proof. Let $v \in E_0$. For any $\varepsilon > 0$, there exists $f \in L_0(V)$ such that $\|v - f\|_E < \varepsilon$. We take M with $\|u_n\|_E \leq M$ for all n. Fatou’s lemma shows that $\|u\|_E \leq M$. It is easy to see that $|(u_n - u, f)_E| < \varepsilon$ for sufficiently large n. We have
\[
|(u_n - u, v)_E| \leq |(u_n - u, v - f)_E| + |(u_n - u, f)_E| \\
\leq \|u_n - u\|_E \|v - f\|_E + \varepsilon < (2M + 1)\varepsilon,
\]
and the assertion. \qed

Lemma 3.10. If $\mu \in E_0 \cap L^+(V)$, then there exists $\{\mu_n\} \subset L_0(V) \cap L^+(V)$ which converges to μ in the norm of E.

Proof. Let $\mu \in E_0 \cap L^+(V)$. There exists a sequence $\{f_n\}$ in $L_0(V)$ which converges to μ in the norm of E. Let $\mu_n = \max\{f_n, 0\}$. Then $\|\mu_n\|_E \leq \|f_n\|_E$ by Lemma 2.5. Since $\mu \geq 0$, $\{\mu_n\}$ converges pointwise to μ. Fatou’s lemma gives
\[
\|\mu\|_E \leq \liminf_{n \to \infty} \|\mu_n\|_E \leq \limsup_{n \to \infty} \|\mu_n\|_E \\
\leq \lim_{n \to \infty} \|f_n\|_E = \|\mu\|_E,
\]

or \(\lim_{n \to \infty} \| \mu_n \|_E = \| \mu \|_E \). Since \(\{ \| f_n \|_E \}_n \) is bounded, so is \(\{ \| \mu_n \|_E \}_n \). By Lemma 3.9, \((\mu_n, \mu)_E \to (\mu, \mu)_E = \| \mu \|_E^2 \) as \(n \to \infty \). Thus we have

\[
\| \mu - \mu_n \|_E^2 = \| \mu \|_E^2 - 2(\mu, \mu_n)_E + \| \mu_n \|_E^2 \to 0
\]
as \(n \to \infty \).

Theorem 3.11. \(\mathcal{E}_q = E_0 \cap L^+(V) \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Proof. Let \(\mu \in \mathcal{E}_q \). By Lemma 3.4, there exists \(\{ \mu_n \}_n \subset L_0(V) \cap L^+(V) \) such that \(\{ G_q \mu_n \}_n \) converges to \(G_q \mu \) in the norm of \(E \) and that \(\{ \mu_n \}_n \) converges pointwise to \(\mu \). Lemma 3.2 shows that \(G_q \mu_n \in E_0 \) and \(G_q \mu_n \in E_0 \) for each \(n \). By Lemmas 3.1 and 3.6

\[
\| \mu - \mu_n \|_E = \| \Delta_q G_q \mu_n - \Delta_q G_q \mu \|_E \leq c \| G_q \mu_n - G_q \mu \|_E \to 0
\]
as \(n \to \infty \). Thus \(\mu \in E_0 \).

We show the converse. Let \(\mu \in E_0 \cap L^+(V) \). By Lemma 3.10, there exists \(\{ \mu_n \}_n \subset L_0(V) \cap L^+(V) \) which converges to \(\mu \) in the norm of \(E \). Lemma 3.2 implies \(G_q \mu_n \in E_0 \) for each \(n \). Proposition 3.8 and Lemma 3.1 show that

\[
\| G_q \mu_n - G_q \mu_m \|_E \leq c \| \Delta_q (G_q \mu_n - G_q \mu_m) \|_E = c \| \mu_n - \mu_m \|_E \to 0
\]
as \(n, m \to \infty \). Therefore \(\{ G_q \mu_n \}_n \) converges to some \(u \in E_0 \) in the norm of \(E \). Fatou’s lemma and Lemma 3.3 give

\[
G_q(\mu, \mu) \leq \liminf_{n \to \infty} G_q(\mu_n, \mu_n) = \lim_{n \to \infty} \| G_q \mu_n \|_E^2 = \| u \|_E^2 < \infty.
\]

Namely \(\mu \in \mathcal{E}_q \).

For any \(u \in L(V) \), we define \(G_q u \) by \(G_q u = G_q u^+ - G_q u^- \) if both \(u^+ = \max\{u, 0\} \) and \(u^- = -\min\{u, 0\} \) belong to \(M_q \).

Theorem 3.12. \(E_0 = \mathcal{E}_q - \mathcal{E}_q \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled. In this case, \(u^+, u^- \in \mathcal{E}_q \) for \(u \in E_0 \).

Proof. By Theorem 3.11, \(\mathcal{E}_q - \mathcal{E}_q \subset E_0 \). Conversely, for \(u \in E_0 \), Lemma 2.5 and Theorem 3.11 imply that \(u^+, u^- \in E_0 \cap L^+(V) = \mathcal{E}_q \), so that \(E_0 \subset \mathcal{E}_q - \mathcal{E}_q \).

Theorem 3.13. \(G_q u \in E_0 \) and \(\Delta_q G_q u = -u \) for \(u \in E_0 \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Proof. Let \(u \in E_0 \). Theorem 3.12 shows that \(u^+, u^- \in \mathcal{E}_q \). Lemma 3.2 implies \(G_q u = G_q u^+ - G_q u^- \in E_0 \). By Lemma 3.1 we have

\[
\Delta_q G_q u = \Delta_q G_q u^+ - \Delta_q G_q u^- = -u^+ + u^- = -u
\]
as required.

Corollary 3.14. \(\{ G_q u \mid u \in E_0 \} \subset E_0 \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Theorem 3.15. \(G_q \Delta_q u = -u \) for \(u \in E_0 \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Proof. Let \(u \in E_0 \). Then \(v := \Delta_q u \in E_0 \) by Lemma 3.7. Theorem 3.13 shows that \(G_q v \in E_0 \) and that \(\Delta_q (u + G_q v) = v - v = 0 \). Therefore \(u + G_q v \in E_0 \cap H_q \). Thus \(u + G_q v = 0 \) by Lemma 2.2. □
We arrive at the following main result.

Theorem 3.16. \(E_0 = \{ G_q u - G_q v \mid u, v \in E_q \} \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Proof. Lemma 3.2 implies that \(\{ G_q u - G_q v \mid u, v \in E_q \} \subset E_0 \). We show the converse. Let \(u \in E_0 \). We have \(v := -\Delta_q u \in E_0 \) by Lemma 3.7. Theorem 3.15 shows that \(u = G_q v = G_q v^+ - G_q v^- \). Theorem 3.12 implies that \(v^+, v^- \in E_q \), and that \(u \in \{ G_q u - G_q v \mid u, v \in E_q \} \).

As an application of our results, we shall give a version of Riesz decomposition of \(u \in E^{(2)} = \{ u \in L(V) \mid \Delta_q u \in E \} \) as follows. Let us put

\[
\begin{align*}
E^{(2)}_0 &= \{ u \in L(V) \mid \Delta_q u \in E_0 \}, \\
H^{(2)}_q &= \{ u \in L(V) \mid \Delta_q u \in H_q \}.
\end{align*}
\]

Theorem 3.17. If both (LD)\(_q\) and (CLD)\(_q\) are fulfilled, then for every \(u \in E^{(2)} \), there exist a unique \(v \in E_0 \) and a unique \(w \in H^{(2)}_q \cap E^{(2)} \) such that \(u = G_q v + w \).

Proof. Let \(u \in E^{(2)} \). Applying Lemma 2.3 to \(\Delta_q u \in E \) yields

\[
\Delta_q u = -v + h \quad \text{with} \quad v \in E_0 \quad \text{and} \quad h \in H_q \cap E.
\]

Theorem 3.13 shows that \(\Delta_q G_q v = -v \in E_0 \). Hence \(G_q v \in E^{(2)}_0 \). Let \(w = u - G_q v \). Then \(w \in E^{(2)} \) and

\[
\Delta_q w = \Delta_q u - \Delta_q G_q v = (-v + h) + v = h \in H_q,
\]

so that \(w \in H^{(2)}_q \).

To show the uniqueness, we assume that \(u = G_q v_1 + w_1 = G_q v_2 + w_2 \) with \(v_1, v_2 \in E_0 \) and \(w_1, w_2 \in H^{(2)}_q \cap E^{(2)} \). Theorem 3.13 shows that \(w_1 - w_2 = G_q v_2 - G_q v_1 \in E_0 \). Lemma 3.7 implies \(\Delta_q (w_1 - w_2) \in E_0 \). Since \(w_1 - w_2 \in H^{(2)}_q \), it follows that \(\Delta_q (w_1 - w_2) \in H_q \). Lemma 2.2 shows that \(\Delta_q (w_1 - w_2) = 0 \), so that \(w_1 - w_2 \in H_q \cap E_0 \). Again by Lemma 2.2 we have \(w_1 = w_2 \), so that \(G_q v_1 = G_q v_2 \). Theorem 3.13 gives \(v_1 = -\Delta_q G_q v_1 = -\Delta_q G_q v_2 = v_2 \). □

Corollary 3.18. \(E^{(2)} = E^{(2)}_0 + H^{(2)}_q \cap E^{(2)} \) if both (LD)\(_q\) and (CLD)\(_q\) are fulfilled.

Proof. Clearly \(E^{(2)}_0 + H^{(2)}_q \cap E^{(2)} \subset E^{(2)} \). By Theorem 3.17 we take \(v \in E_0 \) and \(w \in H^{(2)}_q \cap E^{(2)} \) such that \(u = G_q v + w \). Theorem 3.13 shows that \(\Delta_q G_q v = -v \in E_0 \), so that \(G_q v \in E^{(2)}_0 \). □

4. **Conditions (LD)\(_q\) AND (CLD)\(_q\)**

We considered in [7] the following conditions:

(\text{LD}) \ There exists a constant \(c > 0 \) such that \(\| \Delta f \|_D \leq c \| f \|_D \) for all \(f \in L_0(V) \);

(\text{CLD}) \ There exists a constant \(c > 0 \) such that \(\| f \|_D \leq c \| \Delta f \|_D \) for all \(f \in L_0(V) \).

Note that (LD)\(_q\) and (CLD)\(_q\) in Section 3 are obtained by replacing \(D \) by \(E \) and \(\Delta \) by \(\Delta_q \) in (LD) and (CLD).

We recall...
Lemma 4.1 ([6, Lemma 3.2]). Assume (LD). Then there exists a constant \(c > 0 \) such that \(\|\Delta u\|_D \leq c\|u\|_D \) for all \(u \in D \).

First of all, we note that \(\|\Delta u\|_D < \infty \) does not imply \(\|\Delta_q u\|_D < \infty \). In fact, let \(u = 1 \) on \(V \) and \(q \in L^+ (V) \setminus D \). Then \(\|\Delta u\|_D = 0 \) and \(\|\Delta_q u\|_D = \|q\|_D = \infty \).

Let us define \(t(x, y) \) and \(t(x) \) for \(x, y \in V \) by

\[
t(x, y) = \sum_{e \in E} |K(x, e)K(y, e)|r(e)^{-1} \quad \text{if } x \neq y,
\]

\[
t(x) = \sum_{e \in E} |K(x, e)|r(e)^{-1} = \sum_{y \in V} t(x, y).
\]

Then we have

\[
\Delta u(x) = -t(x)u(x) + \sum_{y \in V} t(x, y)u(y).
\]

For convenience sake, we introduce the following conditions:

(qB) \(q(x) \) is bounded on \(V \);
(tB) \(t(x) \) is bounded on \(V \).

Lemma 4.2. Assume both (qB) and (tB). Then there exists a constant \(c > 0 \) such that \(\|qu\|_D \leq c(\sum_{x \in V} u(x)^2)^{1/2} \) and \(\|qu\|_D \leq c\|u\|_E \) for all \(u \in E \).

Proof. Let \(\gamma \) satisfy \(t(x) \leq \gamma \) and \(q(x) \leq \gamma \) for all \(x \in V \). Let \(u \in E \). For \(e \in E \), let \(x_1 \) and \(x_2 \) be the initial node and the terminal node of \(e \). Then

\[
(\nabla (qu)(e))^2 = r(e)^{-2} (q(x_2)u(x_2) - q(x_1)u(x_1))^2
\]

\[
\leq r(e)^{-2} \times 2 (q(x_2)^2u(x_2)^2 + q(x_1)^2u(x_1)^2)
\]

\[
\leq 2r(e)^{-2} \times \gamma (q(x_1)u(x_1)^2 + q(x_2)u(x_2)^2)
\]

\[
= 2\gamma r(e)^{-2} \sum_{x \in V} |K(x, e)|q(x)u(x)^2.
\]

We have

\[
\|qu\|_D^2 = \sum_{e \in E} r(e)(\nabla (qu)(e))^2 \leq 2\gamma \sum_{e \in E} r(e)^{-1} \sum_{x \in V} |K(x, e)|q(x)u(x)^2
\]

\[
= 2\gamma \sum_{x \in V} t(x)q(x)u(x)^2 \leq 2\gamma^2 \sum_{x \in V} q(x)u(x)^2,
\]

which implies \(\|qu\|_D^2 \leq 2\gamma^2 \sum_{x \in V} u(x)^2 \) and \(\|qu\|_D^2 \leq 2\gamma^2 \|u\|_E^2 \).

Proposition 4.3. (LD)$_q$ implies both (qB) and (tB).

Proof. Condition (LD)$_q$ shows that there exists \(c > 0 \) such that \(\|\Delta \delta_a\|_E \leq c\|\delta_a\|_E \) for all \(a \in V \), where \(\delta_a \) is the characteristic function of \(\{a\} \). We shall show that \(t(a) + q(a) \leq c \).
Let \(\{e_j\}_{j=1}^d \subset E \) be the arcs adjacent to \(a \) and let \(b_j \in V \) be the other node of \(e_j \). For \(e \in E \)

\[
\nabla \delta_a(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) \delta_a(x) = -r(e)^{-1} K(a, e).
\]

Since \(K(x, e)^2 = |K(x, e)| \) in general,

\[
\|\delta_a\|_E^2 = \sum_{e \in E} r(e)^{-1} K(a, e)^2 + \sum_{x \in V} q(x) \delta_a(x)^2
\]

\[
= \sum_{e \in E} r(e)^{-1} |K(a, e)| + q(a) = t(a) + q(a).
\]

On the other hand

\[
\Delta_q \delta_a(x) = \sum_{e \in E} K(x, e) \nabla \delta_a(e) - q(x) \delta_a(x)
\]

\[
= - \sum_{e \in E} K(x, e) r(e)^{-1} K(a, e) - q(x) \delta_a(x)
\]

\[
= - \sum_{i=1}^d K(x, e_i) r(e_i)^{-1} K(a, e_i) - q(x) \delta_a(x).
\]

Especially

\[
\Delta_q \delta_a(a) = -t(a) - q(a).
\]

Since \(K(x, e_i)K(a, e_i) = 0 \) unless \(x = a \) or \(x = b_i \) and \(K(b_i, e_i)K(a, e_i) = -1 \), it follows that

\[
\nabla(\Delta_q \delta_a)(e) = -r(e)^{-1} \sum_{x \in V} K(x, e) \Delta_q \delta_a(x)
\]

\[
= r(e)^{-1} \sum_{x \in V} K(x, e) \left(\sum_{i=1}^d K(x, e_i) r(e_i)^{-1} K(a, e_i) + q(x) \delta_a(x) \right)
\]

\[
= r(e)^{-1} \left(K(a, e) t(a) - \sum_{i=1}^d K(b_i, e) r(e_i)^{-1} + K(a, e) q(a) \right).
\]

If \(e = e_j \), then, by \(K(b_j, e_j) = -K(a, e_j) \),

\[
\nabla(\Delta_q \delta_a)(e_j) = r(e_j)^{-1} \left(K(a, e_j) t(a) - K(b_j, e_j) r(e_j)^{-1} + K(a, e_j) q(a) \right)
\]

\[
= r(e_j)^{-1} K(a, e_j) \left(t(a) + r(e_j)^{-1} + q(a) \right).
\]
Consequently
\[
\|\Delta_q \delta_a\|_E^2 \geq \sum_{j=1}^d r(e_j)|\nabla(\Delta \delta_a)(e_j)|^2 + q(a)(\Delta_q \delta_a(a))^2
\]
\[
= \sum_{j=1}^d r(e_j)^{-1}\left(t(a) + r(e_j)^{-1} + q(a)\right)^2 + q(a)(-t(a) - q(a))^2
\]
\[
\geq \sum_{j=1}^d r(e_j)^{-1}\left(t(a) + q(a)\right)^2 + q(a)(t(a) + q(a))^2
\]
\[
= \left(t(a) + q(a)\right)^3.
\]
Combining these we have \(\left(t(a) + q(a)\right)^3 \leq c^2(t(a) + q(a))\), or \(t(a) + q(a) \leq c\). \(\square\)

Assuming \(q = 0\) in the proposition above, we have

Corollary 4.4. (LD) implies (tB).

Proposition 4.5. If both (LD) and (qB) are fulfilled, then there exists a constant \(c > 0\) such that \(\|\Delta_q u\|_D \leq c\|u\|_E\) for all \(u \in E\).

Proof. Let \(u \in E\). Note that Corollary 4.4 implies (tB). Lemmas 4.1 and 4.2 show that there exist constants \(c_1 > 0\) and \(c_2 > 0\) such that \(\|\Delta u\|_D \leq c_1\|u\|_D\) and \(\|qu\|_D \leq c_2\|u\|_E\). We have
\[
\|\Delta_q u\|_D \leq \|\Delta u\|_D + \|qu\|_D \leq (c_1 + c_2)\|u\|_E
\]
as required. \(\square\)

Denote by \(S_q^+\) the set of \(u \in L^+(V)\) such that \(\Delta_q u \leq 0\).

Lemma 4.6. Assume both (qB) and (tB). Then there exists a constant \(c > 0\) such that \(|\Delta_q u(x)| \leq cu(x)\) on \(V\) for all \(u \in S_q^+\).

Proof. Let \(u \in S_q^+\). If we set \(\Delta^* u(x) = \sum_{y \in V} t(x, y)u(y)\), then, since \(\Delta_q u(x) = \Delta^* u(x) - (t(x) + q(x))u(x)\), it follows that
\[
(t(x) + q(x))u(x) \geq \Delta^* u(x) \geq 0,
\]
so that
\[
|\Delta_q u(x)| \leq |\Delta^* u(x)| + |(t(x) + q(x))u(x)| \leq 2(t(x) + q(x))u(x).
\]
We may take \(c = 2\sup_{x \in V}(t(x) + q(x))\). \(\square\)

Theorem 4.7. If both (LD) and (qB) are fulfilled, then there exists a constant \(c > 0\) such that
\[
\|\Delta_q u\|_E \leq c\|u\|_E \quad \text{for all } u \in E_0 \cap S_q^+.
\]
Proof. Let \(u \in E_0 \cap S^+_q \). Note that Corollary 4.4 implies (tB). Proposition 4.5 and Lemma 4.6 show that there exist constants \(c_1 > 0 \) and \(c_2 > 0 \) such that \(\|\Delta_q u\|^2_D \leq c_1 \|u\|^2_E \) and \(|\Delta_q u(x)| \leq c_2 u(x) \) on \(V \). We have
\[
\|\Delta_q u\|^2_E = \|\Delta_q u\|^2_D + \sum_{x \in V} q(x)(\Delta_q u(x))^2 \leq c_1 \|u\|^2_E + c_2 \sum_{x \in V} q(x)u(x)^2
\]
\[
\leq (c_1^2 + c_2^2) \|u\|^2_E,
\]
as required. \(\square \)

Proposition 4.8. If both (qB) and (tB) are fulfilled and if \(q \) is superharmonic on \(V \), i.e., \(\Delta q \leq 0 \) on \(V \), then there exists a constant \(c > 0 \) such that
\[
\sum_{x \in V} q(x)(\Delta_q u(x))^2 \leq c \sum_{x \in V} q(x)u(x)^2
\]
for all \(u \in L(V) \).

Proof. Let \(\gamma \) satisfy \(t(x) \leq \gamma \) and \(q(x) \leq \gamma \) for all \(x \in V \). We set \(\Delta^* u(x) = \sum_{y \in V} t(x,y)u(y) \). Schwarz’s inequality implies that
\[
(\Delta^* u(x))^2 \leq \left(\sum_{y \in V} t(x,y) \right)^2 \left(\sum_{y \in V} t(x,y)u(y)^2 \right) = t(x) \sum_{y \in V} t(x,y)u(y)^2
\]
\[
\leq \gamma \sum_{y \in V} t(x,y)u(y)^2.
\]
Since \(q \) is superharmonic on \(V \), i.e., \(\Delta^* q(x) \leq t(x)q(x) \) on \(V \), it follows that
\[
\sum_{x \in V} q(x)(\Delta^* u(x))^2 \leq \gamma \sum_{x \in V} q(x) \sum_{y \in V} t(x,y)u(y)^2
\]
\[
= \gamma \sum_{y \in V} u(y)^2 \sum_{x \in V} t(x,y)q(x)
\]
\[
= \gamma \sum_{y \in V} u(y)^2 \Delta^* q(y)
\]
\[
\leq \gamma \sum_{y \in V} u(y)^2 t(y)q(y) \leq \gamma^2 \sum_{y \in V} q(y)u(y)^2.
\]
We have
\[
(\Delta_q u(x))^2 = \left(\Delta^* u(x) - (t(x) + q(x))u(x) \right)^2
\]
\[
\leq 2(\Delta^* u(x))^2 + 2(t(x) + q(x))^2u(x)^2
\]
\[
\leq 2(\Delta^* u(x))^2 + 8\gamma^2 u(x)^2,
\]
so that
\[
\sum_{x \in V} q(x)(\Delta_q u(x))^2 \leq 2 \sum_{x \in V} q(x)(\Delta^* u(x))^2 + 8\gamma^2 \sum_{x \in V} q(x)u(x)^2
\]
\[
\leq 10\gamma^2 \sum_{x \in V} q(x)u(x)^2.
\]
This completes the proof. \qed

Theorem 4.9. If q is superharmonic on V, then $(LD)_q$ follows from (LD) and (qB).

Proof. Let $f \in L_0(V)$ and assume (LD) and (qB). Proposition 4.5 shows that there exists a constant $c_1 > 0$ such that $\|\Delta_q f\|_D \leq c_1 \|f\|_E$. Since (tB) is fulfilled by Corollary 4.4, there exists a constant $c_2 > 0$ such that

$$\sum_{x \in V} q(x) (\Delta_q f(x))^2 \leq c_2 \sum_{x \in V} q(x) f(x)^2 \leq c_2 \|f\|_E^2$$

by Proposition 4.8. Thus we have $\|\Delta_q f\|_D^2 \leq (c_1^2 + c_2 c_2) \|f\|_E^2$, so that $(LD)_q$ is fulfilled. \qed

As a generalized version of Poincaré-Sobolev’s inequality, we introduced in [7] the following condition (SPS): There exists a constant $c > 0$ such that

(SPS) \quad $\sum_{x \in V} f(x)^2 \leq c \|f\|_D^2$ for all $f \in L_0(V)$.

Lemma 4.10 ([7, Lemma 2.1]). Assume (SPS). Then there exists a constant $c > 0$ such that

$$\sum_{x \in V} u(x)^2 \leq c \|u\|_D^2 \quad \text{for all } u \in D_0.$$

Proposition 4.11. If both (SPS) and (qB) are fulfilled, then there exists a constant $c > 0$ such that $\|u\|_E \leq c \|u\|_D$ for all $u \in D_0$.

Proof. Let γ be such that $q(x) \leq \gamma$ for all $x \in V$. By Lemma 4.10, there exists a constant $c_1 > 0$ such that

$$\|u\|_E^2 = \|u\|_D^2 + \sum_{x \in V} q(x) u(x)^2 \leq \|u\|_D^2 + \gamma \|u\|_E^2 \leq (1 + c_1 \gamma) \|u\|_D^2,$$

which shows the assertion. \qed

Corollary 4.12. $E_0 = D_0$ if both (SPS) and (qB) are fulfilled.

Proof. Since $D_0 \subseteq E$ by Proposition 4.11, we have $E_0 = D_0 \cap E = D_0$ by Lemma 2.1. \qed

Lemma 4.13. Assume all of (SPS), (qB), and (tB). Then there exists a constant $c > 0$ such that $\|qu\|_D \leq c \|u\|_D$ for all $u \in D_0$.

Proof. Let $u \in D_0$. Then $u \in E_0$ by Corollary 4.12. Lemmas 4.2 and 4.10 show that $\|qu\|_D \leq c_1 (\sum_{x \in V} u(x)^2)^{1/2}$ and $\sum_{x \in V} u(x)^2 \leq c_2 \|u\|_E^2$. Combining these, we have $\|qu\|_D \leq c_1 c_2 \|u\|_D^2$. \qed

Lemma 4.14. $\{\Delta_q u \mid u \in D_0\} \subseteq D_0$ if all of (LD), (SPS), and (qB) are fulfilled.

Proof. Let $u \in D_0$. Then $\Delta u \in D_0$ by [5, Lemma 6.1]. Let $\{f_n\}_n$ be a sequence in $L_0(V)$ such that $\|u - f_n\|_D \to 0$ as $n \to \infty$. There exists a constant $c_1 > 0$ such that $\|qu - qf_n\|_D \leq c_1 \|u - f_n\|_D$ by Lemma 4.13. Since $qf_n \in L_0(V)$, we see that $qu \in D_0$. Therefore $\Delta_q u = \Delta u - qu \in D_0$. \qed
Theorem 4.15. \((LD)_q\) follows from all of \((LD)\), \((SPS)\), and \((qB)\).

Proof. Assume all of \((LD)\), \((SPS)\), and \((qB)\). Let \(\gamma\) be a number such that \(q(x) \leq \gamma\) for all \(x \in V\). Let \(f \in L_0(V)\). There exists a constant \(c_1 > 0\) such that \(\|\Delta_q f\|_E^2 \leq c_1 \|f\|_E^2\) by Proposition 4.5. Since \(\Delta_q f \in L_0(V)\), we have \(\sum_{x \in V} (\Delta_q f(x))^2 \leq c_2 \|\Delta_q f\|_D^2\) by Lemma 4.10. We have

\[
\|\Delta_q f\|_E^2 \leq c_1 \|f\|_E^2 + \sum_{x \in V} q(x)(\Delta_q f(x))^2 \leq c_1 \|f\|_E^2 + \gamma c_2 \|\Delta_q f\|_D^2 \\
\leq c_1(1 + \gamma c_2) \|f\|_E^2,
\]

which shows \((LD)_q\). \(\square\)

Theorem 4.16. \((SPS)\) implies \((CLD)_q\).

Proof. Let \(f \in L_0(V)\). Since \(\Delta_q f \in L_0(V)\), there exists a constant \(c_1 > 0\) by \((SPS)\) such that

\[
\sum_{x \in V} (\Delta_q f(x))^2 \leq c_1 \|\Delta_q f\|_D^2 \quad \text{and} \quad \sum_{x \in V} (f(x))^2 \leq c_1 \|f\|_D^2.
\]

Lemma 2.6 shows that

\[
\|f\|_E^2 = -\sum_{x \in V} (\Delta_q f(x))^2 f(x) \leq \left(\sum_{x \in V} (\Delta_q f(x))^2\right)^{1/2} \left(\sum_{x \in V} (f(x))^2\right)^{1/2} \\
\leq c_1 \|\Delta_q f\|_D \|f\|_D \leq c_1 \|\Delta_q f\|_E \|f\|_E,
\]

or \(\|f\|_E \leq c_1 \|\Delta_q f\|_E\). \(\square\)

Finally we give an example to show that \((LD)\) does not imply \((LD)_q\).

Example 4.17. Let \(\mathcal{N} = \langle V, E, K, r \rangle\) be a linear network, where \(V = \{x_n\}_{n=0}^\infty\), \(E = \{e_n\}_{n=1}^\infty\), and \(r(e_n) = 1\) for each \(n \geq 1\). Let \(K(x_{n-1}, e_n) = 1\) and \(K(x_n, e_n) = -1\) for each \(n \geq 1\), and let \(K(x, e) = 0\) for any other pairs. We showed in [6, Corollary 2.3] that \(\mathcal{N}\) satisfies \((LD)\).

To prove that \((LD)_q\) is not satisfied, we choose \(q(x_k) = k\). Consider the function \(f_n\) defined by \(f_n(x_k) = 1\) if \(k < n\) and \(f_n(x_k) = 0\) otherwise. Then \(\nabla f_n(e_k) = -\delta_{n,k}\), where \(\delta_{n,k}\) is Kronecker’s delta. Therefore

\[
\|f_n\|_E^2 = \sum_{k=1}^\infty (-\delta_{n,k})^2 + \sum_{k=0}^{n-1} k \cdot 1^2 = 1 + \frac{1}{2} n(n - 1).
\]

On the other hand, \(\Delta_q f_n(x_k) = -k\) for \(k \leq n - 2\), so that

\[
\|\Delta_q f_n\|_E^2 \geq \sum_{k=0}^{n-2} q(x_k)(\Delta_q f_n(x_k))^2 = \sum_{k=0}^{n-2} k^3 = \frac{1}{4} (n - 1)^2 (n - 2)^2.
\]

Consequently

\[
\lim_{n \to \infty} \frac{\|\Delta_q f_n\|_E}{\|f_n\|_E} = \infty,
\]

which means that \(\mathcal{N}\) does not satisfy \((LD)_q\).
REFERENCES

H. Kurata: YONAGO NATIONAL COLLEGE OF TECHNOLOGY; YONAGO, TOTTORI, 683-8502, JAPAN

E-mail address: kurata@yonago-k.ac.jp

M. Yamasaki: MATSUE, SHIMANE, 690-0824, JAPAN

E-mail address: yama0565m@mable.ne.jp