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Abstract. This paper is the survey of the works with T. Adachi, H. Tanabe
and M. Kimura. Ruled real hypersurfaces are typical examples of non-Hopf
hypersurfaces in a nonflat complex space form. These examples are constructed
by the same method in a complex projective space and a complex hyperbolic
space. We shall explain geometric properties of ruled real hypersurfaces which
depend on the sign of the sectional curvature of those ambient spaces.

1. Introduction

Among real hypersurfaces isometrically immersed into a nonflat complex space

form M̃n(c)(= CP n(c) or CHn(c)) , n ≧ 2, we pay particular attention to ruled

real hypersurfaces. Every ruled real hypersurface M in M̃n(c) is constructed

by attaching totally geodesic complex hypersurfaces M̃
(s)
n−1(c) on a smooth real

curve γ : I → M̃n(c) with its arclength s defined on some open interval I(⊂ R)
in such a way that the hypersurface M̃

(s)
n−1(c) is orthogonal to the real plane

spanned by {γ̇(s), Jγ̇(s)} at each point γ(s), where J is the Kähler structure of

the ambient space M̃n(c). Then we get a ruled real hypersurface M defined by

M :=
∪
s∈I

M̃
(s)
n−1(c).

The class of ruled real hypersurfaces in M̃n(c) is an abundant class which gives

fruitful results in the theory of real hypersurfaces in M̃n(c). For example, in the
class of all homogeneous real hypersurfaces M2n−1 in CHn(c) (that is, they are
orbits of some subgroups of the full isometry group I(CHn(c)) of CHn(c)), there
exists just one example which is ruled in CHn(c). Moreover, in this class M is
minimal if and only if M is ruled in the ambient space CHn(c) (cf. [4, 6, 5]). On

2010 Mathematics Subject Classification. 53B25, 53C40.
Key words and phrases. ruled real hypersurfaces, nonflat complex space forms, shape operator,

η-parallel, holomorphic distributions, the homogeneous ruled real hypersurface, minimal ruled real
hypersurfaces, geodesics, circles, sectional curvatures, characteristic vector fields, the vector U ,
integral curves, the first curvature.

1



2 S. MAEDA

the contrary, in the class of all homogeneous real hypersurfaces in CP n(c), there
exist six examples which are minimal in CP n(c). However, note that they are not
ruled in CP n(c) (cf. [19, 20]). So we can see that this fact depends on the sign of

the sectional curvature of the ambient space M̃n(c).
The main purpose of this paper is to clarify geometric properties of ruled real

hypersurfaces in M̃n(c) from this viewpoint.
This paper is related to a talk of the author in 2016 (June 16 ∼ 18) International

Conference of the Honam Mathematical Society at Chonbuk National University,
Jeonju, 54896, Republic of Korea.
The author would like to express his hearty thanks to Professors Sang-Eon Han

and Jong Taek Cho for their warm hospitalities.

2. Ruled real hypersurfaces

Real hypersurface M in M̃n(c) is said to be ruled if the holomorphic distribution
T 0M := {X ∈ TM |η(X) = 0} is integrable and each of its leaves (i.e., maximal

integral manifolds) is a totally geodesic complex hypersurface M̃n−1(c) of M̃n(c),
where η is the contact form on M . The construction of ruled real hypersurfaces in
Introduction means that in general a ruled real hypersurface has singularities. So
we must omit such points.

Remark 2.1. Every leaf M̃n−1(c) is totally geodesic in a given ruled real hypersurface

M because M is isometrically immersed into M̃n(c) and M̃n−1(c) is totally geodesic

in the ambient space M̃n(c).

We define two functions µ, ν : M → R by µ = ⟨Aξ, ξ⟩ and ν = ∥Aξ−µξ∥. These
functions µ and ν are important quantities which measure how far the characteristic
vector field ξ is from being a principal curvature vector. A characterization of ruled
real hypersurfaces in terms of the functions µ, ν and the shape operator A is given
as follows.

Proposition 2.2 ([17]). Let M be a real hypersurface in a nonflat complex space

form M̃n(c), n ≧ 2. Then the following three conditions are mutually equivalent.

(1) M is a ruled real hypersurface.
(2) The shape operator A of M satisfies ⟨AX, Y ⟩ = 0 for any tangent vectors

X, Y ∈ TxM orthogonal to ξx at each point x ∈ M .
(3) The set M1 = {x ∈ M | ν(x) ̸= 0} is an open dense subset of M and there

exists a unit vector field U on M1 such that it is orthogonal to ξ and satisfies
that

(2.1) Aξ = µξ + νU, AU = νξ and AX = 0

for an arbitrary tangent vector X orthogonal to both ξ and U .

The reason why we consider the set M1 is that we define the vector field U clearly
by U = (Aξ − µξ)/ν. By this definition, the vector field U cannot be extended to
a smooth vector field on M in general. But in some cases, considering −U instead
of U and −ν instead of ν on some connected components of M1 , we can define a
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smooth vector field U and a smooth function ν on M satisfying the equalities in
(2.1). Hence in this paper, considering a ruled real hypersurface M , we treat M as
a differentiable manifold such that M = M1 ∪ {x ∈ M |ν(x) = 0}.

3. A characterization of the homogeneous ruled real
hypersurfaces in CHn(c)

We first show the following:

Proposition 3.1. In CP n(c), n ≧ 2 every ruled real hypersurface is not complete.
But, in CHn(c), n ≧ 2 there do exist complete ruled real hypersurfaces.

Proof. Let M be a ruled real hypersurface of a nonflat complex space form M̃n(c),
n ≧ 2. By direct computation (for details, see [8]) we have

(3.1) ϕUν = ν2 +
c

4
.

Here, ϕ is the structure tensor on M defined by ϕX := JX−η(X)ξ for all X ∈ TM .
Solving the differential equation (3.1), the function ν is of the following form on
each integral curve ρ with ρ̇(0) = ϕUρ(0) through the point ρ(0) (cf. [1]). When
c > 0,

(3.2) ν(ρ(s)) = ±
(√c

2

)
tan

(√c

2
s+ a

)
with some constant a and when c < 0,

(3.3) ν(ρ(s)) =


±
(√

|c|
2

)
tanh

(√
|c|
2

s+ a
)
,

±
(√

|c|
2

)
,

±
(√

|c|
2

)
coth

(√
|c|
2

s+ a
)

with some constant a, according as the initial condition |ν(ρ(0))| is less than√
|c| /2, equal to

√
|c| /2 or greater than

√
|c| /2. Since we have a choice of di-

rections for the vector field U , we put double signs in (3.2) and (3.3). Moreover,
we can show that every integral curve ρ = ρ(s) of ϕU is a geodesic on each ruled

real hypersurface M in M̃n(c), which means that every ruled real hypersurface of
CP n(c) is not complete. When c < 0, we emphasize that there exist two min-
imal ruled real hypersurfaces which are complete. One is homogeneous and the
other is not homogeneous in the ambient space CHn(c) (for details, see the next
section). □
Motivated by Proposition 3.1, we are interested in the homogeneous ruled real hy-

persurface M in CHn(c). This homogeneous real hypersurface M is an orbit of the
subgroup (of the full isometry group I(CHn(c)) which is the direct of I(CHn−1(c))
and a one-parameter subgroup {φs} whose orbit is a horocycle in RH2(c/4), i.e.,

a circle of positive curvature
√

|c| /2 on a totally real totally geodesic RH2(c/4) of
constant sectional curvature c/4 in CHn(c). Here, I(CHn−1(c)) is the full isometry
group of a totally geodesic complex hypersurface CHn−1(c) of CHn(c)). Note that
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the homogeneous ruled real hypersurface M is obtained by attaching holomorphic
hyperplanes CHn−1(c) on the horocycle (for details, see [10, 6, 12]).
Our aim here is to characterize the homogeneous ruled real hypersurface M in

CHn(c) by observing some geodesics and all integral curves of the characteristic
vector field ξ on M . For this purpose, by observing the extrinsic shape of some
geodesics we prepare the following lemma which is a characterization of all ruled

real hypersurfaces in a nonflat complex space form M̃n(c).

Lemma 3.2. Let M be a real hypersurface of a nonflat complex space form M̃n(c),
n ≧ 2 through an isometric immersion. Then M is ruled in the ambient space

M̃n(c) if and only if at an arbitrary point p ∈ M there exist such orthonormal
vectors v1, v2, . . . , v2n−2(∈ TpM) orthogonal to the characteristic vector ξp that every
geodesic γij,p on M through the point γij,p(0) = p in the direction of vi + vj (1 ≦
i ≦ j ≦ 2n− 2) is an extrinsic geodesic, namely γij,p is also a geodesic in M̃n(c).

Remark 3.3. In the statement of Lemma 3.2, when c > 0, at every fixed point
p ∈ M if we delete the condition that all geodesics through the point γij,p(0) = p
in the direction of vi + vj (1 ≦ i < j ≦ 2n − 2) (, i.e., in this case the initial

vector γ̇ij,p(0) is expressed as γ̇ij,p(0) = (vi + vj)/
√
2 ) are extrinsic geodesics, this

lemma is no longer true (see Remark 3 in [18]). Indeed, let M be a tube of radius
π/(2

√
c ) around a totally geodesic CP (n−1)/2(c), where n(≧ 3) is odd. Then M

has three distinct constant principal curvatures 0 with multiplicity 1,
√
c /2 with

multiplicity n − 1 and −
√
c /2 with multiplicity n − 1, where Aξ = 0. We take

orthonormal bases e1, e2, . . . , en−1 and f1, f2, . . . , fn−1 of principal curvatures
√
c /2

and −
√
c/2, respectively. We here set an orthonormal basis {v1, v2, . . . , v2n−2} of

T 0M defined by vi := (ei+ fi)/
√
2 (1 ≦ i ≦ n−1) and vn−1+i := (ei− fi)/

√
2 (1 ≦

i ≦ n − 1). Then by the construction of the orthonormal basis {v1, v2, . . . , v2n−2}
of T 0M , the Gauss formula: ∇̃XY = ∇XY + ⟨AX, Y ⟩N and the property of
our real hypersurface M : ⟨(∇XA)X,X⟩ = 0 for all X ∈ TM we can see that
our homogeneous real hypersurface M of type (A2) satisfies that every geodesic
γii,p(0) = p in the direction of vi (i = 1, 2, . . . , 2n− 2) is an extrinsic geodesic.
When c < 0, in the statement of Lemma 3.2 we do not know the answer to

the question “Can we delete the condition that all geodesics through the point
γij,p(0) = p in the direction of vi+vj (1 ≦ i < j ≦ 2n−2) are extrinsic geodesics?”.
At the end of Remark 3.3 we review the notion of real hypersurfaces of type (A2)

in a complex projective space. A real hypersurface M of CP n(c), n ≧ 3 is of type
(A2) if M is a tube of radius r (0 < r < π/

√
c ) around a totally geodesic CP ℓ(c)

with 1 ≦ ℓ ≦ n− 2 in CP n(c).

We are now in a position to show the following:

Theorem 3.4 ([12]). A real hypersurface M isometrically immersed into CHn(c),
n ≧ 2 is locally congruent to the homogeneous ruled real hypersurface if and only
if it satisfies the following three conditions.

i) At an arbitrary point p ∈ M , there exist such orthonormal vectors v1, v2, . . . ,
v2n−2(∈ TpM) orthogonal to the characteristic vector ξp that every geodesic
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γij,p on M through the point γij,p(0) = p in the direction of vi + vj (1 ≦
i ≦ j ≦ 2n − 2) is an extrinsic geodesic, namely γij,p is also a geodesic in
CHn(c).

ii) At an arbitrary point p ∈ M , the integral curve γp of the characteristic
vector field ξ on M through γp(0) = p lies locally on a totally real totally
geodesic 2-dimensional real hyperbolic space RH2(c/4) of constant sectional
curvature c/4.

iii) The curvature function κp = ∥∇̃γ̇p γ̇p∥ of the curve γp in ii) does not depend

on the choice of γp, where ∇̃ is the Riemannian connection of the ambient
space CHn(c). This means that for any curves γp, γq in ii) their curvature
functions κp(s) and κy(s) satisfy the following equality with some constant
s0 : κp(s) = κq(s+ s0) for −∞ < ∀s < ∞, where p, q are any points of M .

Due to the works of J. Berndt and others ([4, 5, 6]), we find that the class
of all homogeneous real hypersurfaces M in CHn(c) has just one example which
is minimal in this space. Furthermore, in this ambient space, a homogeneous
real hypersurface M is minimal if and only if it is ruled. This fact implies that
it is interesting to study this minimal homogeneous real hypersurface from the
viewpoint of the geometry of ruled real hypersurfaces. At the end of this section we
characterize this minimal homogeneous real hypersurface in CHn(c) in the class of
all ruled real hypersurfaces M by investing the first curvature of all integral curves
of the characteristic vector field ξ and the vector field U . Note that there exist
minimal non-homogeneous ruled real hypersyrfaces in CHn(c) (see [10, 1]).
We here show the following:

Theorem 3.5 ([15]). Let M2n−1 be a ruled real hypersurface of CHn(c), n ≧ 2.
Then M is homogeneous in this ambient space, i.e., M is an orbit of a subgroup of
the full isometry group I(CHn(c)) of CHn(c) if and only if M satisfies the following
two conditions:

(1) Every integral curve γU of the vector field U in (2.1) is mapped to a curve

of positive first curvature κU := ∥∇̃UU∥ with κU ≦
√
|c| in CHn(c);

(2) Every integral curve γξ of the characteristic vector field ξ in (2.1) is mapped

to a curve of positive first curvature κξ := ∥∇̃ξξ∥ with κξ ≦
√
|c| /2 in

CHn(c).

Here, ∇̃ is the Riemannian connection of the ambient space CHn(c).

We remark that all curves γU = γU(s) in Condition (1) in Theorem 3.5 are

mapped to circles of the same curvature
√

|c| on a holomorphic line CH1(c) of
CHn(c) (, i.e., they are mapped to horocycles in CH1(c)) and all curves γξ = γξ(s)

in Condition (2) in Theorem 3.5 are mapped to circles of the same curvature
√

|c| /2
on a totally real totally geodesic surface RH2(c/4) of constant sectional curvature
c/4 (, i.e., they are mapped to horocycles in RH2(c/4)) in the ambient space
CHn(c).
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4. Classification theorems of minimal ruled real hypersurfaces
in M̃n(c)

We first classify minimal ruled real hypersurfaces in CP n(c).

Theorem 4.1 ([1]). There exists the unique minimal ruled real hypersurface in
CP n(c), n ≧ 2 up to the action of the full isometry group I(CP n(c)). It is con-
structed by attaching holomorphic hyperplanes CP n−1(c) on a geodesic on a totally
real totally geodesic RP 2(c/4) of constant sectional curvature c/4 in the ambient
space CP n(c).

We shall classify minimal ruled real hypersurfaces in CHn(c).

Theorem 4.2 ([1]). There exist three minimal ruled real hypersurfaces in CHn(c),
n ≧ 2 up to the action of the full isometry group I(CHn(c)). They are constructed
by attaching holomorphic hyperplanes CHn−1(c) on a circle of curvature k(≧ 0) on
a totally real totally geodesic RH2(c/4) of constant sectional curvature c/4 in the
ambient space CHn(c). Minimal ruled real hypersurfaces of parabolic type (, i.e.,

k =
√

|c| /2) and axial type (, i.e., 0 ≦ k <
√

|c| /2) are complete, but the minimal

ruled real hypersurface of elliptic type (, i.e., k >
√
|c| /2) is not complete.

For the sake of your convenience we here give images of ruled real hypersurfaces
of axial, parabolic and elliptic types in a ball model Dn =

{
(z1, . . . , zn) ∈ Cn

∣∣
|z1|2 + · · ·+ |zn|2 < 1

}
of a complex hyperbolic space CHn. In figures, dotted lines

imply leaves of ruled real hypersurfaces and lines inside of the balls imply totally
real circles on a totally real totally geodesic RH2, which are denoted by γk in the
above. If we regard these figures as models of RH2 containing the totally real
circles, the dotted lines show integral curves of ϕU . We note that all the totally
real circles have the same pairs of points at infinity as we can see in Fig. 1. In Fig.
2, two lines show horocyclic totally real circles having the same points at infinity.
One may easily guess that the only parabolic one is homogeneous.

Figure 1.
axial type

Figure 2.
parabolic type

Figure 3.
elliptic type

Remark 4.3. In the minimal ruled real hypersurface M of axial type, if we delete
the subset {x ∈ M |ν(x) = 0} of M , then M is not complete.
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5. Sectional curvatures of ruled real hypersurfaces in M̃n(c)

In classical differential geometry, it is well-known that every ruled surface in
3-dimensional Euclidean space R3 has nonpositive Gaussian curvature. Hence we
have an interest in the sectional curvature of every ruled real hypersurface M in

a nonflat complex space form M̃n(c), n ≧ 2. Since every leaf M̃n−1(c) is totally
geodesic in M (see Remark 2.1(2)), in the case of n ≧ 3 we find easily the fact that

the sectional curvature K of every ruled real hypersurface M in M̃n(c) satisfies
sharp inequalities |c/4| ≦ |K(X,Y )| ≦ |c| for an arbitrary pair of orthonormal
vectors X and Y orthogonal to the characteristic vector ξp at each point p of M .
Here, note that in the case of n = 2 we find also the fact that the sectional curvature

K of every ruled real hypersurface M in M̃n(c) satisfies K(X,Y ) = c for each pair
{X, Y } of orthonormal vectors X and Y that are orthogonal to ξ.
Inspired by this fact we study ruled real hypersurfaces M2n−1, n ≧ 2 having the

sectional curvature K with |c/4| ≦ |K| ≦ |c|, that is, the sectional curvature K
satisfies sharp inequalities either c/4 ≦ K(X, Y ) ≦ c (c > 0) or c ≦ K(X, Y ) ≦
c/4 (c < 0) for an arbitrary pair of orthonormal vectors X and Y that are not
necessarily tangent to the leaf at each point p of M .
First of all we give the following inequalities for the sectional curvature K of a

ruled real hypersurface M (cf. [21]).

Lemma 5.1. Let M be a ruled real hypersurface in M̃n(c), n ≧ 2. Then the sec-
tional curvature K of M satisfies the following :

(1) If c > 0, we have (c/4)− ν(p)2 ≦ K ≦ c at every point p ∈ M ;
(2) If c < 0, we have (c/4) − ν(p)2 ≦ K ≦ c/4 at every point p ∈ M with

ν(p)2 ≧ 3|c|/4 and c ≦ K ≦ c/4 at the point p ∈ M with ν(p)2 < 3|c|/4.
These estimates are sharp in the sense that at each point of M we can take a pair
of orthonormal tangent vectors X and Y satisfying K(X, Y ) = k for given k with
Kmin ≦ k ≦ Kmax.

In [10], Lohnherr-Reckziegel studied ruled real hypersurfaces by parameterizing

them by maps of the form f : I× M̃n−1(c) → M̃n(c) and show properties on these
maps. The following lemma is due to them.

Lemma 5.2 ([10]). For every s ∈ I the function ν satisfies the following:

(1) When c > 0, on each leaf M̃
(s)
n−1(c) we have 0 ≦ ν < ∞ ;

(2) When c < 0, on each leaf M̃
(s)
n−1(c) we have either 0 ≦ ν <

√
|c| /2, ν ≡√

|c| /2 or
√
|c| /2 < ν < ∞.

Here we recall the definition of Frenet curves in a Riemannian manifold M̃ . A
smooth curve γ = γ(s) parametrized by its arclength s is called a Frenet curve
of proper order d if there exist a field of orthonormal frames {V1 = γ̇, V2, . . . , Vd}
along γ and positive smooth functions κ1(s), . . . , κd−1(s) satisfying the following
system of ordinary differential equations

(5.1) ∇̃γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), j = 1, . . . , d,
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where V0 ≡ Vd+1 ≡ 0 and ∇̃γ̇ denotes the covariant differentiation along γ with

respect to the Riemannian connection ∇̃ of M̃ . The functions κj(s) (j = 1, . . . , d−
1) and a field of orthonormal frames {V1, . . . , Vd} are called the curvatures and
the Frenet frame of γ, respectively. Roughly speaking, every Frenet curve can be
regarded as a smooth regular real curve admitting no inflection points. We call a
curve a helix when all of its curvatures are constant functions. A curve γ is called a
helix of order d if it is a helix of proper order r(≦ d). For a helix of order d, which is
of proper order r(≦ d), we use the convention in (5.1) that κj = 0 (r ≦ j ≦ d− 1)
and Vj = 0 (r + 1 ≦ j ≦ d). Needless to say, a helix of order 1 is nothing
but a geodesic and a helix of order 2 is a circle. For a Frenet curve γ of proper

order d in a nonflat complex space form M̃n(c), we define its complex torsions by

τij(s) = ⟨Vi(s), JVj(s)⟩ (1 ≦ i < j ≦ d). In the study of Frenet curves in M̃n(c)
their complex torsions play an important role (see [13]).
Now, we consider a ruled real hypersurface associated with a Frenet curve γ and

investigate the value of the function ν along γ.

Lemma 5.3 ([16]). Let γ = γ(s) be a Frenet curve of proper order d with curvatures
κj(s) (1 ≦ j ≦ d − 1) and complex torsions τij(s) (1 ≦ i < j ≦ d) in a nonflat

complex space form M̃n(c), n ≧ 2 and M be a ruled real hypersurface associated
with the curve γ. Then the functions µ = ⟨Aξ, ξ⟩ and ν = ∥Aξ − µξ∥ satisfy the
following.

µ(γ(s)) = −κ1(s)τ12(s),(5.2)

ν(γ(s))2 = κ1(s)
2(1− τ12(s)

2).(5.3)

As a direct consequence of Lemmas 5.1, 5.2 and 5.3, we have the following.

Theorem 5.4 ([16]). Every ruled real hypersurface M in CP n(c), n ≧ 2 has the
sectional curvature K with sharp inequalities −∞ < K ≦ c, so that there does not
exist a ruled real hypersurface having the sectional curvature K with c/4 ≦ K ≦ c
in this ambient space.

Theorem 5.5 ([16]). Let γ : I → CHn(c), n ≧ 2 be a Frenet curve of proper order
d defined on an open interval I(⊂ R) in CHn(c) and M be a ruled real hypersurface
associated with the curve γ in CHn(c). Then M has the sectional curvature K with
sharp inequalities c ≦ K ≦ c/4 if and only if the first curvature κ1 and a complex
torsion τ12 of the Frenet curve γ satisfy κ1(s)

2(1− τ12(s)
2) ≦ |c|/4 for any s ∈ I.

Remark 5.6. Both of minimal ruled hypersurfaces M of axial type and parabolic
type satisfy the inequality in Theorem 5.5, so that the sectional curvatures K of
M satisfy c ≦ K ≦ c/4. However, note that the minimal ruled real hypersurface
of elliptic type does not satisfy the inequality in Theorem 5.5. This ruled real
hypersurface has the sectional curvature K with −∞ < K ≦ c/4.

6. Characterization of all ruled real hypersurfaces in M̃n(c)

It is known that every real hypersurface in a nonflat complex space form does not
have parallel shape operator (for details, see [17]). So, weakening this parallelism
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of the shape operator, we shall characterize all ruled real hypersurfaces in M̃n(c).
Note that the following theorem is established from the viewpoint of geometric
properties (of all ruled real hypersurfaces) which do not depend on the sign of the
sectional curvature of a nonflat complex space form.

Theorem 6.1 ([9]). A real hypersurface M isometrically immersed into a nonflat

complex space form M̃n(c), n ≧ 2 is ruled in this ambient space if and only if the
holomorphic distribution T 0M on M is integrable and the shape operator A of M
is η-parallel, i.e., ⟨(∇XA)Y, Z⟩ = 0 for all vectors X, Y and Z ∈ T 0M holds on
M , where ⟨ , ⟩ and ∇ are the Riemannian metric and the Riemannian connection
of M , respectively.
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