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Abstract. We characterize isoparametric hypersurfaces in a sphere by using
covariant derivatives of their shape operators and by observing the extrinsic
shape of their geodesics.

1. Introduction

It is well-known that a hypersurface M in an (n + 1)-dimensional sphere
Sn+1(c) (n ≧ 2) of constant sectional curvature c is isoparametric if and only if all
of its principal curvatures in the ambient sphere Sn+1(c) are constant. The study
of isoparametric hypersurfaces is one of the most interesting objects in differential
geometry. The classification problem of isoparametric hypersurfaces in a sphere is
still open. However, we know that the number g of distinct principal curvatures of
isoparametric hypersurfaces in a sphere is either g = 1, 2, 3, 4 or 6 (see [6, 7]). Note
that this result is not obtained by classifying all isoparametric hypersurfaces.
We know that every isoparametric hypersurface with g = 1 (totally umbilic

hypersurfaces) or g = 2 (Clifford hypersurfaces) has parallel shape operator but
other isoparametric hypersurfaces do not have parallel shape operator. Moreover,
a hypersurface M in Sn+1(c) is totally umbilic if and only if every geodesic of M is
a circle (i.e., either a great circle or a small circle of positive curvature) on Sn+1(c).
The main purpose of this paper is to give a characterization of all isoparametric

hypersurfaces in a sphere by weakening these geometric properties (see Theorem
1).

2. Statements of results

We first recall some basic terminology in the theory of hypersurfaces. Let M
be a hypersurface in an (n + 1)-dimensional sphere Sn+1(c) (n ≧ 2) of constant
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sectional curvature c and N a unit normal vector field on M in Sn+1(c). Then the

Riemannian connections ∇̃ of Sn+1(c) and ∇ of M are related by Gauss formula

(2.1) ∇̃XY = ∇XY + ⟨AX, Y ⟩N

and Weingarten formula

(2.2) ∇̃XN = −AX

for arbitrary vector fields X and Y on M , where ⟨ , ⟩ denotes the Riemannian
metric on M induced from the standard metric on Sn+1(c) and A is the shape
operator of M in Sn+1(c). The Codazzi equation can be written as

(2.3) ⟨(∇XA)Y, Z⟩ = ⟨(∇YA)X,Z⟩

for vector fields X,Y and Z tangent to M . Eigenvalues and eigenvectors of the
shape operator A are called principal curvatures and principal curvature vectors,
respectively.
Next we recall the definition of circles in Riemannian geometry. A smooth curve

γ = γ(s) in a Riemannian manifold M̃ parametrized by its arclength s is called a
circle of curvature k (≧ 0) if it satisfies the following ordinary differential equation:

∇̃γ̇∇̃γ̇ γ̇ = −k2γ̇,

where k is constant and ∇̃γ̇ denotes the covariant differentiation along γ with

respect to the Riemannian connection ∇̃ of M̃ . Since ∥∇̃γ̇ γ̇∥ = k, a circle of null
curvature is nothing but a geodesic.

Theorem 1. Let M be a connected hypersurface in an (n+1)-dimensional sphere
Sn+1(c) (n ≧ 2) of constant sectional curvature c. Then the following three condi-
tions are mutually equivalent.

(1) M is locally congruent to an isoparametric hypersurface in Sn+1(c).
(2) The tangent bundle TM of M is decomposed as the direct sum of the prin-

cipal distributions Vλi
= {X ∈ TM |AX = λiX} such that the covariant

derivative of the shape operator A of M in Sn+1(c) satisfies (∇XA)Y = 0
for all X,Y ∈ Vλi

associated to every principal curvature λi, where ∇ de-
notes the Riemannian connection of M .

(3) For each point p of M , there exists an orthonormal basis {v1, . . . , vmp} of the
orthogonal complement of kerAp in TpM (mp = rank Ap) such that every
geodesic of M through p with initial vector vi is a small circle of positive
curvature in Sn+1(c).

In our previous paper [4], we proved that the above Conditions (1) and (3) are
mutually equivalent. However, for readers we give a complete proof of Theorem 1.

Proof of Theorem 1. We first verify that Conditions (1) and (2) are mutually equiv-
alent. Suppose Condition (1). Then the tangent bundle TM of M is decomposed
as the direct sum of the principal distributions Vλi

= {X ∈ TM |AX = λiX} asso-
ciated to constant principal curvature λi. For any X,Y ∈ Vλi

and any Z ∈ TM ,
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the Codazzi equation (2.3) shows

⟨(∇XA)Y, Z⟩ = ⟨(∇ZA)Y,X⟩ = ⟨∇Z(AY )− A∇ZY,X⟩
= ⟨(λiI − A)∇ZY,X⟩ = ⟨∇ZY, (λiI − A)X⟩ = 0.

Hence the covariant derivative of the shape operator A satisfies (∇XA)Y = 0 for
any X,Y ∈ Vλi

.
We next suppose Condition (2). Taking a nonzero element X in Vλi

, we have for
all Z ∈ TM

⟨(∇XA)X,Z⟩ = ⟨(∇ZA)X,X⟩ = ⟨∇Z(AX)− A∇ZX,X⟩
= ⟨(Zλi)X + (λiI − A)∇ZX,X⟩
= (Zλi)∥X∥2 + ⟨∇ZX, (λiI − A)X⟩ = (Zλi)∥X∥2.

Since (∇XA)X = 0 and X is not zero, we get Zλi = 0 for all Z ∈ TM . Thus we
see that all principal curvatures of M in the ambient sphere Sn+1(c) are constant,
so that Conditions (1) and (2) are mutually equivalent.
In the following, we study the relation between Conditions (1) and (3). Suppose

Condition (1). Let M be an isoparametric hypersurface of Sn+1(c) with constant
principal curvatures λ1, . . . , λg. Then the tangent bundle TM is decomposed as:
TM = Vλ1 ⊕ Vλ2 ⊕ · · ·Vλg . We here recall the fact that every Vλi

(1 ≦ i ≦ g) is
integrable and moreover every leaf Lλi

of Vλi
is totally geodesic in the hypersurface

M . (To do show that, we verify that ∇XY ∈ Vλi
for all X, Y ∈ Vλi

. For such
vectors X, Y we have (∇XA)Y = 0 by Condition (2), and hence

A(∇XY ) = ∇X(AY )− (∇XA)Y = λi(∇XY ).)

The above fact, together with Gauss formula (2.1), implies that and every leaf Lλi

is totally umbilic in the ambient sphere Sn+1(c). Note that Lλi
is nothing but

a sphere Smi(ci) with mi = dimVλi
and ci = c + λ2

i . So, when λi ̸= 0 (resp.
λi = 0), every geodesic γ = γ(s) through p = γ(0) on M with γ̇(0) ∈ Vλi

is a
small circle of positive curvature |λi| (resp. a great circle) on Sn+1(c). Therefore,
choosing an orthonormal basis {v1, . . . , vmp} of the orthogonal complement of kerAp

in TpM (mp = rank Ap) as principal curvature vectors of M in Sn+1(c), we obtain
the desired Condition (3).
Conversely, suppose Condition (3). We consider the open dense subset U =

{p ∈ M |the multiplicity of each principal curvature of M in Sn+1(c) is constant
on some neighborhood Vp(⊂ U) of p} of M . Note that all principal curvature
functions are differentiable on U . In the following, we shall study on a fixed neigh-
borhood Vp. We remark that the shape operator A has constant rank on Vp.
Let γi = γi(s) (1 ≦ i ≦ mp) be geodesics of M with γi(0) = p and γ̇(0) = vi,

where {v1, . . . , vmp} is an orthonormal basis of the orthogonal complement of kerAp

in TpM . We denote by ∇̃ and ∇ the Riemannian connections of Sn+1(c) and M ,
respectively. Then they satisfy

(2.4) ∇̃γ̇i∇̃γ̇i γ̇i = −k2
i γ̇i
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for some positive constant ki. Here, without loss of generality we can set k1 ≦ k2 ≦
· · · ≦ kmp . It follows from Gauss formula (2.1) and Weingarten formula (2.2) that

(2.5) ∇̃γ̇i∇̃γ̇i γ̇i = −⟨Aγ̇i, γ̇i⟩Aγ̇i + ⟨(∇γ̇iA)γ̇i, γ̇i⟩N .

Comparing the tangential components of (2.4) and (2.5), at s = 0 we obtain

⟨Avi, vi⟩Avi = k2
i vi.

This, together with ki ̸= 0, implies

Avi = kivi or Avi = −kivi (1 ≦ i ≦ mp),

which means that the tangent space TpM is decomposed as:

TpM = kerAp ⊕ {v ∈ TpM |Av = −ki1v} ⊕ {v ∈ TpM |Av = ki1v}
⊕ · · · ⊕ {v ∈ TpM |Av = −kigv} ⊕ {v ∈ TpM |Av = kigv},

where 0 < ki1 < ki2 < · · · < kig and g is the number of positive distinct kj (j =
1, . . . ,mp). Note that every kij is differentiable on Vp. We shall show the constancy
of kij . We first note that vijkij = 0 (see the normal component of Equation (2.5)).
Let {vmp+1, . . . , vn} be an orthonormal basis of kerA. Then {v1, . . . , vn} forms an
orthonormal basis of TpM . For any vℓ (1 ≦ ℓ ̸= ij ≦ n), since A is symmetric, we
see

(2.6) ⟨(∇vij
A)vℓ, vij⟩ = ⟨vℓ, (∇vij

A)vij⟩.

In order to compute Equation (2.6) easily, we extend an orthonormal basis
{v1, . . . , vn} to principal curvature unit vector fields on some neighborhood Wp(⊂
Vp), say {V1, . . . , Vn}. Moreover we can choose ∇Vij

Vij = 0 at the point p, where

(Vij)p = vij . Such a principal curvature unit vector field Vij can be obtained as
follows.
We first define a smooth vector field Wij on some sufficiently small neighborhood

Wp(⊂ Vp) by using parallel displacement for the vector vij along each geodesic with
origin p. We remark that in general Wij is not principal on Wp, but AWij = kijWij

on the geodesic γ = γ(s) with γ(0) = p and γ̇(0) = vij . We here define the vector
field Uij on Wp as Uij = Πα ̸=kij

(A−αI)Wij , where α runs over the set of all distinct

principal curvatures of M except for the principal curvature kij . We remark that
Uij ̸= 0 on the neighborhood Wp because (Uij)p ̸= 0. Moreover, the vector field
Uij satisfies AUij = kijUij on Wp. We define Vij by normalizing Uij in some sense.
That is, when Πα ̸=kij

(kij − α)(p) > 0 (resp. Πα ̸=kij
(kij − α)(p) < 0), we define

Vij = Uij/∥Uij∥ (resp. Vij = −Uij/∥Uij∥). Then we know that AVij = kijVij on
Wp and (Vij)p = vij . Furthermore, our construction shows that the integral curve
of Vij through the point p is a geodesic on M , so that in particular ∇Vij

Vij = 0 at

the point p.
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Thanks to the Codazzi equation, at the point p we have

(the left hand side of (2.6)) = ⟨(∇vℓA)vij , vij⟩ = ⟨(∇Vℓ
A)Vij , Vij⟩p

= ⟨∇Vℓ
(kijVij)− A∇Vℓ

Vij , Vij⟩p
= ⟨(Vℓkij)Vij + (kijI − A)∇Vℓ

Vij , Vij⟩p = vℓkij

and

(the right hand side of (2.6)) = ⟨Vℓ, (∇Vij
A)Vij⟩p

= ⟨Vℓ,∇Vij
(kijVij)− A∇Vij

Vij⟩p
= ⟨vℓ, (vijkij)vij⟩ = 0.

Thus we can see that the differential dkij of kij vanishes at the point p, which
shows that every kij(> 0) is constant on Wp, since we can take the point p as an
arbitrarily fixed point of Wp. So the principal curvature function kij is constant
locally on the open dense subset U of M . This, combined with the continuity
of kij and the connectivity of M , yields that kij is constant on the hypersurface
M . Hence all nonzero principal curvatures of M are constant, so that we obtain
Condition (1). □
As an immediate consequence of Conditions (1) and (3) in Theorem 1 we have

the following:

Theorem 2 ([4]). Let M be a connected hypersurface in an (n + 1)-dimensional
sphere Sn+1(c) (n ≧ 2) of constant sectional curvature c. Then M is locally congru-
ent to an isoparametric hypersurface with nozero principal curvatures in Sn+1(c) if
and only if for each point p of M there exists an orthonormal basis {v1, . . . , vn} of
TpM such that every geodesic of M through p with initial vector vi is a small circle
of positive curvature in Sn+1(c).

Isoparametric hypersurfaces in Sn+1(c) with two distinct constant principal cur-
vatures are called Clifford hypersurfaces. For a pair (c1, c2) of positive constants
satisfying 1/c1+1/c2 = 1/c and a positive integer r with 1 ≦ r ≦ n− 1, we denote
by Mr,n−r = Mr,n−r(c1, c2) a naturally embedded hypersurface in Sn+1(c) which
is congruent to Sr(c1) × Sn−r(c2). It has two distinct constant constant principal
curvatures λ1 = c1/

√
c1 + c2 and λ2 = −c2/

√
c1 + c2 with multiplicities r and

n − r, respectively. Let TMr,n−r = Vλ1 ⊕ Vλ2 be the decomposition into principal
distributions coresponding to principal curvatures λ1, λ2.

Proposition 1 ([1]). Let γ be a geodesic on a Clifford hypersurface Mr,n−r(c1, c2)
in Sn+1(c). Then

(1) The curve γ is a geodesic in Sn+1(c) if and only if the initial vector is of the
form γ̇(0) = (

√
c2 w1 +

√
c1 w2)/

√
c1 + c2 with unit vectors wi ∈ Vλi

(i =
1, 2).

(2) If the initial vector γ̇(0) is neither principal nor of the form in (1), then γ
is a circle (namely, a great circle or a small circle of positive curvature) on
Sn+1(c).
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Proof. Since Mr,n−r has parallel shape operator, we find

d

ds
⟨Aγ̇(s), γ̇(s)⟩ = ⟨(∇γ̇A)γ̇(s), γ̇(s)⟩ = 0.

Thus we may study geodesics at its initial point. We set γ̇(0) = a1w1 + a2w2

with unit vectors wi ∈ Vλi
(i = 1, 2) and nonnegative constants a1, a2 satisfying

a21 + a22 = 1. In this case we have ⟨Aγ̇(0), γ̇(0)⟩ = a21λ1 + a22λ2. Hence we can
see that ⟨Aγ̇, γ̇⟩ ≡ 0 if and only if a1 =

√
c2 /

√
c1 + c2 and a2 =

√
c1 /

√
c1 + c2 .

Therefore, from Gauss formula (2.1), we get Statement (1).
Statement (2) is an immediate consequence of the proof of Theorem 1 and the

above Statement (1). □
Paying attention to Proposition 1, we characterize all Clifford hypersurfaces

Mr,n−r(c1, c2) in Sn+1(c).

Theorem 3 ([1]). A connected hypersurface M in Sn+1(c) is locally congruent to
a Clifford hypersurface Mr,n−r(c1, c2) with some r (1 ≦ r ≦ n − 1) if and only if
there exist a function d : M → {1, 2, . . . , n− 1}, a constant α (0 < α < 1) and an
orthonormal basis {v1, . . . , vn} of TpM at each point p ∈ M satisfying the following
two conditions:

(1) Every geodesic on M through p with initial vector vi (1 ≦ i ≦ n) is a small
circle of positive curvature in Sn+1(c);

(2) Every geodesic γij on M through p with initial vector αvi+
√
1− α2 vj (1 ≦

i ≦ d(p) < j ≦ n) is a great circle in Sn+1(c).

In this case d is a constant function with d ≡ r and

M = Mn,n−r(c/α
2, c/(1− α2)).

Proof. The “only if” part follows from Theorem 2 and Proposition 1. So, we
shall prove the “if” part. By Condition (1) we see that our real hypersurface M
is isoparametric with nonzero principal curvatures in Sn+1(c) (see Theorem 2 ).
Consider a fixed point p0. Setting Avi = λivi (1 ≦ i ≦ n) at this point p0, we can
see that

(2.7) α2λi + (1− α2)λj = 0 for 1 ≦ i ≦ d(p0) < j ≦ n.

ThereforeM has just two distinct constant principal curvatures, so thatM is locally
congruent to some Mr,n−r(c1, c2). Moreover, from the equalities 1/c1 + 1/c2 =
1/c, λi = c1/

√
c1 + c2 , λj = −c2/

√
c1 + c2 and (2.7) we can see that c1 = c/α2

and c2 = c/(1− α2). □

Remark 1. In Theorem 3, setting α =
√
r/n , we obtain a characterization of all

minimal Clifford hypersurfaces M = Mr,n−r(nc/r, nc/(n− r)) in Sn+1(c) (see [5]).

We finally study minimal isoparametric hypersurfaces with three distinct prin-
cipal curvatures in Sn+1(c) from the viewpoint of Theorem 1. Isoparametric
hypersurfaces with three distinct principal curvatures are usually called Cartan
hypersurfaces. If we denote by mi the multiplicity of a principal curvature λi,
then we find that these three principal curvatures have the same multiplicity (i.e.,
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m1 = m2 = m3) (see [6, 7]). When a Cartan hypersurface is minimal, it is congru-
ent to one of the following hypersurfaces:

M3 = SO(3)/(Z2 + Z2) → S4(c),

M6 = SU(3)/T 2 → S7(c),

M12 = Sp(3)/Sp(1)× Sp(1)× Sp(1) → S13(c),

M24 = F4/Spin(8) → S25(c).

Principal curvatures of a Cartan minimal hypersurface are
√
3c , 0, −

√
3c (see

[2, 3]).

Theorem 4 ([1]). Let M be a connected hypersurface of Sn+1(c). Suppose that at
each point p ∈ M there exists an orthogonal basis {v1, . . . , vmp} of the orthogonal
complement of kerAp in TpM (mp = rank Ap) such that

(1) all geodesics through p with initial vector vi (1 ≦ i ≦ mp) are small circles
of positive curvature in Sn+1(c),

(2) they have the same curvature kp.

Then kp = k (constant) on M and M is locally congruent either a totally umbilc
hypersurface Sn(c1) with k =

√
c1 − c , a Clifford hypersurface Mr,n−r(2c, 2c) (1 ≦

r ≦ n− 1) with k =
√
c , or a Cartan minimal hypersurface with k =

√
3c .

Proof. A totally umbilic hypersurface satisfies the hypothesis of Theorem 4 trivially.
By the discussion in the proof of Theorem 1 we see that a hypersurface satisfying the
hypothesis of Theorem 4 is isoparametric with at most three principal curvatures
k, −k, 0 in Sn+1(c). Thus we get the desired result. □
Remark 2. (1) In Theorems 3 and 4, we only need Condition (2) at some point

p0 ∈ M .
(2) If we add a condition that M is complete to assumptions of Theorems 1, 2,

3 and 4, then these theorems are global results. So, we can delete “locally”
in these statements.

(3) In the assumptions of Theorems 1, 2, 3 and 4, we do not need to take the
vectors {vi} as a local smooth field of orthonormal frames on M .

At the end of this paper, we pose the following open problem related to Theorem
1:

Problem. Let M be a connected hypersurface in an (n + 1)-dimensional sphere
Sn+1(c) (n ≧ 2) of constant sectional curvature c. If for each point p of M , there
exists an orthonormal basis {v1, . . . , vn} of TpM such that every geodesic of M
through p with initial vector vi is a circle (i.e., either a small circle of positive cur-
vature or a great circle) in Sn+1(c), then is M locally congruent to an isoparametric
hypersurface in this ambient sphere?
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