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Abstract. We discuss the p-harmonicity of a linear combination of p-harmonic
functions on a tree. If p 6= 2, the p-harmonicity is non-linear, i.e., the linear
combination of p-harmonic functions need not be p-harmonic. In spite of this
non-linear nature, we find some p-harmonic functions whose linear combinations
become p-harmonic.

Also we discuss the quasi-symmetricity of p-Green functions. It is well known
that two 2-Green functions ga and gb are symmetric, i.e., ga(b) = gb(a). However
it is not known whether two p-Green functions are symmetric or not if p 6= 2.
Moreover it is not known even whether those are quasi-symmetric or not, which
means that ga(b)/gb(a) is bounded or not. In this article we show that, for
every tree, there exists a resistance such that two p-Green functions are quasi-
symmetric; also we show that, for every tree, there exists a resistance such that
two p-Green functions are not quasi-symmetric.

This paper is rewritten from the doctor’s thesis.

1. Introduction

Let 1 < p < ∞. We consider p-harmonic functions on a tree. Let T = (V, E, r)
be a locally finite connected tree with a resistance r, where V = V (T ) is the vertex
set and E = E(T ) is the edge set. An edge (x, y) ∈ E is an ordered pair of vertices
such that (x, y) ∈ E if and only if (y, x) ∈ E. If (x, y) ∈ E, then we say that x is
adjacent to y and write x ∼ y. A resistance r is a positive function on E such that
r(y, x) = r(x, y). We define the discrete derivative ∇u and the discrete p-Laplacian
∆pu for a function u on V by

∇u(x, y) = r(x, y)−1(u(y)− u(x)),

∆pu(x) =
∑
y∈V
y∼x

|∇u(x, y)|p−2∇u(x, y).
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Let ϕp(t) = |t|p−2t. Then we can write

∆pu(x) =
∑
y∈V
y∼x

ϕp(∇u(x, y)) = −
∑
y∈V
y∼x

ϕp(∇u(y, x)).

Let D ⊂ V . If ∆pu = 0 in D, then we say that u is p-harmonic in D.
Let x, y ∈ V . A path joining x to y is a sequence {x = x0, x1, . . . , xl−1, xl = y}

of distinct vertices such that x0 ∼ x1 ∼ · · · ∼ xl−1 ∼ xl. Since T is a tree, the
path joining x to y is unique. The number l is called the length of the path and
is denoted by ρ(x, y). For x ∈ V let deg(x) = #{y ∈ V ; ρ(x, y) = 1}. This is the
number of neighbors of x. Let A be a subset of V . We say that A is connected
if any two vertices of A are joined by a path whose vertices are still in A. By A
we denote the minimal connected set including A. Let B ⊂ E and x ∈ V . We
remove B from E, then we obtain some components. We denote by S(T , B, x) the
component which contains x.

We define the Dirichlet sum Dp[u] of order p by

Dp[u] =
1

2

∑

(x,y)∈E

r(x, y)|∇u(x, y)|p.

Denote by D(p)(T ) the set of functions on V with finite Dirichlet sum of order p.
Then D(p)(T ) is a Banach space with the norm ‖u‖p = (Dp[u] + |u(x0)|)1/p, where
x0 is a fixed vertex. Let L0(T ) be the set of functions on V with finite support.

Also let D
(p)
0 (T ) be the closure of L0(T ) in D(p)(T ) with respect to the norm ‖·‖p.

A tree T is said to be of hyperbolic type of order p if 1 6∈ D
(p)
0 (T ); a tree T is said

to be of parabolic type of order p otherwise. Consider the discrete boundary value
problem

(1) ∆pu = −δa, u ∈ D
(p)
0 (T ),

where δa is the characteristic function of {a}, i.e., δa(x) = 1 if x = a and δa(x) =
0 otherwise. The solution u to (1) uniquely exists if and only if the tree is of
hyperbolic type of order p. We call the solution u the p-Green function with pole
at a and denote it by ga. For these accounts see Kayano-Yamasaki [1], Nakamura-
Yamasaki [4], Soardi-Yamasaki [5], Yamasaki [6, 7, 8].

We discuss the p-harmonicity of a linear combination of p-harmonic functions
on a tree. If p 6= 2, the p-harmonicity is non-linear, i.e., the linear combination of
p-harmonic functions need not be p-harmonic. In spite of this non-linear nature,
we find some p-harmonic functions whose linear combinations become p-harmonic.
By definition a constant is a p-harmonic function and the linear combination of an
arbitrary p-harmonic function and a constant is p-harmonic. We shall find other
p-harmonic linear combinations of p-harmonic functions. Let {u1, . . . , um} be an
m-tuple of p-harmonic functions in D ⊂ V such that {1, u1, . . . , um} is linearly
independent. We say that {u1, . . . , um} has a linear relation in D if every linear
combination

∑m
j=1 tjuj is p-harmonic in D. Also we say that {u1, . . . , um} has a

partial linear relation in D if
∑m

j=1 tjuj is p-harmonic in D for some t1, . . . , tm ∈
R \ {0}. This problem has studied in [2].



p-HARMONIC FUNCTIONS ON A RESISTIVE TREE 61

Theorem 1. Let D ⊂ V and let {u1, . . . , um} be an m-tuple of p-harmonic func-
tions in D. Suppose that, for each (x, y) ∈ E with x ∈ D or y ∈ D, there
is j0(x, y) ∈ {1, . . . , m} such that uj(x) = uj(y) whenever j 6= j0(x, y). Then
{u1, . . . , um} has a linear relation in D.

Example 2. Let T be a tree formed by m half lines meeting at a vertex x0, i.e., V =
{x0} ∪

⋃m
i=1{xi,k}∞k=1 and E =

⋃m
i=1{(xi,k−1, xi,k), (xi,k, xi,k−1)}∞k=1, where xi,0 = x0

for i = 1, . . . , m. Let r be an arbitrary resistance on E. We define a function ui on
V by

ui(x0) = 0,

ui(xj,k) =

{
r(x0, xj,1) + r(xj,1, xj,2) + · · ·+ r(xj,k−1, xj,k) if j = i,

0 otherwise

for i = 1, . . . , m. Let 1 < p < ∞. Then the following statements hold:

(i) Every ui is p-harmonic in V \ {x0} and the m-tuple {u1, . . . , um} has a
linear relation in V \ {x0}.

(ii) Every difference vi,j = ui − uj is p-harmonic in V . Moreover, let Λ :=
{(i1, j1), . . . , (iµ, jµ)} ⊂ {1, . . . , m} × {1, . . . , m} such that i1, j1, . . . , iµ, jµ

are distinct integers. Then {vi,j}(i,j)∈Λ has a linear relation in V .
(iii) The (m− 1)-tuple {v1,2, v1,3, . . . , v1,m} has a partial linear relation in V .

We give different types of p-harmonic functions with linear relation.

Theorem 3. Suppose that deg(x) ≥ 2 for every x ∈ V . For a ∈ V we define a
function ha on V by

ha(a) = 0, ha(x) =
l−1∑

k=0

r(xk, xk+1)
k∏

j=0

(deg(xj)− 1)1/(1−p),

where {a = x0, x1, . . . , xl−1, xl = x} is the path joining a to x. Then the function
ha is p-harmonic in V \ {a}. If A is a finite subset of V , then {ha}a∈A has a linear
relation in V \ A.

Theorem 4. Suppose that deg(x) ≥ 2 for every x ∈ V . Let ha be the function on
V defined in Theorem 3. If a, b ∈ V with ρ(a, b) = 2, then {ha, hb} has a partial
linear relation in V \ {a, b}.

We show that the set of p-Green functions with poles a ∈ A has a linear relation
outside A.

Theorem 5. Suppose that the tree T is of hyperbolic type of order p. Then the
p-Green function ga is p-harmonic in V \ {a}. If A is a finite subset of V , then
{ga}a∈A has a linear relation in V \ A.

Next we discuss the quasi-symmetricity of p-Green functions. It is well known
that two 2-Green functions ga and gb are symmetric, i.e., ga(b) = gb(a). However
it is not known whether two p-Green functions are symmetric or not if p 6= 2.
Moreover it is not known even whether those are quasi-symmetric or not, which
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means that ga(b)/gb(a) is bounded or not. Let T be a tree of hyperbolic type of
order p. Let

H(x, y) =
gx(y)

gy(x)
for x, y ∈ V ,

M(T ) = sup
x,y∈V

H(x, y).

We consider the problem whether M(T ) is finite or not for p 6= 2. A tree T is
said to have a symmetric p-Green function if M(T ) = 1; a tree T is said to have a
quasi-symmetric p-Green function if M(T ) is finite. This problem has studied in
[3].

Theorem 6. Let T = (V, E, r) be a tree of hyperbolic type of order p. Let (a1, a2) ∈
E. Let T1 = S(T , {(a1, a2)}, a1) and T2 = S(T , {(a1, a2)}, a2). Then T has a quasi-
symmetric p-Green function if and only if each of T1 and T2 has a quasi-symmetric
p-Green function.

Theorem 7. Let p 6= 2. Let (V, E, r) be a tree.

(i) Suppose that there are only finitely many x ∈ V such that deg(x) ≥ 3.
Then (V, E, r) has a quasi-symmetric p-Green function whenever (V, E, r)
is of hyperbolic type of order p.

(ii) Suppose that there are infinitely many x ∈ V such that deg(x) ≥ 3. Then
we find two resistances r1 and r2 with the following conditions.
(a) The tree (V, E, r1) is of hyperbolic type of order p and has a quasi-

symmetric p-Green function.
(b) The tree (V, E, r2) is of hyperbolic type of order p and does not have

a quasi-symmetric p-Green function.

2. Proof of Theorems 1, 3, 4 and 5

Note that the function ϕp(t) = |t|p−2t satisfies ϕp(st) = ϕp(s)ϕp(t).

Proof of Theorem 1. Let u =
∑m

j=1 tjuj. We shall prove ∆pu(x) = 0 for every

x ∈ D. Take y ∈ V with y ∼ x. By the assumption we have ∇uj(x, y) = 0 for
j 6= j0(x, y). Therefore

ϕp(∇u(x, y)) = ϕp(tj0(x,y))ϕp(∇uj0(x,y)(x, y)) =
m∑

j=1

ϕp(tj)ϕp(∇uj(x, y)).

Hence

∆pu(x) =
m∑

j=1

ϕp(tj)∆puj(x) = 0.

This means u is p-harmonic at x, and hence in D. ¤
Proof of Example 2. (i). We observe that

(2) ∇ui(xj,k−1, xj,k) =

{
1 if j = i,

0 otherwise.



p-HARMONIC FUNCTIONS ON A RESISTIVE TREE 63

It is clear that ∆pui(xj,k) = 0 if j 6= i. If j = i, then

∇ui(xj,k, xj,k+1) = 1, ∇ui(xj,k, xj,k−1) = −1,

and therefore ∆pui(xi,k) = 0. Hence ui is p-harmonic in V \ {x0} for every p. Also
(2) means that {u1, . . . , um} satisfies the condition of Theorem 1 for D = V \{x0}.
Hence {u1, . . . , um} has a linear relation in V \ {x0}.

(ii). We observe from (i) that vi,j are p-harmonic in V \ {x0} and so is their
arbitrary linear combination. By definition

∆pvi,j(x0) = ϕp(∇ui(x0, xi,1))− ϕp(∇uj(x0, xj,1)) = 0,

and hence vi,j is p-harmonic at {x0} as well. We see that {vi,j}(i,j)∈Λ satisfies the
condition of Theorem 1 for D = V , and therefore {vi,j}(i,j)∈Λ has a linear relation
in V .

(iii). Let u =
∑m

j=2 tjv1,j. Then u =
( ∑m

j=2 tj
)
u1 −

( ∑m
j=2 tjuj

)
, so that

∆pu(x0) = ϕp

( m∑
j=2

tj
)−

m∑
j=2

ϕp(tj).

Therefore, u is p-harmonic at x0 if and only if ϕp

( ∑m
j=2 tj

)
=

∑m
j=2 ϕp(tj). This

shows that {v1,2, v1,3, . . . , v1,m} has a partial linear relation in V . ¤
We shall prove Theorems 3 and 4. For simplicity we let w(x) = (deg(x)−1)1/(1−p).

Then

ha(a) = 0, ha(x) =
l−1∑

k=0

r(xk, xk+1)
k∏

j=0

w(xj),

where {a = x0, x1, . . . , xl−1, xl = x} is the path joining a to x.

Proof of Theorem 3. Let x ∈ V \ {a}. Take the path {a = x0, x1, . . . , xl−1, xl = x}
joining a to x. Also let y = xl−1 and let z1, . . . , zdeg(x)−1 be the other neighbors of
x. Since the path joining a to zk is {a, x1, . . . , xl−1, x, zk}, we have

∇ha(x, y) = −r(xl−1, xl)

r(x, y)

l−1∏
j=0

w(xj) = −
l−1∏
j=0

w(xj),

∇ha(x, zk) =
r(xl, zk)

r(x, zk)

l∏
j=0

w(xj) =
l∏

j=0

w(xj).

Therefore

(3) ∇ha(x, zk) = −w(x)∇ha(x, y).

Since ϕp(w(x)) = (deg(x)− 1)−1,

∆pha(x) = ϕp(∇ha(x, y)) +

deg(x)−1∑

k=1

ϕp(∇ha(x, zk)) = 0.

Next let A be a finite subset of V and let u =
∑

a∈A taha. Let x ∈ V \A. Let y be
the neighbor of x which is on the path joining a ∈ A to x. Note that y is independent
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of the choice of a since x 6∈ A. Let z1, . . . , zdeg(x)−1 be the other neighbors of x. Then
(3) holds for each a ∈ A. Therefore ∇u(x, zk) = −w(x)∇u(x, y), and consequently

∆pu(x) = ϕp(∇u(x, y)) +

deg(x)−1∑

k=1

ϕp(∇u(x, zk)) = 0.

This means u is p-harmonic at x, and hence in V \ A. ¤
Proof of Theorem 4. Let u = sha+thb. Let x be the vertex between a and b and let
z1, . . . , zdeg(x)−2 be the other neighbors of x. Then u is p-harmonic in V \ {a, x, b}
by Theorem 3.

Now we consider the p-harmonicity of u at x. We have ha(a) = 0 and hb(a) =
r(b, x)w(b) + r(x, a)w(b)w(x). Therefore

u(a) = tr(b, x)w(b) + tr(x, a)w(b)w(x).

Similarly we have

u(b) = sr(a, x)w(a) + sr(x, b)w(a)w(x),

u(zk) = sr(a, x)w(a) + sr(x, zk)w(a)w(x) + tr(b, x)w(b) + tr(x, zk)w(b)w(x),

u(x) = sr(a, x)w(a) + tr(b, x)w(b).

Hence

∇u(x, a) = tw(b)w(x)− sw(a),

∇u(x, b) = sw(a)w(x)− tw(b),

∇u(x, zk) = sw(a)w(x) + tw(b)w(x).

If we take s and t such that sw(a) + tw(b) = 0, then

∇u(x, a) = −∇u(x, b), ∇u(x, zk) = 0,

and therefore ∆pu(x) = 0. This means that {ha, hb} has a partial linear relation.
¤

Proof of Theorem 5. It is evident that ga is p-harmonic in V \ {a}. Let A be a
finite subset of V . Let x ∈ V \ A. Take the path {a, x1, . . . , xl−1, x} joining a ∈ A
to x. Let k be the number such that xk ∈ A and xk+1 6∈ A. Let y = xk. Then y is
independent of the choice of a.

Let T̃ be the subtree whose vertex set is the union of {y} and the connected
component of V \A including x. Let ∆̃p be the p-Laplacian with respect to T̃ . Let

ũa be the restriction of ga to T̃ . Then it is easy to see that

∆̃pũa = ∆pga = 0 in T̃ \ {y}, ũa ∈ D
(p)
0 (T̃ ).

Let ca = −ϕq(∆̃pũa(y)), where q is the number such that 1/p+1/q = 1. Note that
ϕp(ϕq(t)) = t. We see that ṽa = ũa/ca satisfies

∆̃pṽa =
∆̃pũa

ϕp(ca)
= −δy in T̃ , ṽa ∈ D

(p)
0 (T̃ ).
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Therefore ṽa is the p-Green function g̃y with pole at y with respect to T̃ . The
uniqueness of the p-Green function implies that ṽa = g̃y, especially that ṽa is
independent of the choice of a. This means that

ga = ũa = caṽa = cag̃y in T̃ .

If we set u =
∑

a∈A taga, then

u = (
∑
a∈A

taca)g̃y in T̃ .

Hence

∆pu(x) = ϕp(
∑
a∈A

taca)∆pg̃y(x) = ϕp(
∑
a∈A

taca)∆̃pg̃y(x) = 0.

Thus u is p-harmonic at x. Since x ∈ V \A is arbitrary, u is p-harmonic in V \A.
Therefore {ga}a∈A has a linear relation in V \ A. ¤

3. Proof of Theorem 6

First note that cu|V (T ′) ∈ D
(p)
0 (T ′) for any u ∈ D

(p)
0 (T ), for any subtree T ′ of T

and for any constant c. This fact is applied repeatedly.

Lemma 8. Let T = (V, E, r) be a tree of hyperbolic type of order p. Let (a, b) ∈ E.
Let T ′ = S(T , {(a, b)}, a) and T ′′ = S(T , {(a, b)}, b). Let x ∈ V (T ′) ∪ {b}.

(i) If T ′′ is of hyperbolic type of order p, then gx|V (T ′′) is constant times of

gT
′′

b ;
(ii) if T ′′ is of parabolic type of order p, then gx|V (T ′′) is a constant function in

V (T ′′).

Proof. We denote the p-Laplacian (resp. p-Green function, and so on) with respect
to T ′ by ∆T ′

p (resp. gT
′

x , and so on).

First suppose x ∈ V (T ′). Let xb = {x = x0, x1, . . . , xl−1, xl = b}. Let

Tj = S(T , {(xj−1, xj)}, xj) for j = 1, . . . , l,

Sj = S(T , {(xj−1, xj), (xj, xj+1)}, xj) for j = 1, . . . , l − 1,

S0 = S(T , {(x0, x1)}, x0).

If Tl is of hyperbolic type of order p, then we let u = gTl
xl

in V (Tl); if Tl is of parabolic
type of order p, then we let u = 1 in V (Tl). Then u is p-harmonic in V (Tl) \ {xl}
and u ∈ D

(p)
0 (Tl). Let

u(xl−1) = u(xl)− r(xl−1, xl)ϕq(∆
Tl
p u(xl)),

where q is the number with 1/p + 1/q = 1. Since ϕq is the inverse function of ϕp,
we have that u is p-harmonic at xl.

If Sl−1 is of hyperbolic type of order p, then we let

u =
u(xl−1)

g
Sl−1
xl−1 (xl−1)

gSl−1
xl−1

in V (Sl−1);
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if Sl−1 is of parabolic type of order p, then we let u = u(xl−1) in V (Sl−1). Then u

is p-harmonic in V (Tl−1) \ {xl−1} and u ∈ D
(p)
0 (Tl−1).

Repeat this argument and obtain a function u which is p-harmonic in V \ {x}
and u ∈ D

(p)
0 (T ). Therefore u is a constant times of gx. Since Tl = T ′′ and xl = b,

we have the result in this case.
Next suppose x = b. If T ′ is of hyperbolic type of order p, then we let u = gT

′
a

in V (T ′); if T ′ is of parabolic type of order p, then we let u = 1 in V (T ′). Then u

is p-harmonic in V (T ′) \ {a} and u ∈ D
(p)
0 (T ′). Let

u(b) = u(a)− r(a, b)ϕq(∆
T ′
p u(a)).

Then u is p-harmonic at a.
If T ′′ is of hyperbolic type of order p, then we let

u =
u(b)

gT ′′b (b)
gT

′′
b in V (T ′′);

if T ′′ is of parabolic type of order p, then we let u = u(b) in V (T ′′). Then u is

p-harmonic in V \ {b} and u ∈ D
(p)
0 (T ). Therefore u is a constant times of gx, and

the result follows. ¤
Lemma 9. For any x, y, z ∈ V we have

H(x, z) = H(x, y)H(y, z).

Proof. First assume that y is a vertex on the path xz. Let y′ be the vertex adjacent
to y and on the path yx. Let T ′ = S(T , {(y, y′)}, y). By Lemma 8 both gx|V (T ′)
and gy|V (T ′) are constant times of gT

′
y if T ′ is of hyperbolic type of order p, or both

are constant functions on V (T ′) if T ′ is of parabolic type. Therefore

gx|V (T ′) =
gx(y)

gy(y)
gy|V (T ′).

Especially

gx(z) =
gx(y)

gy(y)
gy(z).

Similarly we have

gz(x) =
gz(y)

gy(y)
gy(x).

Hence the result follows in this case.
Next we consider the general case. Let w be the intersection vertex among x, y

and z, i.e., the vertex which is simultaneously on the three paths xy, yz and zx
(see Figure 1). Then the first part implies that

H(x, z) = H(x,w)H(w, z),

H(x, y) = H(x,w)H(w, y),

H(y, z) = H(y, w)H(w, z).

Since H(w, y) is the reciprocal of H(y, w), we have the result in the general case. ¤
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w x

y

z

Figure 1. The intersection vertex

Let T = (V, E, r) be a tree of hyperbolic type of order p. Let (y, z) ∈ E and
S = S(T , {(y, z)}, z). If S is of parabolic type, then we call S a parabolic end of
T .

Lemma 10. Let T = (V, E, r) be a tree of hyperbolic type of order p. Let {Sj}j be
the set of maximal parabolic ends of T . Let T ′ = (V ′, E ′, r′) be the subtree which
is obtained by removing

⋃
j Sj from T . Then

M(T ) = M(T ′).

Proof. For each j we can take an edge (yj, zj) ∈ E such that Sj =
S(T , {(yj, zj)}, zj). Let x ∈ V . We denote the p-Green function with respect
to T ′ by gT

′
x Then it is easy to verify that the p-Green function gx is represented

as

gx(y) = gT
′

x (y) if x ∈ V ′ and y ∈ V ′,

gx(y) = gT
′

x (yj) if x ∈ V ′ and y ∈ V (Sj),

gx(y) = gT
′

yj
(y) if x ∈ V (Sj) and y ∈ V ′,

gx(y) = gT
′

yj
(yi) if x ∈ V (Sj) and y ∈ V (Si) with i 6= j,

gx(y) = gw(w) if x ∈ V (Sj) and y ∈ V (Sj),

where w is the intersection vertex among x, y and zj. Therefore

H(x, y) = HT ′(x, y) if x ∈ V ′ and y ∈ V ′,

H(x, y) = HT ′(x, yj) if x ∈ V ′ and y ∈ V (Sj),

H(x, y) = HT ′(yj, y) if x ∈ V (Sj) and y ∈ V ′,

H(x, y) = HT ′(yj, yi) if x ∈ V (Sj) and y ∈ V (Si) with i 6= j,

H(x, y) = 1 if x ∈ V (Sj) and y ∈ V (Sj).

This means M(T ) = M(T ′). ¤
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Proof of Theorem 6. Let T1 = (V1, E1, r1) and T2 = (V2, E2, r2). By means of
Lemma 10 we may assume that both T1 and T2 are of hyperbolic type of order p.

First we observe that the function ga1|V1 is p-harmonic in V1 \ {a1} and

∆T1
p (ga1|V1)(a1) = ∆pga1(a1)− ϕp(∇ga1(a1, a2)) = −1 + ϕp(∇ga1(a2, a1)).

Let q be the number with 1/p + 1/q = 1. Then we have that ϕq is the inverse
function of ϕp. Therefore

1

c0

ga1|V1 = gT1
a1

,

where c0 = ϕq(1− ϕp(∇ga1(a2, a1))). Especially

(4) ga1(x) = c0g
T1
a1

(x) for x ∈ V1.

Note that c0 is independent of x.
Let {b1, . . . , bd−1} be the neighbors of a1 in T1, where d = deg(a1). Let T1i =

S(T1, {(a1, bi)}, bi). Let x ∈ V1 \ {a1} and {a1 = x0, x1, . . . , xl−1, xl = x} be the
path a1x. Then x1 = bi0 for some i0. For i 6= i0 the function gx1|V (T1i) is p-harmonic
in V (T1i) \ {bi} and

∆T1i
p (gx1|V (T1i))(bi) = ∆pgx1(bi)− ϕp(∇gx1(bi, a1)) = −ϕp(∇gx1(bi, a1)).

Therefore
1

∇gx1(bi, a1)
gx1|V (T1i) = gT1i

bi
,

and hence

gx1(a1) = gx1(bi) + r(a1, bi)∇gx1(bi, a1)

= ∇gx1(bi, a1)(g
T1i
bi

(bi) + r(a1, bi)).

Similarly we have

gx(a1) = ∇gx(bi, a1)(g
T1i
bi

(bi) + r(a1, bi)),

gT1
x1

(a1) = ∇gT1
x1

(bi, a1)(g
T1i
bi

(bi) + r(a1, bi)),

gT1
x (a1) = ∇gT1

x (bi, a1)(g
T1i
bi

(bi) + r(a1, bi)).

Therefore

(5)
gx1(a1)

∇gx1(bi, a1)
=

gx(a1)

∇gx(bi, a1)
=

gT1
x1

(a1)

∇gT1
x1(bi, a1)

=
gT1

x (a1)

∇gT1
x (bi, a1)

.

Also we have
1

∇gx1(a2, a1)
gx1|V2 = gT2

a2
,

and hence

gx1(a1) = ∇gx1(a2, a1)(g
T2
a2

(a2) + r(a1, a2)).

Similarly we have

gx(a1) = ∇gx(a2, a1)(g
T2
a2

(a2) + r(a1, a2)).
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Therefore

(6)
gx1(a1)

∇gx1(a2, a1)
=

gx(a1)

∇gx(a2, a1)
.

Since ∆pgx(a1) = 0 and ∆pgx1(a1) = 0, we have

ϕp(∇gx(a1, x1)) =
∑

i6=i0

ϕp(∇gx(bi, a1)) + ϕp(∇gx(a2, a1)),

ϕp(∇gx1(a1, x1)) =
∑

i6=i0

ϕp(∇gx1(bi, a1)) + ϕp(∇gx1(a2, a1)).

Using (5) and (6), we have

∇gx(bi, a1) =
gx(a1)

gx1(a1)
∇gx1(bi, a1),

∇gx(a2, a1) =
gx(a1)

gx1(a1)
∇gx1(a2, a1),

and hence

(7)
∇gx(a1, x1)

∇gx1(a1, x1)
=

gx(a1)

gx1(a1)
.

Similarly, since ∆T1
p gT1

x (a1) = 0 and ∆T1
p gT1

x1
(a1) = 0, we have

ϕp(∇gT1
x (a1, x1)) =

∑

i6=i0

ϕp(∇gT1
x (bi, a1)),

ϕp(∇gT1
x1

(a1, x1)) =
∑

i6=i0

ϕp(∇gT1
x1

(bi, a1)).

Using (5), we have

(8)
∇gT1

x (a1, x1)

∇gT1
x1(a1, x1)

=
gT1

x (a1)

gT1
x1(a1)

.

Combining (7) and (8), since x1 = bi0 , we have

(9)
∇gx(a1, x1)

∇gT1
x (a1, x1)

= ci0

gx(a1)

gT1
x (a1)

,

where

cj =
gT1

bj
(a1)

gbj
(a1)

∇gbj
(a1, bj)

∇gT1
bj

(a1, bj)
.

If we put c = max(c1, . . . , cd−1, c
−1
1 , . . . , c−1

d−1), then c is independent of x. Now we
obtain by (9)

gx(x1) = gx(a1) + r(a1, x1)∇gx(a1, x1)

= gx(a1) + r(a1, x1)ci0

gx(a1)

gT1
x (a1)

∇gT1
x (a1, x1)
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≤ c
gx(a1)

gT1
x (a1)

(gT1
x (a1) + r(a1, x1)∇gT1

x (a1, x1)) = c
gx(a1)

gT1
x (a1)

gT1
x (x1).

Therefore

(10)
gx(x1)

gT1
x (x1)

≤ c
gx(a1)

gT1
x (a1)

.

Similarly we have

(11)
gx(x1)

gT1
x (x1)

≥ c−1 gx(a1)

gT1
x (a1)

.

Next let y ∈ V1 with y ∼ x1 and y 6= a1, x2. Let T1y = S(T1, {(x1, y)}, y). Then
we have

1

∇gx(y, x1)
gx|V (T1y) = gT1y

y ,

and therefore
gx(x1) = ∇gx(y, x1)(g

T1y
y (y) + r(y, x1)).

Similarly we have

gT1
x (x1) = ∇gT1

x (y, x1)(g
T1y
y (y) + r(y, x1)).

Combined with (10) and (11), we have

(12) c−1 gx(a1)

gT1
x (a1)

≤ ∇gx(y, x1)

∇gT1
x (y, x1)

≤ c
gx(a1)

gT1
x (a1)

.

Since ∆pgx(x1) = 0 and ∆T1
p gT1

x (x1) = 0, we have

ϕp(∇gx(x1, x2)) =
∑
y∼x1

y 6=a1,x2

ϕp(∇gx(y, x1)) + ϕp(∇gx(a1, x1)),

ϕp(∇gT1
x (x1, x2)) =

∑
y∼x1

y 6=a1,x2

ϕp(∇gT1
x (y, x1)) + ϕp(∇gT1

x (a1, x1)).

Formulas (9) and (12) imply that

c−1 gx(a1)

gT1
x (a1)

≤ ∇gx(x1, x2)

∇gT1
x (x1, x2)

≤ c
gx(a1)

gT1
x (a1)

.

Using (10), we have

gx(x2) = gx(x1) + r(x1, x2)∇gx(x1, x2)

≤ c
gx(a1)

gT1
x (a1)

(gT1
x (x1) + r(x1, x2)∇gT1

x (x1, x2))

= c
gx(a1)

gT1
x (a1)

gT1
x (x2),

and therefore
gx(x2)

gT1
x (x2)

≤ c
gx(a1)

gT1
x (a1)

.
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Also we have by (11)
gx(x2)

gT1
x (x2)

≥ c−1 gx(a1)

gT1
x (a1)

.

We repeat these arguments and obtain

c−1 gx(a1)

gT1
x (a1)

≤ ∇gx(xl−1, x)

∇gT1
x (xl−1, x)

≤ c
gx(a1)

gT1
x (a1)

,(13)

c−1 gx(a1)

gT1
x (a1)

≤ gx(x)

gT1
x (x)

≤ c
gx(a1)

gT1
x (a1)

,

c−1 gx(a1)

gT1
x (a1)

≤ ∇gx(z, x)

∇gT1
x (z, x)

≤ c
gx(a1)

gT1
x (a1)

for z ∼ x with z 6= xl−1.(14)

We have ∑
z∼x

z 6=xl−1

ϕp(∇gx(z, x)) + ϕp(∇gx(xl−1, x)) = −∆pgx(x) = 1,

∑
z∼x

z 6=xl−1

ϕp(∇gT1
x (z, x)) + ϕp(∇gT1

x (xl−1, x)) = −∆T1
p gT1

x (x) = 1.

Equations (13) and (14) imply that

ϕp

(
c−1 gx(a1)

gT1
x (a1)

)
≤ 1 ≤ ϕp

(
c

gx(a1)

gT1
x (a1)

)
.

This means that

c−1 ≤ gx(a1)

gT1
x (a1)

≤ c.

Hence, combining with (4), we have

c−1c−1
0 HT1(x, a1) ≤ H(x, a1) ≤ cc−1

0 HT1(x, a1).

We obtain similarly that there are constants c′ and c′0 such that

c′−1
c′0
−1

HT2(x, a2) ≤ H(x, a2) ≤ c′c′0
−1

HT2(x, a2) for x ∈ V2.

Therefore Lemma 9 implies that, if x, y ∈ V1, then

H(x, y) = H(x, a1)H(a1, y) ≤ cc−1
0 HT1(x, a1)cc0H

T1(a1, y)

= c2HT1(x, y),

and similarly
H(x, y) ≥ c−2HT1(x, y);

if x ∈ V1 and y ∈ V2, then

H(x, y) = H(x, a1)H(a1, a2)H(a2, y)

≤ cc−1
0 HT1(x, a1)×H(a1, a2)× c′c′0H

T2(a2, y),

and similarly

H(x, y) ≥ c−1c′−1
c−1
0 c′0H

T1(x, a1)H(a1, a2)H
T2(a2, y).
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These imply the result. ¤

4. Proof of Theorem 7

Lemma 11. Let T = (V, E, r) be a tree. Let a, x ∈ V and {a =
x0, x1, . . . , xl−1, xl = x} the path ax. Let rj = r(xj−1, xj) and

T −
j = S(T , {(xj, xj+1)}, xj) for j = 0, . . . , l − 1,

T +
j = S(T , {(xj−1, xj)}, xj) for j = 1, . . . , l.

Suppose that T −
j and T +

j are of hyperbolic type of order p. Let

λj = g
T −j
xj (xj), ρj = g

T +
j

xj (xj).

Then

H(a, x)p−1 =
l∏

j=1

(λj−1 + rj)
p−1 + ρp−1

j

λp−1
j−1 + (ρj + rj)p−1

.

Proof. Since

ga|V (T +
j ) =

ga(xj)

g
T +

j
xj (xj)

g
T +

j
xj ,

we have

∇ga(xj, y) =
ga(xj)

ρj

∇g
T +

j
xj (xj, y) for y ∈ V (T +

j ) with y ∼ xj.

Since ∆pga(xj) = 0 and ∆
T +

j
p g

T +
j

xj (xj) = −1, we have

ϕp(∇ga(xj, xj−1)) +
∑

y∈V (T +
j )

y∼xj

ϕp(∇ga(xj, y)) = 0,

∑

y∈V (T +
j )

y∼xj

ϕp(∇g
T +

j
xj (xj, y)) = −1.

Therefore

ϕp(∇ga(xj, xj−1))− ϕp(
ga(xj)

ρj

) = 0,

or
ga(xj−1)− ga(xj)

rj

=
ga(xj)

ρj

,

and hence

ga(xj) =
ρj

ρj + rj

ga(xj−1).

Therefore

ga(x) = (
l∏

j=1

ρj

ρj + rj

)ga(a).
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Similarly we have

gx(a) = (
l∏

j=1

λj−1

λj−1 + rj

)gx(x).

Therefore

(15) H(a, x) =
ga(a)

λ0(ρ1 + r1)
(

l−1∏
j=1

ρj(λj−1 + rj)

λj(ρj+1 + rj+1)
)
(λl−1 + rl)ρl

gx(x)
.

Since

gxj
|V (T −j−1) =

gxj
(xj−1)

g
T −j−1
xj−1(xj−1)

g
T −j−1
xj−1 ,

we have

∇gxj
(xj−1, y) =

gxj
(xj−1)

λj−1

∇g
T −j−1
xj−1(xj−1, y)

for y ∈ V (T −
j−1) with y ∼ xj−1. Therefore ∆pgxj

(xj−1) = 0 and ∆
T −j−1
p g

T −j−1
xj−1(xj−1) =

−1 imply that

ϕp(∇gxj
(xj−1, xj))− ϕp(

gxj
(xj−1)

λj−1

) = 0,

that is

gxj
(xj−1) =

λj−1

λj−1 + rj

gxj
(xj).

Hence

(16) ∇gxj
(xj, xj−1) = − 1

λj−1 + rj

gxj
(xj).

Next since

gxj
|V (T +

j ) =
gxj

(xj)

g
T +

j
xj (xj)

g
T +

j
xj ,

we have similarly

(17) ∇gxj
(xj, y) =

gxj
(xj)

ρj

∇g
T +

j
xj (xj, y) for y ∈ V (T +

j ) with y ∼ xj.

Since ∆pgxj
(xj) = −1 and ∆

T +
j

p g
T +

j
xj (xj) = −1, we have by (16) and (17)

−ϕp(
gxj

(xj)

λj−1 + rj

)− ϕp(
gxj

(xj)

ρj

) = −1.

Therefore
1

gxj
(xj)p−1

=
1

(λj−1 + rj)p−1
+

1

ρp−1
j

for j = 1, . . . , l.

Similarly we have

1

gxj
(xj)p−1

=
1

λp−1
j

+
1

(ρj+1 + rj+1)p−1
for j = 0, . . . , l − 1.
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Hence

(
ga(a)

λ0(ρ1 + r1)
)p−1 =

1

λp−1
0 + (ρ1 + r1)p−1

,

(
ρj(λj−1 + rj)

λj(ρj+1 + rj+1)
)p−1 =

ρp−1
j + (λj−1 + rj)

p−1

λp−1
j + (ρj+1 + rj+1)p−1

,

(
(λl−1 + rl)ρl

gx(x)
)p−1 = (λl−1 + rl)

p−1 + ρp−1
l .

Combining these and (15) we have the result. ¤

Lemma 12. Let V = {xj}∞j=0, E = {(xj, xj+1)}∞j=0 and r a resistance.

(i) If
∑∞

j=0 r(xj, xj+1) = ∞, then (V, E, r) is of parabolic type of order p;

(ii) If
∑∞

j=0 r(xj, xj+1) < ∞, then (V, E, r) is of hyperbolic type of order p and
has a symmetric p-Green function.

Proof. We shall show only (ii). It is easy to see that the p-Green function gxm is
represented as

gxm(xl) =
∞∑

j=max(l,m)

r(xj, xj+1).

Therefore H(xm, xl) = 1. ¤

Lemma 13. For 0 ≤ s, t ≤ M we have

2−|p−2| ≤ tp−1 + (M − t)p−1

sp−1 + (M − s)p−1
≤ 2|p−2|.

Proof. It is clearly that, if p < 2, then we have Mp−1 ≤ tp−1 + (M − t)p−1 ≤
22−pMp−1; if p ≥ 2, then we have 22−pMp−1 ≤ tp−1 + (M − t)p−1 ≤ Mp−1. This
leads to the result. ¤

Lemma 14. Let V = {xj}∞j=−∞, E = {(xj, xj+1)}∞j=−∞ and r a resistance. Let

S+ =
∑∞

j=0 r(xj, xj+1) and S− =
∑−1

j=−∞ r(xj, xj+1).

(i) If both S+ and S− diverge, then (V, E, r) is of parabolic type of order p;
(ii) If one of S+ and S− diverges and the other converges, then (V, E, r) is of

hyperbolic type of order p and has a symmetric p-Green function;
(iii) If both S+ and S− converge, then (V, E, r) is of hyperbolic type of order p

and has a quasi-symmetric p-Green function.

Proof. Lemma 10 reduces (ii) to Lemma 12 (ii). We shall show (iii). We use the
same notation as in Lemma 11. Then we easily have ρm =

∑∞
j=m r(xj, xj+1) and

λm =
∑m−1

j=−∞ r(xj, xj+1). Also we have that λm−1 + rm = λm and ρm + rm = ρm−1.
Therefore Lemma 11 implies that, if l > 0, then

H(x0, xl)
p−1 =

ρp−1
l + λp−1

l

ρp−1
0 + λp−1

0

.
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Since M = ρm + λm is independent of m, we have by Lemma 13

2−|p−2| ≤ H(x0, xl)
p−1 ≤ 2|p−2|.

The case l < 0 can be treated similarly. ¤
Proof of Theorem 7 (i). Let T be a tree as in Theorem 7 (i). Using Lemma 10, we
may assume that there are no parabolic ends. Then T is represented as the union
of finitely many trees in Lemmas 12 and 14. Since they have quasi-symmetric p-
Green functions for any resistances, T also has quasi-symmetric p-Green functions
by Theorem 6. ¤
Lemma 15. Let q be the number with 1/p + 1/q = 1. Let T = (V, E, r) be a tree
such that deg(x) ≥ 3 for each x and

r(x, y) =
ψ(x)ψ(y)− 1

(ψ(x) + 1)(ψ(y) + 1)
,

where ψ(x) = (deg(x)− 1)q−1. Then T has a quasi-symmetric p-Green function.

Proof. Let x, y be distinct vertices and let {x = x0, x1, . . . , xl−1, xl = y} be the
path xy. It is easy to see that the p-Green function gx is represented as

gx(y) =
1

deg(x)q−1

1

ψ(x1) · · · · · ψ(xl−1)

1

ψ(y) + 1
,

gx(x) =
1

deg(x)q−1

ψ(x)

ψ(x) + 1
.

Therefore

H(x, y) =
deg(y)q−1

deg(x)q−1

ψ(x) + 1

ψ(y) + 1
=

(1− deg(x)−1)q−1 + deg(x)1−q

(1− deg(y)−1)q−1 + deg(y)1−q
.

Using Lemma 13 for q instead of p, we have

2−|q−2| ≤ H(x, y) ≤ 2|q−2|.

Hence the result follows. ¤
Lemma 16. Let T = (V, E, r) be a tree of hyperbolic type of order p. Let x0, y0 ∈ V
and {x0, x1, . . . , xl−1, xl = y0} the path x0y0. Suppose that deg(x0) ≥ 3, deg(y0) ≥ 3
and deg(xj) = 2 for j = 1, . . . , l − 1. Then

2−|q−2|H(x0, y0) ≤ H(x0, xj) ≤ 2|q−2|H(x0, y0)

for j = 1, . . . , l − 1, where q is the number with 1/p + 1/q = 1.

Proof. Let T1 = S(T , {(x0, x1)}, x0) and T2 = S(T , {(xl−1, xl)}, y0). We denote

u1(j) = gT1
x0

(x0) +

j∑
i=1

r(xi−1, xi),

u2(j) = gT2
y0

(y0) +
l∑

i=j+1

r(xi−1, xi).
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Then it is easy to see that the p-Green function with pole at xj is given by

gxj
(xj) =

1

(u1(j)1−p + u2(j)1−p)q−1
,

gxj
(xk) =

u1(k)

u1(j)
gxj

(xj) if 0 ≤ k < j,

gxj
(x) =

gT1
x0

(x)

u1(j)
gxj

(xj) if x ∈ V (T1),

gxj
(xk) =

u2(k)

u2(j)
gxj

(xj) if j < k ≤ l,

gxj
(x) =

gT2
y0

(x)

u2(j)
gxj

(xj) if x ∈ V (T2).

Similarly we have

gx0(x0) =
1

(u1(0)1−p + u2(0)1−p)q−1
,

gx0(xj) =
u2(j)

u2(0)
gx0(x0).

Therefore

H(x0, xj)
p−1 =

u1(j)
p−1 + u2(j)

p−1

u1(0)p−1 + u2(0)p−1
.

Similarly we have

H(x0, y0)
p−1 =

u1(l)
p−1 + u2(l)

p−1

u1(0)p−1 + u2(0)p−1
.

Hence (H(x0, xj)

H(x0, y0)

)p−1

=
u1(j)

p−1 + u2(j)
p−1

u1(l)p−1 + u2(l)p−1
.

Since u1(j) + u2(j) is independent of j, Lemma 13 implies that

2−|p−2| ≤
(H(x0, xj)

H(x0, y0)

)p−1

≤ 2|p−2|.

Hence the result follows. ¤
Proof of Theorem 7 (iia). Let T = (V, E, r) be a tree which has infinitely many
x ∈ V such that deg(x) ≥ 3. If there is a subtree such that either

deg(x0) ≥ 3, deg(x1) = 2, . . . , deg(xl) = 2, deg(xl+1) = 1

for some l ≥ 0, or

deg(x0) ≥ 3, deg(x1) = 2, . . . , deg(xl) = 2, . . . ,

then we may remove it from T since we can make it a parabolic end.
Let {{zi

0, z
i
1, . . . , z

i
mi−1, z

i
mi
}}i be all of paths such that

deg(zi
0) ≥ 3, deg(zi

1) = 2, . . . , deg(zi
mi−1) = 2, deg(zi

mi
) ≥ 3
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for some mi ≥ 2. Let V ′ = V \ {zi
j}i,j and E ′ = E ∪ {(zi

0, z
i
li
)}i \ {(zi

j−1, z
i
j)}i,j.

Then deg(V ′,E′)(x) ≥ 3 for all x ∈ V ′. Therefore Lemma 15 shows that there is
a resistance r′ on E ′ such that T ′ = (V ′, E ′, r′) has a quasi-symmetric p-Green
function. Let r be a resistance on E such that r = r′ on E ∩ E ′ and

r′(zi
0, z

i
mi

) =

mi∑
j=1

r(zi
j−1, z

i
j) for each i.

Let x ∈ V ′. Then it is easy to see that the p-Green function gx is

gx =gT
′

x on V ′,

gx(z
i
k) =gT

′
x (zi

0) +∇gT
′

x (zi
0, z

i
mi

)
k∑

j=1

r(zi
j−1, z

i
j).

Therefore

H(x, y) = HT ′(x, y) for x, y ∈ V ′.

Hence Lemma 16 implies that, if x ∈ V ′ and y = zi
j, then

H(x, y) = H(x, zi
0)H(zi

0, y) ≤ HT ′(x, zi
0) · 2|q−2|HT ′(zi

0, z
i
mi

)

= 2|q−2|HT ′(x, zi
mi

);

if x = zi
j and y = zk

l , then

H(x, y) = H(x, zi
mi

)H(zi
mi

, zk
0 )H(zk

0 , y)

≤ 2|q−2|HT ′(zi
0, z

i
mi

) ·HT ′(zi
mi

, zk
0 ) · 2|q−2|HT ′(zk

0 , z
k
mk

)

= 22|q−2|HT ′(zi
0, z

k
mk

).

Therefore

M(T ) ≤ 22|q−2|M(T ′).

This completes the proof. ¤
Lemma 17. Let T0 = (V0, E0, r0), Tj = (Vj, Ej, rj) and T ′

j = (V ′
j , E

′
j, r

′
j) for j ≥ 1.

Let aj ∈ V0, bj ∈ Vj and b′j ∈ V ′
j . Let ρj be positive numbers. Let r = r0 on E0,

r = rj on Ej and r(aj, bj) = ρj. Let r′ = r0 on E0, r′ = r′j on Ej and r′(aj, b
′
j) = ρj.

Let

T = (V0 ∪
⋃
j

Vj, E0 ∪
⋃
j

Ej ∪ {(aj, bj)}j, r),

T ′ = (V0 ∪
⋃
j

V ′
j , E0 ∪

⋃
j

E ′
j ∪ {(aj, b

′
j)}j, r

′).

If g
Tj

bj
(bj) = g

T ′j
b′j

(b′j) for all j, then gx(y) = gT
′

x (y) for x, y ∈ V0.

Proof. For x ∈ V0 we have

gx|Vj
=

gx(bj)

g
Tj

bj
(bj)

g
Tj

bj
.
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Therefore

∇gx(bj, y) =
gx(bj)

g
Tj

bj
(bj)

∇g
Tj

bj
(bj, y) for y ∈ Vj with y ∼ bj.

Since ∆pgx(bj) = 0 and ∆
Tj
p g

Tj

bj
(bj) = −1, we have

ϕp(∇gx(bj, aj))− ϕp(
gx(bj)

g
Tj

bj
(bj)

) = 0,

and hence
gx(aj)− gx(bj)

ρj

=
gx(bj)

g
Tj

bj
(bj)

,

that is

gx(bj) =
g
Tj

bj
(bj)

ρj + g
Tj

bj
(bj)

gx(aj).

Therefore it is easy to see that the p-Green function gT
′

x is

gT
′

x = gx in V0,

gT
′

x =
gx(bj)

g
T ′j
b′j

(b′j)
g
T ′j
b′j

in V ′
j .

Hence the result follows. ¤
Lemma 18. Let α, β, and γ be the numbers with 0 < α, β, γ < 1. Let a, b, and c
be the positive numbers such that

a =

(
(1− β)p−1 + βp−1(1− α)p−1

(1− α)p−1 + αp−1(1− β)p−1

)q−1
α

β
,(18)

b =

(
(1− β)p−1 + βp−1(1− α)p−1

1− αp−1βp−1

)q−1
(1− γ)α

(1− β)(1− α)
,

c =
α

((1− α)p−1 + αp−1(1− β)p−1)q−1
,

where q is the number with 1/p + 1/q = 1.
Let T = (V, E, r) be a tree (as shown in Figure 2) such that

V = {xl, yl,k}l∈Z,k∈N,

E = {(xl−1, xl), (xl, yl,1), (yl,k, yl,k+1)}l∈Z,k∈N,

r(xl−1, xl) = al, r(xl, yl,1) = alb, r(yl,k, yl,k+1) = albγk.

If p 6= 2 and α 6= β, then T does not have a quasi-symmetric p-Green function.
More precisely, we have

sup
l∈Z

H(x0, xl) = ∞.
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al−1 al al+1 al+2

�

�

�

xl−2

yl−2,1

yl−2,2

al−2b

al−2bγ

�

�

�

xl−1

yl−1,1

yl−1,2

al−1b

al−1bγ

�

�

�

xl

yl,1

yl,2

alb

albγ

�

�

�

xl+1

yl+1,1

yl+1,2

al+1b

al+1bγ

�

�

�

xl+2

yl+2,1

yl+2,2

al+2b

al+2bγ

Figure 2. The tree of Lemma 18

Proof. First we observe that a, b, and c satisfy

(α−1 − 1)p−1 − a1−p(1− α)p−1 − b1−p(1− γ)p−1 = 0,

−(1− β)p−1 + a1−p(β−1 − 1)p−1 − b1−p(1− γ)p−1 = 0,

cp−1(a1−p(1− α)p−1 + (1− β)p−1 + b1−p(1− γ)p−1) = 1.

These imply that the p-Green function gxm satisfies

gxm(xl) = camαl−m if l ≥ m,

gxm(xl) = camβm−l if l < m,

gxm(yl,k) = γkgxm(xl).

Especially

gx0(xl) = cαl, gxl
(x0) = calβl if l > 0,

gx0(xl) = cβ−l, gxl
(x0) = calα−l if l < 0.

Therefore, using (18), we have

(19) H(x0, xl) =

(
α

aβ

)l

=

(
(1− α)p−1 + αp−1(1− β)p−1

(1− β)p−1 + βp−1(1− α)p−1

)l(q−1)

.

Suppose that

(20)
(1− α)p−1 + αp−1(1− β)p−1

(1− β)p−1 + βp−1(1− α)p−1
= 1.

Then we have
(1− α)p−1

1− αp−1
=

(1− β)p−1

1− βp−1
.
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The function (1− t)p−1/(1− tp−1) is strictly increasing for 0 < t < 1 if 1 < p < 2;
that is strictly decreasing if p > 2. Since p 6= 2 and α 6= β, it follows that (20) never
holds. Therefore the right hand side of (19) diverges when l →∞ or l → −∞. ¤
Proof of Theorem 7 (iib). Let T = (V, E, r) be a tree which has infinitely many
x ∈ V such that deg(x) ≥ 3. If there is a subtree such that either

deg(x0) ≥ 3, deg(x1) = 2, . . . , deg(xl) = 2, deg(xl+1) = 1

for some l ≥ 0, or

deg(x0) ≥ 3, deg(x1) = 2, . . . , deg(xl) = 2, . . . ,

then we may remove it from T since we can make it a parabolic end.
Let {{zi

0, z
i
1, . . . , z

i
mi−1, z

i
mi
}}i be all of paths such that

deg(zi
0) ≥ 3, deg(zi

1) = 2, . . . , deg(zi
mi−1) = 2, deg(zi

mi
) ≥ 3

for some mi ≥ 2. Let V ′ = V \{zi
j}i,j and E ′ = E∪{(zi

0, z
i
li
)}i\{(zi

j−1, z
i
j)}i,j. Then

deg(V ′,E′)(x) ≥ 3 for all x ∈ V ′. We choose {xl}l∈Z ⊂ V ′ be a two-sided infinite
path, i.e., · · · ∼ x−2 ∼ x−1 ∼ x0 ∼ x1 · · · .

Let T ′′ = (V ′′, E ′′, r′′) be a tree such that

V = {xl, yl,k}l∈Z,k∈N,

E = {(xl−1, xl), (xl, yl,1), (yl,k, yl,k+1)}l∈Z,k∈N,

r(xl−1, xl) = al, r(xl, yl,1) = alb, r(yl,k, yl,k+1) = albγk,

where a, b and γ are as in Lemma 18. Then that lemma shows that

sup
l∈Z

HT ′′(x0, xl) = ∞.

Let S ′l = S((V ′, E ′), {(xl−1, xl), (xl, xl+1)}, xl). We choose a resistance r′l on
E(S ′l) such that

g
S′l
xl (xl) = g

S′′l
xl (xl),

where S ′′l = S(T ′′, {(xl−1, xl), (xl, xl+1)}, xl). Then Lemma 17 shows that there
exists a resistance r′ on E ′ such that

HT ′(x0, xl) = HT ′′(x0, xl),

and therefore
sup
l∈Z

HT ′(x0, xl) = ∞.

Next we choose a resistance r on E such that r = r′ on E ∩ E ′ and

r′(zi
0, z

i
mi

) =

mi∑
j=1

r(zi
j−1, z

i
j) for each i.

Then a similar argument to Proof of Theorem 7 (iia) implies

HT (x0, xl) = HT ′(x0, xl),

and therefore
sup
l∈Z

HT (x0, xl) = ∞.
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This completes the proof. ¤
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