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ABSTRACT. We discuss the p-harmonicity of a linear combination of p-harmonic
functions on a tree. If p # 2, the p-harmonicity is non-linear, i.e., the linear
combination of p-harmonic functions need not be p-harmonic. In spite of this
non-linear nature, we find some p-harmonic functions whose linear combinations
become p-harmonic.

Also we discuss the quasi-symmetricity of p-Green functions. It is well known
that two 2-Green functions g, and g, are symmetric, i.e., g,(b) = gs(a). However
it is not known whether two p-Green functions are symmetric or not if p # 2.
Moreover it is not known even whether those are quasi-symmetric or not, which
means that g,(b)/gs(a) is bounded or not. In this article we show that, for
every tree, there exists a resistance such that two p-Green functions are quasi-
symmetric; also we show that, for every tree, there exists a resistance such that
two p-Green functions are not quasi-symmetric.

This paper is rewritten from the doctor’s thesis.

1. INTRODUCTION

Let 1 < p < co. We consider p-harmonic functions on a tree. Let 7 = (V, E,r)
be a locally finite connected tree with a resistance r, where V' = V(7)) is the vertex
set and £ = E(7) is the edge set. An edge (x,y) € F is an ordered pair of vertices
such that (z,y) € E if and only if (y,z) € E. If (z,y) € E, then we say that x is
adjacent to y and write x ~ y. A resistance r is a positive function on E such that
r(y,z) = r(z,y). We define the discrete derivative Vu and the discrete p-Laplacian
Apu for a function u on V' by

Vu(z,y) =1z, y) (uly) — u(x)),
Apu(z) = |Vula,y) > Vu(z, y).

yev
Yy~
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Let ¢,(t) = [¢[°~?t. Then we can write

Apu(z) = Z ep(Vu(z,y)) = — Z ep(Vuly, z)).

yev yev
y~x y~x

Let D C V. If Ayju=0in D, then we say that « is p-harmonic in D.

Let x,y € V. A path joining = to y is a sequence {z = xg, x1,..., 211,21 = Y}
of distinct vertices such that xg ~ 7 ~ -+ ~ x;_; ~ x;. Since 7 is a tree, the
path joining x to y is unique. The number [ is called the length of the path and
is denoted by p(z,y). For x € V let deg(x) = #{y € V;p(x,y) = 1}. This is the
number of neighbors of z. Let A be a subset of V. We say that A is connected
if any two vertices of A are joined by a path whose vertices are still in A. By A
we denote the minimal connected set including A. Let B C F and x € V. We
remove B from F, then we obtain some components. We denote by S(7, B, x) the
component which contains x.

We define the Dirichlet sum D,[u] of order p by

Dyfu] =5 Y (@) Vulz,y)

(z,y)EE

Denote by D®(T) the set of functions on V' with finite Dirichlet sum of order p.
Then D®(T) is a Banach space with the norm |Jul|, = (D,[u] + |u(z¢)|)/?, where
xo is a fixed vertex. Let Lo(7") be the set of functions on V' with finite support.

Also let D(()p)(T) be the closure of Ly(7) in D®(7) with respect to the norm |-||,.

A tree 7 is said to be of hyperbolic type of order p if 1 ¢ D(()p)(T); a tree 7 is said
to be of parabolic type of order p otherwise. Consider the discrete boundary value
problem

(1) Aju=—38, ueDP(T),

where ¢, is the characteristic function of {a}, i.e., d,(x) = 1 if v = a and 0,(z) =
0 otherwise. The solution u to (1) uniquely exists if and only if the tree is of
hyperbolic type of order p. We call the solution u the p-Green function with pole
at a and denote it by g,. For these accounts see Kayano-Yamasaki [1], Nakamura-
Yamasaki [4], Soardi-Yamasaki [5], Yamasaki [6, 7, 8.

We discuss the p-harmonicity of a linear combination of p-harmonic functions
on a tree. If p # 2, the p-harmonicity is non-linear, i.e., the linear combination of
p-harmonic functions need not be p-harmonic. In spite of this non-linear nature,
we find some p-harmonic functions whose linear combinations become p-harmonic.
By definition a constant is a p-harmonic function and the linear combination of an
arbitrary p-harmonic function and a constant is p-harmonic. We shall find other
p-harmonic linear combinations of p-harmonic functions. Let {uy,...,u,} be an
m-tuple of p-harmonic functions in D C V such that {1,uy,...,u,} is linearly
independent. We say that {ui,...,u,} has a linear relation in D if every linear
combination Y 7', ¢ju; is p-harmonic in D. Also we say that {uy,...,u,} has a
partial linear relation in D if Z;nzl tju; is p-harmonic in D for some t,...,t, €
R\ {0}. This problem has studied in [2].
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Theorem 1. Let D C V and let {uy,...,uy} be an m-tuple of p-harmonic func-
tions in D. Suppose that, for each (x,y) € E with x € D ory € D, there
is jo(x,y) € {1,...,m} such that u;(z) = u;(y) whenever j # jo(x,y). Then
{uy, ..., un} has a linear relation in D.

Example 2. Let 7 be a tree formed by m half lines meeting at a vertex zg, i.e., V =

{zo} UUZ {in}iy and B = UL {(@in-1, Tik), (Tig, Ti—1) 1721, Where 230 = o
fori=1,...,m. Let r be an arbitrary resistance on E. We define a function u; on
V' by

UZ(ZL‘()) = 0,

u(l’ ) — T(ZL’(), ij) + T(mj,lu Ij,Q) + 4 T(Ij7k_1, I],k) ]f] —_ 7:7
" 0 otherwise

fori=1,...,m. Let 1 < p < co. Then the following statements hold:
(i) Every w; is p-harmonic in V' \ {z¢} and the m-tuple {uy,...,u,} has a
linear relation in V' \ {zo}.
(ii) Every difference v;; = u; — u; is p-harmonic in V. Moreover, let A :=
{(i17j1>, RN (i#,j#)} C {]., c. ,m} X {]., cee ,m} such that iy, 71, ... ,iu,j#
are distinct integers. Then {v;;}¢ j)ea has a linear relation in V.
(iii) The (m — 1)-tuple {v12,v13,...,V1,,} has a partial linear relation in V.

We give different types of p-harmonic functions with linear relation.

Theorem 3. Suppose that deg(z) > 2 for every x € V. For a € V we define a
function h, on V by

-1 k
ha(a) =0, ho(z) = r(ag, zre) [ [ (deg(a,) — 1)),
=0 jZO

where {a = xo,x1,...,2_1,2; = x} is the path joining a to x. Then the function
ha is p-harmonic in V\ {a}. If A is a finite subset of V', then {ha}.ca has a linear
relation in V' \ A.

Theorem 4. Suppose that deg(x) > 2 for every x € V. Let h, be the function on
V' defined in Theorem 3. If a,b € V with p(a,b) = 2, then {hq, hy} has a partial
linear relation in V' \ {a,b}.

We show that the set of p-Green functions with poles a € A has a linear relation
outside A.

Theorem 5. Suppose that the tree T is of hyperbolic type of order p. Then the
p-Green function g, is p-harmonic in V' \ {a}. If A is a finite subset of V', then
{Ga}taca has a linear relation in V '\ A.

Next we discuss the quasi-symmetricity of p-Green functions. It is well known
that two 2-Green functions g, and g, are symmetric, i.e., ¢,(b) = gy(a). However
it is not known whether two p-Green functions are symmetric or not if p # 2.
Moreover it is not known even whether those are quasi-symmetric or not, which
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means that g,(b)/gy(a) is bounded or not. Let 7 be a tree of hyperbolic type of
order p. Let

H(z,y) = 9:(v) forx,y e V
gy()
M(T) = sup H(z,y)
z,yeV

We consider the problem whether M (7) is finite or not for p # 2. A tree 7 is
said to have a symmetric p-Green function if M(7) = 1; a tree 7 is said to have a
quasi-symmetric p-Green function if M (7) is finite. This problem has studied in
[3].

Theorem 6. Let 7 = (V, E, 1) be a tree of hyperbolic type of order p. Let (aq,as) €
E. LetTh =S8(7,{(a1,a2)},a1) and Ty = S(T,{(a1,a2)},a2). ThenT has a quasi-
symmetric p-Green function if and only if each of Ty and 15 has a quasi-symmetric
p-Green function.

Theorem 7. Let p # 2. Let (V,E,r) be a tree.

(1) Suppose that there are only finitely many x € V such that deg(x) > 3.
Then (V, E,r) has a quasi-symmetric p-Green function whenever (V, E,r)
1s of hyperbolic type of order p.
(ii) Suppose that there are infinitely many x € V' such that deg(xz) > 3. Then
we find two resistances vy and ro with the following conditions.
(a) The tree (V,E,r1) is of hyperbolic type of order p and has a quasi-
symmetric p-Green function.
(b) The tree (V, E,13) is of hyperbolic type of order p and does not have
a quasi-symmetric p-Green function.

2. PROOF OF THEOREMS 1, 3, 4 AND 5
Note that the function p,(t) = [t[P~2¢ satisfies p,(st) = p,(s)p,(t).

Proof of Theorem 1. Let u = Z;n:l tju;. We shall prove Aju(x) = 0 for every
x € D. Take y € V with y ~ z. By the assumption we have Vu;(z,y) = 0 for
J # jo(x,y). Therefore

Po(Vu(z,Y)) = 0p(tjo(w)p(Vidjig ) () Zsop )op(Vuj(2,9)).

Hence

ngp DA u;(z) = 0.

This means u is p-harmonic at z, and hence in D. O
Proof of Example 2. (i). We observe that

1 if j =1,

0 otherwise.

(2) V(@) k-1, Tj%) = {
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It is clear that Aju;(z;5) = 01if j # 4. If j =4, then
Vui(a:'j7k,:cj7k+1) = 1, Vui(:cﬁk,xj,k,l) = —1,

and therefore Ayu;(z; ) = 0. Hence u; is p-harmonic in V' \ {z¢} for every p. Also
(2) means that {uy,...,u,} satisfies the condition of Theorem 1 for D = V' \ {z,}.
Hence {uy,...,u,} has a linear relation in V' \ {zo}.

(ii). We observe from (i) that v;; are p-harmonic in V' \ {z¢} and so is their
arbitrary linear combination. By definition

Apvij(z0) = @p(Vui(ro, zin)) — op(Vuj(wo, 251)) = 0,

and hence v; j is p-harmonic at {zo} as well. We see that {v;;}; jjea satisfies the
condition of Theorem 1 for D = V', and therefore {v; ;}; j)ea has a linear relation
in V.

(iii). Let u= > ", tv1; Then u= (37, t;)ur — (327, t5u;), so that

To) = ‘Pp(ztj) - Z‘Pp(ty)

Therefore, u is p-harmonic at z, if and only if gop(zgnﬁ tj) = > o wp(ty). This
shows that {v12,v13,...,v1,,m} has a partial linear relation in V. O

We shall prove Theorems 3 and 4. For simplicity we let w(z) = (deg(z)—1)Y/1=P),

Then
-1 k

ha(a) =0,  he(z) =Y r(ap,z) [ Jwlz)),

k=0 3=0
where {a = xg,z1,..., 71,7, = x} is the path joining a to z.

Proof of Theorem 3. Let x € V '\ {a}. Take the path {a = xo,z1,..., 21,2, =z}
joining a to z. Also let y = x;_; and let 2,. .., Z4eg(s)—1 be the other neighbors of
x. Since the path joining a to z is {a,x1,..., 211, 2, zk} we have

-1 -1
Vha(z,y) = —% Hw(%‘) = —Hw(%‘),
l

!
:1:,2
Vha(, 2) = — ) Hw H ().
7=0

3:0
Therefore
(3) Vha(z, z) = —w(x)Vhe(z,y).
Since g, (w(x)) = (deg(z) — 1),
deg(z)—1
Apha(z) = 0p(Vha(z,9) + D 0p(Vha(z, 2)) = 0.
k=1

Next let A be a finite subset of V and let u =", t,hq. Let € V\ A. Let y be
the neighbor of x which is on the path joining a € A to x. Note that y is independent
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of the choice of a since z & A. Let 2, ..., Zdeg(x)—1 be the other neighbors of . Then
(3) holds for each a € A. Therefore Vu(z, zx) = —w(z)Vu(zx,y), and consequently

deg(z)—
Apu(z) = pp(Vu(z,y)) + ©p(Vu(z, z;)) = 0.
k=1

H

This means u is p-harmonic at x, and hence in V' \ A. 0

Proof of Theorem 4. Let u = sh,+thy. Let x be the vertex between a and b and let
21, ..., Zdeg(x)—2 De the other neighbors of . Then u is p-harmonic in V' \ {a, z, b}
by Theorem 3.
Now we consider the p-harmonicity of u at z. We have h,(a) = 0 and hy(a) =
r(b, x)w(b) + r(x,a)w(b)w(zx). Therefore
u(a) = tr(b, z)w(b) + tr(z, a)w(b)w(z).
Similarly we have
u(b) = sr(a, z)w(a) + sr(z, b)w(a)w(x),
u(zy) = sr(a, z)w(a) + sr(z, zx)w(a)w(x) + trb, x)w(db) + tr(z, zi)w(b)w(zx),
u(z) = sr(a,x)w(a) + tr(b, x)w(b).

Hence

If we take s and ¢ such that sw(a) + tw(b) = 0, then
Vu(z,a) = —Vu(z,b), Vu(z, zi) =0,

and therefore Aju(z) = 0. This means that {h,, hy} has a partial linear relation.
O

Proof of Theorem 5. 1t is evident that g, is p-harmonic in V' \ {a}. Let A be a
finite subset of V. Let # € V' \ A. Take the path {a,z1,...,7;_1,2} joining a € A
to x. Let k be the number such that z;, € A and 41 € A. Let y = . Then y is
independent of the choice of a.

Let 7 be the subtree whose vertex set is the union of {y} and the connected
component of V'\ A including . Let A be the p-Laplacian with respect to 7. Let
T, be the restriction of g, to 7. Then it is easy to see that

Ajiia =09, =0 inT\{y}, 1. cD(T)

Let ¢, = —pq(Ayiia(y)), where g is the number such that 1/p+1/¢ = 1. Note that
©p(pg(t)) =t. We see that 0, = U,/c, satisfies

Ayig = =2 = 5, inT, o, €DP(T).
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Therefore v, is the p-Green function g, with pole at y with respect to T. The
uniqueness of the p-Green function implies that 9, = §,, especially that 7, is
independent of the choice of a. This means that

ga = aa == CarDa - Cagy Hl T
If we set w =) .4 taga, then
u= (Z taCa) Ty in 7.
a€A
Hence

Apu(z) = @p(z taCa) Apgy(z) = @p(z taCa)Apgy(x) = 0.

a€A acA

Thus u is p-harmonic at z. Since z € V \ A is arbitrary, u is p-harmonic in V' \ A.
Therefore {g,}aca has a linear relation in V' \ A. O

3. PROOF OF THEOREM 6

First note that cu|y i € D (T") for any u € DY (T), for any subtree 7' of T
and for any constant c. This fact is applied repeatedly.

Lemma 8. Let T = (V, E,r) be a tree of hyperbolic type of order p. Let (a,b) € E.
Let T' = S(7,{(a,b)},a) and T" = S(T,{(a,b)},b). Let x € V(T") U{b}.
(i) If T" is of hyperbolic type of order p, then g.|v(rw is constant times of
T//
gb ;
(i) if T" is of parabolic type of order p, then g,|v () is a constant function in

V(T").
Proof. We denote the p-Laplacian (resp. p-Green function, and so on) with respect
to 7' by AZ’ (resp. ¢gZ', and so on).
First suppose z € V(T"). Let b = {x = zo, 1, ..., 71,2, = b}. Let
,];' :S(T,{(,fj_l,JTj)},ij) fOI'j: 1,...,[,
Sj = S(T, {(ZL’j_l,Ij>, (l‘j, $j+1)}, Ij) for j = 1, R ,l — ].,
So = S(7,{(wo,71)}, 70).

If 7 is of hyperbolic type of order p, then we let u = gZ} in V(7;); if 7; is of parabolic
type of order p, then we let w =1 in V(7;). Then u is p-harmonic in V(7)) \ {x;}

and u € D(()p) (77). Let

u(zi—1) = u(wy) — r(zy, 21)pg (AT u(x)),

where ¢ is the number with 1/p+ 1/¢ = 1. Since ¢, is the inverse function of ¢y,
we have that u is p-harmonic at ;.
If S;_; is of hyperbolic type of order p, then we let

U 11 .
u= —Sli ) gl i V(S);
9z (xl—l)
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if §;—1 is of parabolic type of order p, then we let u = u(z;—1) in V(S;-1). Then u
is p-harmonic in V(7;_1) \ {z;—1} and u € D(()p)( —1)-
Repeat this argument and obtain a function u which is p-harmonic in V' \ {z}

and u € D(()p) (7). Therefore u is a constant times of g,. Since 7, = 7" and x; = b,
we have the result in this case.

Next suppose x = b. If 7" is of hyperbolic type of order p, then we let u = gaT/
in V(7"); if 7' is of parabolic type of order p, then we let u =1 1in V(7”). Then u

is p-harmonic in V(7") \ {a} and v € D"(T"). Let
u(8) = u(a) - r(a, )y (AT u(a).

Then u is p-harmonic at a.
If 7" is of hyperbolic type of order p, then we let

u(b) T" : 11
U= —=—-=4g in V(7T");
OK 7

if 7" is of parabolic type of order p, then we let v = w(b) in V(7”). Then u is

p-harmonic in V'\ {b} and u € D(()p ) (7). Therefore u is a constant times of g, and
the result follows. U

Lemma 9. For any x,y,z € V we have

H(z,z) = H(z,y)H(y, z).
Proof. First assume that y is a vertex on the path z. Let ¢’ be the vertex adjacent
to y and on the path yz. Let 7" = S(7,{(v,¥')},y). By Lemma 8 both g,|v(7

and g,|v (7 are constant times of gyT "if T" is of hyperbolic type of order p, or both
are constant functions on V(7”) if 7" is of parabolic type. Therefore

9:(y)

gac|V T = — 9 |V T~
™ gy(y) vV

Especially
92(y)
9y(2).
Gy (y) !

Similarly we have

Hence the result follows in this case.

Next we consider the general case. Let w be the intersection vertex among z, y
and z, i.e., the vertex which is simultaneously on the three paths zy, ¥z and zz
(see Figure 1). Then the first part implies that

H(z,z) = H(z,w)H(w, z),
H(x,y) = H(:U,w)H(w,y),
H(y,z) = H(y,w)H(w, z).

Since H (w, y) is the reciprocal of H(y, w), we have the result in the general case. [
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z

FIGURE 1. The intersection vertex

Let 7 = (V, E,r) be a tree of hyperbolic type of order p. Let (y,2) € E and
S =8(7,{(y,2)},2). If S is of parabolic type, then we call S a parabolic end of
T.

Lemma 10. Let T = (V, E,r) be a tree of hyperbolic type of order p. Let {S;}; be
the set of maximal parabolic ends of T. Let T' = (V' E',r") be the subtree which
s obtained by removing Uj S; from T. Then

M(T) = M(T").

Proof. For each j we can take an edge (y;,z;) € FE such that S; =
S(7T,{(y;,%)},2;). Let © € V. We denote the p-Green function with respect
to 7" by ng/ Then it is easy to verify that the p-Green function g, is represented
as

9:(y) =97 (y)  fzeV andyeV’,

g:() =g; (y;) fzeV andyeV(S),

G(y) =g, (y)  ifzeV(S)andyecV,

g(y) = g, (y:)  ifzeV(S)) and y € V(S,) with i # j,

9:(y) = gu(w)  if x € V(S;) and y € V(S;),
where w is the intersection vertex among x, y and z;. Therefore

H(z,y) = H" (z,y) ifzeV andy eV,

H(z,y) = H (z,y;) if z € V' and y € V(S;),
H(z,y) = H" (y;,) if 2 € V(S;) and y € V',
H(z,y) = H" (y;, ) if z € V(S;) and y € V(S;) with @ # j,
H(z,y)=1 if z € V(S;) and y € V(S;).
This means M (7)) = M(T"). O
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Proof of Theorem 6. Let Ty = (Vi, Fy,7m1) and T, = (Va, Ey,19). By means of
Lemma 10 we may assume that both 7; and 7, are of hyperbolic type of order p.
First we observe that the function g,, |y, is p-harmonic in V; \ {a;} and

AT (gay Ivi)(a1) = Apga, (a1) — 0p(Vay (a1, a2)) = =1 + ©(Vga, (a2, a1)).

Let ¢ be the number with 1/p +1/¢ = 1. Then we have that ¢, is the inverse
function of ¢,. Therefore

1

_ I
—Ya; |V1 = Ya;>»
Co

where ¢o = ¢,(1 — ¢,(Vga, (a2, a1))). Especially
(4) Ja, () = cogaTl1 (x) for z € V4.

Note that ¢y is independent of x.

Let {by,...,ba—1} be the neighbors of a; in 77, where d = deg(a;). Let 7y; =
S(Th,{(ay,b )} b;). Let x € Vi \ {a1} and {a1 = zo,21,...,2,-1,2; = x} be the
path a;z. Then x; = b;, for some ig. For i # 4 the function g,, |v(z,) is p-harmonic

in V(7y;) \ {bi} and
Aglz (gle(Tu))(bi) - Apgm (bz) - 90P<v9x1 (b“ al)) = _90P<v9$1 <b“ al))'

Therefore
1 T
gz T1; g 117

Va2 Vo =

and hence
Gz (a1> = Gz (bl) + T’(Cll, bl)vgm (bz> al)
= Yz, (b1, 1) (g, (b:) + r(ar, by)).

Similarly we have

9u(a1) = Vgu(bi, a1) (g5 (b:) + (as, b)),
git(ar) = Vgl (b, a1) (g (bi) + r(a1, by)),
grH(ar) = Vgl (b, a1) (g, (bi) + r(ar, by)).
Therefore
5) ge(a))  gela)  git(a) gD (w)

Ve, (biyar) — Vge(bi,ar1)  Vgil(b,a1)  Vgi(bi,ar)
Also we have

1 _ T
mgzl |V2 = Ya5>
and hence
Gu, (1) = Vg, (a2, a1) (9,2 (a2) + 7(ar, az)).

Similarly we have

9z(a1) = Vgu(az, a1)(g22 (az) + 7(as, az)).
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Therefore

(6) Gay (&1) _ gx(al) ‘
ng (a2> al) v.gz(a'27 al)
Since Apg,(ar) =0 and A,g,, (a1) = 0, we have

2p(Va(a1,71)) = > 0p(Vaa(bi, a1)) + 0p(Vga(az, m)),

i#io
op(Vui (a1,21)) =Y 0p(V 0, (b1, a1)) + (Vg (a2, a1)).
iio
Using (5) and (6), we have
gz (a1)
bei,a = vxl biaa )
g ( 1) s (al) g ( 1)
. gw(al)
Vg.(az,ar) = o (@) Va, (a2, a1),

and hence
(7) Vgx(alaml) _ gz(al)
v.gccl (ala :L‘l) gazl (al) '
Similarly, since AT g7 (a;) = 0 and AT g7 (a;) = 0, we have
(Vs (ar,a1)) = Z@p(v%?l (bs; 1)),
i#io

op(Vari(ar,21) = > ¢p(Val (bi,a1)).
iio

Using (5), we have

(8)

Vori(a, 1) g7 (@)
Vi (a1, 1) g2 (a1)
Combining (7) and (8), since x; = b;,, we have

(9)

where

Vge(ar, 1) _  ga(an)
Voi'(ana) g (@)

ngjl(al) ngj (aq, bj)
Cj = T .
9v;(a1) Vg, (ar,b;)

If we put ¢ = max(cy,...,c4-1,¢1 ..., c;ll), then c is independent of x. Now we
obtain by (9)

92(21) = go(a1) + 7(ar, 21)Vge(ar, z1)
gx<a1)
g:*(az)

= g.(a1) + r(ay, z1)c, VQITI(CM, 1)
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< 39 (473 0)) 4 1(ar, ) VP ar,01)) = E2 g7 0,
gx (a’1> gx (04)
Therefore
(10) (1) _  Gulaa)

gt (z1) — gat(ar)
Similarly we have
gz (1) 9" (a1)

Next let y € V4 with y ~ xy and y # a1, 2. Let 71, = S(71, {(z1,y)},y). Then

we have
1

- - — gfw

and therefore
g=(11) = Vgaly, 1) (g, (y) + r(y, 21)).
Similarly we have
T _ T T,
92" (x1) = Vg (y, 21) (g, (y) + r(y, 21)).
Combined with (10) and (11), we have

(12) 1 9l@) _ Valy ) _ golar)
ngl(fh) B Vggl@axl) B ga:Tl(al)
Since Apg,(z1) = 0 and ATt g7 (z1) = 0, we have

Po(Vge(1,22) = D 0p(Va(y, 21)) + 0p(Vga(ar,21)),

y~1
y#a1,r2

Pp(Var (w1,22)) = Y 0p(Vl (y, 1)) + 0p(Val (ar, 21)).

Yy~xy
Y#£a1,T2

Formulas (9) and (12) imply that
1 9e(a@)  Vau(r,2) o go(ar)
g (@) = Voa'(er,x2) ~ gz (a)

Using (10), we have
9o (T2) = go(1) +1(21, 22)Vgo (1, 72)
gx(al)
=C T
Gz (al)

. gx(a1> Ti(
- ga;ﬁ(al) +(@2)

(97 (21) + r(z1, 22) Vgl (21, 79))

and therefore
gx(l'Q) < c g:p(al)

g2 (z2) = gt (@)
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Also we have by (11)
-1 gz(al)
gz ()

gx(x2)
g:' (x2)
We repeat these arguments and obtain

Cil gz(al) < Vg;g(l‘l_hx) <Cg:v(a1)

>c

(13) < < ,
g2 (a1) ~ Vg (zii, ) — gt (ar)
1 9;_(@1) < g;(w) < Cg;(al) ’
go'(ar) — ga'(x) — ga'(ar)
(14) ¢t g;f(al) < Vg;(z, ?) <c g;(al) for z ~ x with z # x;_4.
g:'(a1) — Vg'(z,7) — g2'(a1)
We have
Z QDP(VQI(ZVW)) + QDP(Vgx(xl—lax)) = _Apgac(x> = 17
Z;Z;lel
> (VeI (z,2) + 0p(Vgr (mor,2) = —AT gl (z) = 1.
Z;;lﬂf_l

Equations (13) and (14) imply that

This means that

Hence, combining with (4), we have
cleg ' H™ (2,0) < H(x,ay) < ccg ' H (z, a).
We obtain similarly that there are constants ¢ and ¢ such that
T HR (2, a0) < H(x,as) < ¢y H™ (2, a,) for x € V5.
Therefore Lemma 9 implies that, if x,y € V;, then
H(x,y) = H(x,a1)H(ar,y) < ccy ' H (2, a1)ccoH™ (ay,y)
= H" (),

and similarly
H(z,y) > ¢ ?H" (z,y);

if x € V] and y € V5, then
H(z,y) = H(z,a1)H (a1, a2)H (a2, y)
< ceg'HM (x,a1) x H(ay,ay) x cyH(ay,y),
and similarly
H(z,y) > ¢ ' ey ey H (w, 1) H (ar, an) H (az, y).

71
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These imply the result. 0

4. PROOF OF THEOREM 7

Lemma 11. Let T = (V,E,r) be a tree. Let a,x € V and {a =
T, X1, ..., L1, = x} the path ax. Let rj = r(x;j_1,x;) and

T~ = S(T {(xjap)}oay)  forj=0,...,01—1,
T =S8(T {(zj-1,25)}, 75) forj=1,...L
Suppose that T,” and ’]}* are of hyperbolic type of order p. Let

T~ T+
Aj= 9oy (%), pj = Gay (T5).
Then
ﬁ 1 + 7“] p 1 + ﬂp
7=1 )\ (p] + T])
Proof. Since
ga(ﬂj') Tj+
Yalvizry = 79
9a; ()
we have
ga €T, fz}+ .
Va(zjy) = MVggcj (,9) for y € V(T,;7) with y ~ x;.
b
7t 77+
Since A,gq(z;) =0 and Ay’ g.) (xj) = —1, we have
@p(vya(l'jaxj—l)) + Z @p(vya(xja y)) =0,
yeV(7;")
y~zj
T+
> (Ve (x5,9) = —1.
yeV(T;")
y~j
Therefore ()
Ga\T;
©p(Vgal(j, 5-1)) — 0p( p‘] ) =0,
3
or
9a(7j-1) = 9a(%;) _ galz;)
T pi
and hence p
J
Ya = Ya 1)
(@)= 2,
Therefore
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Similarly we have

_ At
gul0) = ([ 525 ol
7j=1
Therefore
-1
. (N ~ A_
15 How) = 2D ([ LAt Qe t
Xo(p1 +11) el (Pi+1 +7j41) 9x()
Since
9a,(Tj21) 17,
9%'|V<Tj:1) A Tj-1
gaj 1 (Tj-1)
we have ( )
ng ‘r‘—l 7;__1
Ve, (Tj-1,Yy) = )\'—lengfl(fcj—l, Y)
i

for y € V(7,~,) with y ~ z; ;. Therefore A,g, (r;-1) = 0 and Az?:lgzg_j(xj,l) —
—1 imply that

[ (.Q? '—1)
@p(VQIj (Tj1,25)) — @p(g)\—]> =0,
-1
that is \
. A et S )
gl'j (Ij—l) )\j_l +rjgfﬂj (':Uj)
Hence
1
(16) Vo, (), xj-1) = Nt 9a; ()
Next since
Gz, (*%) 7"
Goslvizry = 77— 9aj -
9z (z;

we have similarly

(T -+
(17) Vg, (xj,y) = gm]<IJ)Vg$Tj (z5,y)  fory e V(T") with y ~ ;.

J

+ ot
Since Apg,,(z;) = —1 and Agj ngf (x;) = —1, we have by (16) and (17)

Jz; (z5) Gz, ()
_wp(m) — op( 0 )= —1.
Therefore
Ga, ()P~ N (Ajo1 +rj)p1 t pf_l forj=1,...,1
Similarly we have
: - 1 + ! for j=0,...,1—1.

Go, ()P NTE T (pjgn )P
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Hence
g(l(a) p—1 _ 1
Ao(p1 +11) N (o1 )Pt
pj()\],1 + TJ) p1_ pﬁfl + ()\jfl + Tj)p—l
Aj(pje1 +7j11) /\Tl + (pjs1 + )Pt
N1+ _ _ _
(‘( lgl (x)l)pl>p = (NP e

Combining these and (15) we have the result. O

Lemma 12. Let V = {[Ej}?io, E = {(xj,$j+1)};’°:0 and r a resistance.
(i) If > 2520 r(xj,2541) = 00, then (V, E,r) is of parabolic type of order p;
(i) If > 2720 (xj, wj41) < 00, then (V, E, 1) is of hyperbolic type of order p and
has a symmetric p-Green function.

Proof. We shall show only (ii). It is easy to see that the p-Green function g, is
represented as

Jon() = > r(z,355),

j=max(l,m)

Therefore H(z,,,z;) = 1. O
Lemma 13. For 0 < s,t < M we have

—1 —1
o2 « M=) gy
sl (M —s)pt T

Proof. Tt is clearly that, if p < 2, then we have MP~! < =1 + (M — )P~ <
227P )P~ if p > 2, then we have 22 PMP~1 < ¢P=1 4+ (M — )P~ < MP~!. This
leads to the result. 0

Lemma 14. Let V = {z;}2 , E = {(zj,2j41)}52_, and r a resistance. Let

St =32 r(xj,mp) and ST =31 vz xih).
(i) If both ST and S~ diverge, then (V, E,r) is of parabolic type of order p;
(i) If one of ST and S~ diverges and the other converges, then (V,E,r) is of
hyperbolic type of order p and has a symmetric p-Green function;
(iii) If both St and S~ converge, then (V, E,r) is of hyperbolic type of order p
and has a quasi-symmetric p-Green function.

Proof. Lemma 10 reduces (ii) to Lemma 12 (ii). We shall show (iii). We use the

same notation as in Lemma 11. Then we easily have p,, = > 72 r(z;, ;1) and

A = Z;”:__loo r(xj,xj11). Also we have that \y,—1 +7rp = A, and pp, + 7' = P

Therefore Lemma 11 implies that, if [ > 0, then

AN

H(zg, )Pt = “L—"L .
pg 1+)\1(1)7 1
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Since M = p,, + A, is independent of m, we have by Lemma 13

2~ IP—2l < H (g, )Pt < olp—2|
The case [ < 0 can be treated similarly. 0
Proof of Theorem 7 (i). Let 7 be a tree as in Theorem 7 (i). Using Lemma 10, we
may assume that there are no parabolic ends. Then 7 is represented as the union
of finitely many trees in Lemmas 12 and 14. Since they have quasi-symmetric p-

Green functions for any resistances, 7 also has quasi-symmetric p-Green functions
by Theorem 6. U

Lemma 15. Let g be the number with 1/p+1/q=1. Let T = (V,E,r) be a tree
such that deg(x) > 3 for each x and

P(x)p(y) — 1
(W) + DY) + 1)

where (x) = (deg(x) — 1)1, Then T has a quasi-symmetric p-Green function.

r(z,y) =

Proof. Let z, y be distinct vertices and let {x = x¢,21,..., 21,2, = y} be the
path Ty. It is easy to see that the p-Green function g, is represented as

() = 1 1 1

9= Qeg(@)a T Glar) - lw) dly) + 1
1 Y@

gz(x) =

deg(w)7 1 b(z) + 1
Therefore
Hiz.y) = deg(y)” ' p(x) +1 _ (1 —deg(w) ') + deg(x)'”
’ deg(z) ' ¥(y) +1 (1 —deg(y)~")s " + deg(y)'~9
Using Lemma 13 for ¢ instead of p, we have

9112l < H(z,y) < 9la=2|

Hence the result follows. O

Lemma 16. Let 7 = (V, E,r) be a tree of hyperbolic type of order p. Let xo,y0 € V
and {xo, T1, ..., 21,2, = Yo} the path Toyo. Suppose that deg(zo) > 3, deg(yo) > 3
and deg(x;) =2 for j=1,...,1 —1. Then

2_|q_2IH($0790) S H(l’o,l']) S 2|(1_2|H(x07y0)
forj=1,...,1—1, where q is the number with 1/p+1/q = 1.
Proof. Let Ty = S(T, {(xo, 1)}, o) and Ty = S(T, {(x;-1,21)},y0). We denote

Uy (] _ga:o To +Z T Ti— 17377,

l

us(§) = gy2 (o) + D r(wio1, ).

i=j+1



76 H. KURATA

Then it is easy to see that the p-Green function with pole at x; is given by

1
95:(53) = G+ w e
0oz =MWy @) wo<k<;

.0)
%mw—QW“G (@) ifzeV(T),

.

4o, (1) = §g<> i) <k<l.

Gu; () = 9e; (25) if x € V(73).

Similarly we have

1
(u1(0)'77 + up(0)'-P)a=t
u2(y)
uz(0)

Gz (x()) =

Yz (l‘]) = Gz (.130)

Therefore
uy ()P + up(5)P

u1 (0)P~1 4 ug(0)P~1

H(ZL‘(), l’j)p_l =

Similarly we have
ui (P 4 up ()P
ur(0)P~1 + ug(0)p=1

H('T07 y(])p_l -

Hence

H(ﬂ?o,l’j) p—1 o U1<j)p_1 +UQ(j)p_1
<H(.§C0,y0)> N U1<l)p_1 +U2(l)p_1 .
Since uy(j) + ug(j) is independent of j, Lemma 13 implies that
9-IP—2| < <M>pl < olp=2|
~ \H(zo, o) B
Hence the result follows. O

Proof of Theorem 7 (iia). Let 7 = (V, E,r) be a tree which has infinitely many
x € V such that deg(z) > 3. If there is a subtree such that either

deg(zo) > 3,deg(z1) = 2,...,deg(x1) = 2,deg(111) = 1
for some [ > 0, or
deg(xO) Z 37 deg(xl) = 27 s 7deg(xl) = 27 )

then we may remove it from 7T since we can make it a parabolic end.
Let {{z},2},..., 2  }}i be all of paths such that

) my—1 m

deg(zo) > 3,deg(zl) =2,.. deg( —1) =2 deg( ) >3
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for some m; > 2. Let V! =V \ {z;}” and £/ = F U {(zé,zlll)}l \ {(z;_l,z;)}”
Then deg!”"“£)(x) > 3 for all z € V’. Therefore Lemma 15 shows that there is

a resistance r’ on E’ such that 7/ = (V', E',7’) has a quasi-symmetric p-Green
function. Let r be a resistance on E such that » =" on EN E" and

m;
7”(28, Zﬁn) = ZT‘(Z;-,I, Z;) for each 1.
=1

Let x € V'. Then it is easy to see that the p-Green function g, is
Gz :ng/ on V',

=

92(21) g:): (Zo)‘i‘v% 0 2 Zr Zj—1 J

7j=1
Therefore
H(z,y) = H" (z,y) forz,yeV’
Hence Lemma 16 implies that, if 2 € V" and y = 2}, then
H(x,y) = H(w, 20)H(z,y) < H (z,2)) - 297 HT (2, 23, )
= 22T (g, z);
if 2 =z} and y = 2, then
H(z,y) = H(z, 2, )H(Z;i,zg)H(ZS,y)
< AT (28 ) HT (5,28 - 2 HHT (5, )

my
= A=A g™ (i zh ).

Therefore

M(T) < 282 (7).
This completes the proof. O
Lemma 17. Let Ty = (Vo, Eo,10), T; = (V}, Ej,15) and T, = (V}, B, r5) for j > 1.

Let aj € Vo, b; € V; and b; € V], Let p; be positive numbers. Let r = rq on Ey,
r=r; on Ej andr(a;,b;) = p;. Letr’ =1y on Ey, 7" =1} on E; and 1'(a;,b;) = p;.
Let

T =VoulJVi EoulJ B U {(a0)}5,7),

J

= (VulJV), Eo U J B U{(a;.))};.7).
J

J
7 7 ; ’
1f 9, (b;) = g,/ () for all j, then g.(y) = g7 (y) for x,y € Vp.
Proof. For x € V; we have

gelv; = T, 9] -
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Therefore
92(bj,y) = =7V, (bj,y)  fory €V with y ~ b;.
b, (b;)
Since A,g,(b;) = 0 and AngZj (b;) = —1, we have
Yz b
oV 0u05,0,)) — gy 22y g,
b, (b5)
and hence
gu(0)) = 9u(b) _ 9.(0)
Pi g, (b;)
that is .
gbjj(b')
9a(b)) = —7——0u(0;).

_ T_
pi + gy, (b5)

Therefore it is easy to see that the p-Green function ggl is

ng/ = g-’E in ‘/07
y (b)) T .
Z’ — g,]./( ]) gb/j in ‘/j/‘
/j b/. J
gbj ( j)
Hence the result follows. OJ

Lemma 18. Let o, 3, and v be the numbers with 0 < o, 3,7 < 1. Let a, b, and c
be the positive numbers such that

(13) a:<ﬂ—ﬂw4+m*a—av*>_g

(I—apt+art(1=pgpt |

b_<u—ﬁv1+w1u—av1>“l (1 =)o
} (

1—armipe 1-6)(1-a)
a
(1 — )Pt +ar-1(1 - p)p-1)yt’

where q is the number with 1/p+1/q = 1.
Let T = (V, E,r) be a tree (as shown in Figure 2) such that

CcC =

V = {x, Yk }iez ken,

E = {(zi—1,21), (@i, y1), Wk, Yks1) Hezken,
r(@i—1, 1) = alv (T, Y1) = albu T(Yok k1) = alb’Yk-
If p # 2 and o # B, then T does not have a quasi-symmetric p-Green function.
More precisely, we have

sup H(xg, x;) = o0.
IeZ
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@®Yi—-2,2 Q®Yi—1,2 QY2 Q@Yi+1,2 Q®Yi+2,2
al=2by a~ by alby alt oy alt2by
Q®U-2,1 Q®Yi-1,1 [ XN QYi+1,1 Q®Yi+2,1
a=2%b a~th alb a*tlhy a*?b
....... II!Z -1 501’1 l -f‘l I+1 Jig1 1+2 Jfgz o
d a d a a a

FIGURE 2. The tree of Lemma 18

Proof. First we observe that a, b, and c satisfy
(@7 =P =1 a1 = =0,
(L= PP = B = =,
A HaPA—a)P T+ (1 =3P+ b P(1— )P ) =1
These imply that the p-Green function g, satisfies
e, (21) = ca™a!™™ if I >m,
Gom (T1) = ca™B™! ifl <m,
G (Yik) = ngxm (21).

Especially

gﬂl?O(xl) = Cal7 Gz, (170) = Calﬁl if > 07

Gao(w1) =07, guylx0) = ca'a™ i 1<0.
Therefore, using (18), we have

o= (35) - ()

Suppose that

(1—a)P! +aP}(1 — B!

(20) A= o+ pr (1= ay]

=1

Then we have

(—ay _(1-pr

l—art 1 —pr1
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The function (1 — ¢)P~1/(1 — t?~!) is strictly increasing for 0 < ¢t < 1if 1 < p < 2;
that is strictly decreasing if p > 2. Since p # 2 and « # (3, it follows that (20) never
holds. Therefore the right hand side of (19) diverges when [ — oo or | — —oo. [

Proof of Theorem 7 (iib). Let 7 = (V, E,r) be a tree which has infinitely many
x € V such that deg(z) > 3. If there is a subtree such that either

deg(zo) > 3,deg(z1) = 2,...,deg(z) = 2,deg(z141) = 1
for some [ > 0, or
deg(xo) > 37 deg('xl) = 27 ce ,deg(a:l) = 27 S

then we may remove it from 7 since we can make it a parabolic end.
Let {{z(, 2{,...,2},,_1. 2, } }i be all of paths such that

m;

deg(z)) > 3, deg(2)) =2,...,deg(z}, ;) = 2,deg(z},) >3

for some m; > 2. Let V' = V\ {2}, and E' = EU{(2, 2 ) }:\{(2}_1, ) }i ;- Then
deg(vl’El)(az) > 3 for all x € V. We choose {z;};cz C V' be a two-sided infinite
path,ie, - - ~x o~x ~xg~ Ty

Let 7" = (V",E",r") be a tree such that

V= {x, Yix Yz ke,
E={(zi-1,71), (@1, y1), Yk Yiks1) Hezhen,
r(x-1, ) = d, (2, yi1) = a'b, P (Yoger Y1) = a'by®,
where a, b and ~ are as in Lemma 18. Then that lemma shows that

sup H" (g, 2;) = o0.
lez

Let S = S((V', E"), {(xi—1,21), (x1,x141) }, x). We choose a resistance 7, on
E(S]) such that
S/ S//
Gui (71) = gaf (1),
where S = S(T",{(x1-1, 1), (x1,2141)}, 7). Then Lemma 17 shows that there
exists a resistance r’ on £’ such that
HTI(.Io,iL‘l) = HT

! (33'0 ) xl) )
and therefore

sup HT' (20, ;) = 0.
leZ

Next we choose a resistance r on F such that »r =7 on EN E’ and

m;
T/(Zéa Z:n) = ZT’(Z;-,D Z}’) for each 1.
j=1
Then a similar argument to Proof of Theorem 7 (iia) implies

HT(xo,Il) = HT/(xo,xl),
and therefore

sup H” (g, 1;) = oo.
Iz
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This completes the proof. 0
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