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Abstract. This paper is a summary of the author’s doctoral dissertation. We
study homotopy theory in MAP and prove that Puppe sequence is exact in the
category MAP . We also give an application of Puppe exact sequence. Next, we
discuss fibrewise uniformities. We develop the fibrewise covering uniformity the-
ory corresponding the fibrewise (entourage) uniformity theory similar to James’
[7] and the fibrewise generalized (resp. semi-) uniformity theory corresponding
the generalized (resp. semi-) uniformity theory by Morita ([12]). Last we study,
as applications, fibrewise Shanin compactification and characterizations of ex-
tendable fibrewise maps.

1. Introduction

The study of General Topology is concerned with the category TOP of topolog-
ical spaces as objects, and continuous maps as morphisms. The concepts of space
and map are equally important and one can even look at a space as a map from
this space onto a one-point space and in this manner identify these two concepts.
With this in mind, a branch of General Topology which has become known as Gen-
eral Topology of Continuous Maps, or Fibrewise General Topology, was initiated.
Fibrewise General Topology is concerned most of all in extending the main notions
and results concerning topological spaces to continuous maps.

From this point of view, we study, in the first part, homotopy theory in MAP
and we prove that Puppe sequence is exact in MAP (for the definition of MAP ,
see section 2). We also give an application of Puppe exact sequence.
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In the second part, we discuss fibrewise uniformities, their generalizations and
applications in TOPB (for the definition of TOPB, see section 2).

Detailed construction of this paper is as follows: in section 2, we summarize
notions and notations and terminologies used in this paper. In section 3, we study
homotopy theory in MAP and prove that Puppe sequence is exact in MAP . We
also give an application of Puppe exact sequence. From section 4 to 7, we study
fibrewise uniformities and their generalizations. In the last section, we discuss
extendability of fibrewise maps as applications of fibrewise uniformity theory.

Since this paper is a summary, we will omit all of the proofs.

2. Preliminaries

In this section, we refer to the notations used in the latter sections, further the
notions and notations in Fibrewise Topology and Fibrewise Homotopy Theory.

In this paper, we assume that all spaces are topological spaces, all maps are
continuous.

We will use the abbreviation nbd(s) for neighborhood(s). We also use that for
b ∈ B, N (b) is the set of all nbds of b and N(b) is the set of all open nbds of b.

For a topological space X and A ⊂ X, ClA or ClXA denote the closure of A in
X.

Let (B, τ) be a fixed topological space with a fixed topology τ .
A topological space X with a map p : X → B is called a fibrewise space over the

base B, p is called the projection and B is called the base space.
For each point b ∈ B, the fibre over b is the subset Xb := p−1(b) of X. Also for

each subset B′ of B, we denote XB′ := p−1B′.
For fibrewise spaces p : X → B and q : Y → B, a map f : X → Y is fibrewise if

p = q ◦ f .
The category TOPB is a category which consists of fibrewise spaces are as objects

and fibrewise maps as morphisms.
The objects of MAP are continuous maps from any topological space into any

topological space. For two objects p : X → B and p′ : X ′ → B′, a morphism from
p into p′ is a pair (φ, α) of continuous maps φ : X → X ′, α : B → B′ such that the
diagram

X
φ−−−→ X ′

p

y
yp′

B
α−−−→ B′

is commutative. We note that this situation is a generalization of the category
TOPB since the category TOPB is isomorphic to the particular case of MAP in
which the spaces B′ = B and α = idB. We call an object p : X → B an M-fibrewise
space and denote (X, p, B). Also, for two M-fibrewise spaces (X, p, B), (X ′, p′, B′),
we call the morphism (φ, α) from p into p′ an M-fibrewise map, and denote (φ, α) :
(X, p, B) → (X ′, p′, B′).

Furthermore, in this paper we often consider the case that an M-fibrewise space
(X, p, B) has a section s : B → X. We call it an M-fibrewise pointed space and
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denote (X, p, B, s). For two M-fibrewise pointed spaces (X, p, B, s), (X ′, p′, B′, s′),
if an M-fibrewise map (φ, α) : (X, p, B) → (X ′, p′, B′) satisfies φs = s′α, we call it
an M-fibrewise pointed map and denote (φ, α) : (X, p, B, s) → (X ′, p′, B′, s′).

3. Puppe exact sequence and its application in the fibrewise
category MAP

We study Puppe exact sequence and its application in the fibrewise category
MAP .

After we define M-fibrewise pointed mapping cylinders, M-fibrewise pointed
mapping cones, M-fibrewise pointed suspensions, M-fibrewise pointed collapse and
so on, we have next theorem. For the detail of definitions and notations, see [8]

Theorem 3.1. For an M-fibrewise pointed map (φ, α) : (X, p, B, s) → (X ′, p′, B′, s′)
where α is a bijection, the following sequence is exact.

(X, p, B, s)
(φ,α)−−−−→ (X ′, p′, B′, s′)
(φ′,α′)−−−−→ Γ(φ, α)

(φ′′,α′′)−−−−→ Σ(X, p, B, s)
(φ′′′,α′′′)−−−−−→ Σ(X ′, p′, B′, s′)

−−−−−→ · · ·
Definition 3.2. An M-fibrewise pointed space (X, p, B, s) is called M-fibrewise
well-pointed if (s, idB) : (B, idB, B, idB) → (X, p, B, s) is an M-fibrewise pointed
cofibration and s(B) is closed in X.

As an application, we can prove the generalized formula for the suspension of
fibrewise product spaces.

Theorem 3.3. Let M-fibrewise pointed spaces (Xi, pi, Bi, si) (i = 1, . . . , n) be M-
fibrewise well-pointed. Then the next formula holds.

∑ {
n∏

i=1

(Xi, pi, Bi, si)

}
∼=M

(P)

∨
N

M
∑

(
∧
i∈N

M (Xi, pi, Bi, si)),

where N runs through all nonempty subsets of {1, . . . , n}.
Further, as an application of Theorem 3.3, introducing an intermediate fibrewise

category TOPH
B , we give an another short proof of the original formula in TOPB,

which is the following, using the concepts of TOPH
B .

Proposition. ([7, Proposition 22.11]) Assume that fibrewise pointed spaces (Xi, pi,
B, si) (i = 1, . . . , n) are fibrewise non-degenerate spaces. Then the next formula
holds in TOPB. ∑

B
B(X1×B · · · ×BXn) ∼=B

B

∨
N

B

∑
B
B

∧
i∈N

B Xi,

where N runs through all nonempty subsets of {1, . . . , n}.
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4. Fibrewise uniform spaces — entourages vs. coverings

In topological category, classically uniform spaces were investigated by using
entourages and coverings ([3, Chapter 8]). Further, by generalizing the covering
conditions of uniform spaces, semi-uniform spaces and generalized uniform spaces
and their completions were investigated (see [12, Sections 1 and 2]).

On the other hand, in fibrewise category, fibrewise uniform spaces and their
completions were investigated by using entourages (see [7]).

Our main theme is to develop these theories ([3, 7, 12]), that is:

(1) Developing the fibrewise covering uniformity theory corresponding the fibrewise
(entourage) uniformity theory similar to James’ [7].

(2) Developing the fibrewise generalized (resp. semi-) uniformity theory corre-
sponding the generalized (resp. semi-) uniformity theory by Morita ([12]): (1)
enables us to develop the fibrewise generalized (resp. semi-) uniformity theory,
especially the fibrewise completion theory which is the extended one established
in [12].

4.1. Fibrewise uniform structures in the sense of James. We recall the
definition of fibrewise uniform structures in [7].

Definition 4.1 (James [7]). Let X be a fibrewise set over B. ∆ is the diagonal of
X ×X. A fibrewise uniform structure on X is a filter Ω on X ×X satisfying the
following three conditions:

(J1) ∆ ⊂ D for every D ∈ Ω.
(J2) Let D ∈ Ω. Then for each b ∈ B there exist W ∈ N(b) and E ∈ Ω such that

E ∩X2
W ⊂ D−1.

(J3) Let D ∈ Ω. Then for each b ∈ B there exist W ∈ N(b) and E ∈ Ω such that

(E ∩X2
W ) ◦ (E ∩X2

W ) ⊂ D.

In [7], it is proved that the family

N (x) := {D(x) ∩XW |D ∈ Ω,W ∈ N(p(x))}
becomes a nbd system at x for every x ∈ X and defines a fibrewise topology on X.
We call this topology fibrewise uniform topology.

4.2. Fibrewise entourage uniformities. Now we define a concept stronger than
fibrewise uniform structures (Definition 4.1).

Definition 4.2. Let X be a fibrewise set over B. A fibrewise entourage uniformity
on X is a filter Ω which satisfies (J1)–(J3) in Definition 4.1 and
(J4) If E ⊂ X ×X satisfies that for each b ∈ B there exist W ∈ N(b) and D ∈ Ω
such that D ∩X2

W ⊂ E, then E ∈ Ω.
Fibrewise set with a fibrewise entourage uniformity is called fibrewise entourage

uniform space.

Remark 4.3. Note that D−1 ∈ Ω for every D ∈ Ω in our theory. That is, our
definition is symmetric.
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For a fibrewise uniform structure Ω, the fibrewise uniform topology τ(Ω) was
defined in Section 4.1. We can similarly define τ(Ω) for a fibrewise entourage
uniformity.

4.3. Fibrewise covering uniformities. Let X be a fibrewise set over B and
W ∈ τ . Let µW be a non-empty family of coverings of XW and {µW}W∈τ the
system of µW ,W ∈ τ . We say that {µW}W∈τ is a system of coverings of {XW}W∈τ

(for this, we briefly use the notations {µW} and {XW}). Let U and V be families
of subsets of a set X. If V refines U in the usual sense, we denote V < U .

Definition 4.4. Let X be a fibrewise set over B, and µ = {µW} be a system of
coverings of {XW}. We say that the system {µW} is a fibrewise covering unifor-
mity (and a pair (X,µ) or (X, {µW}) is a fibrewise covering uniform space) if the
following conditions are satisfied:

(C1) Let U be a covering of XW and for each b ∈ W there exist W ′ ∈ N(b) and
V ∈ µW ′ such that W ′ ⊂ W and V < U . Then U ∈ µW .

(C2) For each Ui ∈ µW , i = 1, 2, there exists U3 ∈ µW such that U3 < Ui, i = 1, 2.
(C3) For each U ∈ µW and b ∈ W , there exist W ′ ∈ N(b) and V ∈ µW ′ such that

W ′ ⊂ W and V is a star refinement of U .
(C4) For W ′ ⊂ W , µW ′ ⊃ µW |XW ′ , where

µW |XW ′ = {U|XW ′ |U ∈ µW} and U|XW ′ = {U ∩XW ′|U ∈ U}.
For fibrewise covering uniform space (X,µ) we shall define the fibrewise covering

uniform topology τ(µ) as follows:

For every x ∈ X, p(x) = b, let Nx(µ) be the family of all subsets
which contains st(x,U) for some U ∈ µW and W ∈ N(b).

Then we can prove that {Nx(µ)|x ∈ X} satisfies the axiom of nbd system and
it defines the fibrewise covering uniform topology τ(µ). That is,

Proposition 4.5. For a fibrewise covering uniform space (X,µ), {Nx(µ)|x ∈ X}
satisfies the axiom of nbd system.

4.4. Equivalence of fibrewise entourage uniformities and covering unifor-
mities. For the fibrewise entourage uniformity Ω on X, we can construct a system
µ(Ω) = {µW (Ω)} of coverings of {XW} as follows:

Construction 4.6. Let Ω be a fibrewise entourage uniformity on X. Then we
shall construct a system µ(Ω) = {µW (Ω)} of coverings of {XW} for every W ∈ τ ,
as follows: For D ∈ Ω and W ∈ τ , let

U(D,W ) := {D(x) ∩XW |x ∈ XW}.
Then it is easy to see that U(D,W ) is a covering of XW . Let µW (Ω) be the family
of coverings U of XW satisfying that for each b ∈ W there exist W ′ ∈ N(b) and
D ∈ Ω such that W ′ ⊂ W and U(D,W ′) < U .

Conversely, for a fibrewise covering uniformity µ = {µW} we shall construct a
fibrewise entourage uniformity Ω(µ) as follows:
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Construction 4.7. Let µ = {µW} be the fibrewise covering uniformity of a fibre-
wise covering uniform space (X,µ). For U ∈ µW , let

D(U) := ∪{Uα × Uα|Uα ∈ U}.
Let Ω(µ) be the family of all subsets D ⊂ X ×X satisfying a following condition:

∆ ⊂ D, and for every b ∈ B there exist W ∈ N(b) and U ∈ µW

such that D(U) ⊂ D.

Then we can show the following theorem.

Theorem 4.8. Let B be a regular space and Ω be a fibrewise entourage uniformity.
Then

Ω = Ω(µ(Ω)).

Finally, we have the following proposition.

Proposition 4.9. (1) For a fibrewise uniform space (X, Ω), it holds that τ(Ω) =
τ(µ(Ω)).

(2) Assume that B is regular. For a fibrewise covering uniform space (X,µ), where
µ = {µW}, it holds that τ(µ) = τ(Ω(µ)).

5. Fibrewise generalized uniformities and completions

In the previous section, we considered fibrewise covering uniformities and fibre-
wise covering uniform spaces. In this section, by weakening the condition (C3) of
fibrewise covering uniformity (Definition 4.4), we define fibrewise generalized uni-
formities (and fibrewise generalized uniform spaces). This concept is the fibrewise
version of generalized uniformities in [12].

In this section, unless otherwise stated, we exclusively use that X is a fibrewise set
over B and µ = {µW} is a system of coverings of {XW}. For undefined definitions,
notations and terminology, see [10]

5.1. Fibrewise g-uniformities. To weaken the condition (C3) of Definition 4.4,
we define a following concept.

Let {µW} be a system of coverings of {XW}. For an open set W of B and
Y ⊂ X, let

IntµW
Y := {x ∈ XW |∃W ′ ∈ N(p(x)),∃U ∈ µW ′

such that W ′ ⊂ W, st(x,U) ⊂ Y }.
For a collection U of subsets of X, let

IntµW
U := {IntµW

U |U ∈ U}.
Note that, since X is not yet a topological space, IntµW

Y is not the interior of
Y in XW .

Definition 5.1. Let µ = {µW} be a system of coverings of {XW}. Then µ = {µW}
is called a fibrewise generalized uniformity (we briefly say fibrewise g-uniformity) if
it satisfies (C1), (C2) and (C4) of Definition 4.4 and
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(FGU) For each b ∈ B, W ∈ N(b) and U ∈ µW , there exist W ′ ∈ N(b)
and V ∈ µW ′ such that W ′ ⊂ W and IntµW

U is a covering of XW and
V < IntµW

U .

The pair (X,µ) or (X, {µW}) is called a fibrewise generalized uniform space (we
briefly say a fibrewise g-uniform space).

Proposition 5.2. A fibrewise covering uniformity is a fibrewise g-uniformity.

Corollary 5.3. Let {µW} be a fibrewise g-uniformity and U ∈ µW . Then IntµW
U ∈

µW and IntµW
U < U .

Definition 5.4. (1) Let {µW} be a fibrewise g-uniformity and {µ0
W} be a system of

coverings of {XW} satisfying that µ0
W ⊂ µW for all W ∈ τ , and µ0

W ′ ⊃ µ0
W |XW ′

for every W ′ ⊂ W .
We say that {µ0

W} is a base for {µW} if for each W and U ∈ µW there exists
V ∈ µ0

W such that V < U .
(2) Let {µ0

W} be a system of coverings of {XW}. We say that {µ0
W} is a fibrewise

g-uniformity base if {µ0
W} satisfies (C2) and (C4) of Definition 4.4 and (FGU).

Unless otherwise stated, we use the notation {µ0
W} for a fibrewise g-uniformity

base.

Corollary 5.5. Let {µW} be a fibrewise g-uniformity. Then there exists a base
{µ0

W} for {µW} such that every µW is consisted of open coverings of XW .

Considering the fibrewise g-uniformity base consisted of a system of open cover-
ings, we can prove a characterisation of fibrewise R0-ness.

Theorem 5.6. Let X be a fibrewise space over B.

(1) If X admits a fibrewise g-uniformity compatible with the topology, then X is
fibrewise R0.

(2) Suppose that X is fibrewise R0. For each open set W of B, let

µ0
W = {U | U is an open covering of XW}.

Then {µ0
W} is a fibrewise g-uniformity base on X compatible with the topology.

5.2. Fibrewise completions of fibrewise g-uniform spaces. We study fibre-
wise completeness of fibrewise g-uniform spaces and completions.

Definition 5.7. Let F be a b-filter base.
We say F is Cauchy if for each W ∈ N(b) and U ∈ µW there exist F ∈ F and

U ∈ U such that F ⊂ U .

Definition 5.8. Let F be a Cauchy b-filter.
F is a weak star b-filter with respect to {µ0

W} if for each F ∈ F there exist
W ∈ N(b) and U ∈ µ0

W such that U ⊂ F for each U ∈ U∩F , that is, ∪(U∩F) ⊂ F .

Definition 5.9. (X, {µW}) is said to be fibrewise complete if every weak star b-filter
(b ∈ B) with respect to {µ0

W} converges.
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Definition 5.10. Let (X, {µW}) and (Y, {νW}) be fibrewise g-uniform spaces and
X ⊂ Y . (Y, {νW}) is a fibrewise completion of (X, {µW}) if

(1) (Y, {νW}) is fibrewise complete,
(2) {νW |X} = {µW},
(3) (X, τ({µW})) is dense in (Y, τ({νW})).

We can construct a fibrewise completion of a fibrewise g-uniform space (X, {µW}).
Let Θ be the set of all weak star b-filters with respect to {µ0

W} which do not
converge and let X∗ := X ∪Θ. For G ⊂ X, we define

G∗ := G ∪ {F ∈ Θ|G ∈ F}.
Let (X,µ) be a fibrewise g-uniform space with the fibrewise topology τ(µ). We

now define the projection p∗ : X∗ → B as follows:

p∗(y) =

{
p(y) (y ∈ X)
b (y = F ∈ Θ and F is a b-filter).

Then noting (X∗)W = (p∗)−1(W ), the family

{G∗ ∩ (X∗)W |G ∈ τ(µ),W ∈ τ}
is a base for a topology on X∗. We denote the topology generated by this base by
τ(µ)∗. Then since p∗ is continuous, τ(µ)∗ is a fibrewise topology of X∗.

Let {µ0
W} be a fibrewise g-uniformity base. For each U ∈ µ0

W , let

U∗ := {U∗ ∩ (X∗)W |U ∈ U}.
Then U∗ is a covering of (X∗)W .

Put
(µW )∗ = {U∗|U ∈ µW}.

Then, we have the following.

Theorem 5.11. (X∗, {(µW )∗}) is a fibrewise completion of (X, {µW}).
6. Fibrewise extensions of fibrewise spaces and a characterisation

of completeness

We study relationships between fibrewise completions of fibrewise g-uniform
spaces and fibrewise extensions of fibrewise spaces. Main purpose of this section is
to show that the fibrewise completion of a fibrewise g-uniform space is characterized
by a fibrewise extension of the fibrewise space and the converse. As an application
of the fibrewise completion theory, we give fibrewise Shanin compactifications of
fibrewise topological spaces.

6.1. Fibrewise extensions.

Lemma 6.1. For an open set G ⊂ X

G∗ = X∗ − Cl(X −G).

where Cl is the closure operator in X∗.

Lemma 6.2. Let B be a T1-space. Then each point of X∗ −X is closed.
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Definition 6.3. Let X and Y be fibrewise spaces over B. Y is a fibrewise extension
of X if X is a dense subspace of Y .

A fibrewise extension Y of X is called a fibrewise T1-extension of X if {y} is a
closed set of Y for each y ∈ Y −X, and strict if {EY (G)|G is open in X} is a base
for the open sets of Y , where

EY (G) := Y − ClY (X −G).

It is clear that if G is open then G ⊂ EY (G).
For a collection U of subsets of XW , we set

EY (U) := {EY (U) ∩ YW |U ∈ U}.
We have next results.

Theorem 6.4. Let (X, {µW}) be a fibrewise g-uniform space and B be a T1-space.
Then the fibrewise completion (X∗, {(µW )∗}) of (X, {µW}) is characterised as a
fibrewise g-uniform space (Y, {νW}) satisfying following conditions:

(1) (Y, τ({νW})) is a strict fibrewise T1-extension of (X, τ({µW})).
(2) For each open set W of B and each U ∈ µ0

W , EY (U) is an open covering of YW

and the family
ν0

W := {EY (U)|U ∈ µ0
W},

is a base for {νW}. Here {µ0
W} is a base for {µW} which every µ0

W is consisted
of open coverings of XW .

(3) (Y, {νW}) is fibrewise complete.

6.2. Fibrewise Shanin compactification. Let X be a fibrewise R0-space and
G = ∪GW be a base for the open sets of X such that G satisfies following four
conditions:

(a) XW ∈ GW for all open set W ⊂ B.
(b) If G,H ∈ GW , then G ∩H ∈ GW .
(c) If W ′ ⊂ W , then GW ′ ⊃ {G ∩XW ′|G ∈ GW}.
(d) If x ∈ G and G ∈ GW , then there exist Gi ∈ GW , i = 1, · · · , k such that

x 6∈ Gi and G ∪ (∪Gi) = XW .

Let µ0
W be the collection of all finite open coverings of XW consisting of sets of

GW , then {µ0
W} is a g-uniformity base compatible with the topology, because of

Theorem 5.6 and (d) above.
Let {µW} be a fibrewise g-uniformity generated by {µ0

W} and (X∗, {(µW )∗}) be
its fibrewise completion. We can show that X∗ is fibrewise compact over B. Then,
we have [∪k

i=1Gi

]∗
= ∪k

i=1G
∗
i

for Gi ∈ G, i = 1, . . . , k.

Theorem 6.5. Let X be a fibrewise R0-space over a T1-space B and G = {GW |W ∈
τ} be a base for the open sets of X satisfying the conditions (a) – (d) above. Then
there exists a fibrewise compact space Y satisfying following properties:

(1) Y is a fibrewise T1-extension of X.
(2) {EY (G)|G ∈ G} is a base for the open sets of Y .
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(3) EY (G1 ∪ · · · ∪ Gn) = EY (G1) ∪ · · · ∪ EY (Gn) holds for any finite elements
G1, · · · , Gn ∈ G.

Moreover, such a space Y is essentially unique.

We call this “fibrewise Shanin compactification”.

7. Fibrewise semi-uniformities

We introduce the concept of fibrewise semi-uniformities and we have the following
theorem: “Suppose that B is a regular space. A fibrewise space X admits a
fibrewise semi-uniformity compatible with the original topology if and only if X is
fibrewise regular”.

7.1. Fibrewise semi-uniformities. Let {µW} be a system of coverings of {XW}.
For b ∈ B, W,W ′ ∈ N(b) with W ′ ⊂ W , U ∈ µW and V ∈ µW ′ , we define the
following:

V is a fibrewise local star refinement of U at b if for each V ∈ V
there exist W ∈ µW ′ and U ∈ U such that st(V,W) ⊂ U .

Definition 7.1. Let µ = {µW} be a system of coverings of {XW}. Then µ = {µW}
is a fibrewise semi-uniformity if it satisfies (C1), (C2) and (C4) of Definition 4.4
and

(FSU) For each b ∈ B, W ∈ N(b) and U ∈ µW , there exist W ′ ∈ N(b) and
V ∈ µW ′ such that W ′ ⊂ W and V is a fibrewise local star refinement of U
at b.

The pair (X,µ) (or (X, {µW}) is called a fibrewise semi-uniform space.

Proposition 7.2. A fibrewise covering uniformity is fibrewise semi-uniformity and
fibrewise semi-uniformity is fibrewise g-uniformity.

Definition 7.3. (1) Let {µW} be a fibrewise semi-uniformity and {µ0
W} be a sys-

tem of coverings of {XW} satisfying that µ0
W ⊂ µW for all W ∈ τ , and

µ0
W ′ ⊃ µ0

W |XW ′ for every W ′ ⊂ W .
We say that {µ0

W} is a base for {µW} if for each W and U ∈ µW there exists
V ∈ µ0

W such that V < U .
(2) Let {µ0

W} be a system of coverings of {XW}. We say that {µ0
W} is a fibrewise

semi-uniformity base if {µ0
W} satisfies (C2) and (C4) of Definition 4.4 and

(FSU).
Unless otherwise stated, we use the notation {µ0

W} for a fibrewise semi-uniformity
base.

Theorem 7.4. Let {µ0
W} be a fibrewise semi-uniformity base. Then every Cauchy

b-filter contains a weak star b-filter.

Theorem 7.5. The fibrewise completion of fibrewise semi-uniform space is also a
fibrewise semi-uniform space.

Finally, we have next theorem.

Theorem 7.6. Suppose that B is regular. Let X be a fibrewise space over B.
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(1) If X admits a fibrewise semi-uniformity compatible with the topology, then X
is fibrewise regular.

(2) Let X be a fibrewise regular space and for every open set W ⊂ B let {µ0
W} be the

family of open coverings of {XW}. Then {µ0
W} is a fibrewise semi-uniformity

base compatible with the topology.

8. Characterisations of extendable fibrewise maps

In this section, we study extendability of fibrewise maps from dense subspaces.
That is, for a fibrewise space X, A ⊂ X dense in X and a fibrewise map f : A → Y ,
when f can be extended to whole space X?

In this section we assume that A is a dense subspace of a fibrewise space X and
base space B is regular.

8.1. Fibrewise extension of fibrewise maps. Let G be an open set of the
subspace A. We define an open set EX(G) of X with

EX(G) := X − ClX(A−G),

where ClX is the closure operator in X.
For a collection G of open subsets of A, put

EX(G) := {EX(G)|G ∈ G}.
Theorem 8.1. Let Y be a fibrewise regular space and f : A → Y be a fibrewise
map. Let ν = {νW} be a fibrewise complete semi-uniformity on Y compatible with
the topology of Y and ν0 = {ν0

W} be a base for ν where every ν0
W consist of open

coverings of YW . Let us put

H(ν0) := ∪b∈B

[∩{∪EX(f−1(V))|V ∈ ν0
W ,W ∈ N(b)}] .

Then there exists uniquely a fibrewise map g : H(ν0) → Y which is an extension of
f . Moreover, if V ′ is a local star refinement of V at b, then

EX(f−1(V ′)) ∧H(ν0) < g−1(V).

The next theorem is the key result for extendability.

Theorem 8.2. Let f : A → Y be a fibrewise map where Y is a fibrewise regular
space. Let ν = {νW} be a fibrewise complete semi-uniformity on Y compatible with
the topology, and ν0 = {ν0

W} a subbase for ν such that ν0
W consists of open coverings

of YW for every W ∈ τ . Let us put

H(ν0) := ∪b∈B

[∩{∪EX(f−1(V))|V ∈ ν0
W ,W ∈ N(b)}] .

Then the following hold:

(1) f is extended to a fibrewise map g : H(ν0) → Y .
(2) H(ν0) is the largest subspace of X which contains A and over which f is ex-

tendable.
(3) H(ν0) = {x ∈ X|f(N (x)∧A) converges to a point of Yp(x)}, where N (x) is the

nbd filter of x in X.

The following theorem is easily proved by Theorem 8.2 and Theorem 8.1.
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Theorem 8.3. Let (Y, ν) be a fibrewise complete semi-uniform fibrewise T2 space,
f : A → Y a fibrewise map, and ν0 = {ν0

W} a subbase for ν such that ν0
W consists

of open coverings of YW for every W ∈ τ . Then f is extendable over X if and only
if ∪EX(f−1(V)) ⊃ Xb for every b ∈ B, W ∈ N(b) and V ∈ ν0

W .

If the range space Y is fibrewise compact and fibrewise T2, we can deduce more
precise result.

Theorem 8.4. Let Y be a fibrewise compact and fibrewise T2 space. Then fibrewise
map f : A → Y is extendable over X if and only if ClXf−1(C) ∩ ClXf−1(D) = ∅
for any W ∈ τ and closed subsets C and D of YW with C ∩D = ∅.

We have a dual form of Theorem 8.3.

Theorem 8.5. Let (Y, ν) be a fibrewise complete semi-uniform fibrewise T2 space,
f : A → Y a fibrewise map, and ν0 = {ν0

W} a subbase for ν such that ν0
W consists

of open coverings of YW for every W ∈ τ .
Then fibrewise map f : A → Y is extendable over X if and only if for every

b ∈ B, W ∈ N(b) and V ∈ ν0
W ,

[∩{ClXf−1(Y − V )|V ∈ V}] ∩Xb = ∅.
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