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Abstract. Defining biharmonic spaces in a general way in the axiomatic poten-
tial theory of Brelot, we obtain some extension properties of biharmonic functions
defined outside a compact set, and use them to study the removable singularity
of bounded biharmonic functions.

1. Introduction

Bounded biharmonic functions defined outside a compact set in Rn have some
distinguishing limiting properties at infinity ([8]) such as (1) if n ≥ 4, lim|x|→∞ b (x)
exists; (2) if n ≥ 2, lim|x|→∞ ∆b (x) = 0; and conversely (3) if n = 2 or n ≥ 5 and
if h is a harmonic function defined outside a compact set in Rn and tends to 0
at infinity, there exists a bounded biharmonic function b near infinity such that
∆b = h.

In view of the Almansi representation of biharmonic functions in Rn, it is of
some interest therefore to know that given biharmonic function u (x) outside a
compact set in Rn whether there exists a biharmonic function B (x) in the whole
space Rn such that u (x)−B (x) is bounded near infinity. Some aspects of a similar
problem in a Riemannian manifold were considered in [7]. In this note we discuss
this question in the axiomatic case of Brelot harmonic spaces.

Defining a biharmonic space (Ω, H, H∗, λ) in an expanded way, we prove some
necessary and sufficient conditions for the above mentioned biharmonic extension
to be valid in Ω. Then we give some sufficient condition for this extension to take
place, here we introduce a notion of flux in a harmonic space with potentials > 0.
(M. Nakai, as given in [14], defined a notion of flux in a harmonic space without
potentials > 0 in the context of a similar extension with harmonic functions in the
axiomatic case).

Using this extension, we make some remarks concerning the removable singu-
larity for bounded biharmonic function in a biharmonic space. The last section
is about the boundary-value problem (with Wiener boundaries) for biharmonic
functions defined in relatively compact domains.
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2 I. BAJUNAID

2. Preliminaries

Let Ω be a connected, locally compact but not compact space. Let H and H∗

be two harmonic sheaves defined on Ω satisfying the three axioms of M. Brelot [9];
the constants are assumed to be harmonic in both sheaves, we suppose that the
harmonic space (Ω, H∗) has potentials > 0 in Ω.

As for the harmonic space (Ω, H), there may or may not be any potential >
0 in Ω, but we suppose that it satisfies the local axiom of proportionality and
possesses locally the property A∗ of analyticity (A. de La Pradelle [13, p. 391,
p. 397]) with respect to the adjoint sheaf of harmonic functions associated to (Ω, H).
In particular, these assumptions on (Ω, H) are verified if the harmonic space (Ω, H)
is self-adjoint in the sense of F. Y. Maeda [12, p. 63], satisfies the local axiom
of proportionality and has the property that a harmonic function h defined in a
domain ω ⊂ Ω is identically 0 if it is 0 in a neighborhood of a point in ω.

Finally, we fix a Radon measure λ in Ω such that every superharmonic function in
Ω is locally λ-integrable. For example, if Ωn is a regular exhaustion of Ω containing
a point z, that is, z ∈ Ωn ⊂ Ωn ⊂ Ωn+1 and Ω = ∪Ωn, and if ρΩn

z is the harmonic
measure on ∂Ωn and if en ≥ 0 is a sequence of numbers, take λ =

∑
enρ

Ωn
z . We

call (Ω, H, H∗, λ) a biharmonic space.
Examples of biharmonic spaces

(1) The Euclidean space Rn, n ≥ 3, with H = H∗ = the sheaf of classical har-
monic functions defined as the solutions of the Laplacian ∆, is a biharmonic
space; here we take λ as the Lebesgue measure.

(2) A bounded domain Ω in Rn, n ≥ 2, with the C2-solutions H and H∗ of a

second order elliptic differential operator Lu =
∑

aij
∂2u

∂xi∂xj
+

∑
bi

∂u
∂xi

with

locally Lipschitz coefficients as given in Mme. Hervé [11, pp. 560-563] is a
biharmonic space. Here we take λ as the Lebesgue measure.

(3) A hyperbolic Riemannian manifold (resp. a hyperbolic Riemann surface) Ω
with H = H∗ = the harmonic functions in the usual sense and λ is the
volume measure (resp. the surface measure).

(4) Ω = (0,∞) with the locally affine functions as harmonic is a biharmonic
space. Here we take λ as the linear Lebesgue measure.

Lemma 2.1 ([4]). Let (Ω, H, H∗, λ) be a biharmonic space. Then given any lo-
cally λ-integrable function f on an open set ω in Ω, there exists an (Ω, H) δ-
superharmonic function u in ω such that locally u has a Riesz representation with
associated signed measure fdλ. We denote this relation by Lu = −f in ω.

We call a function b in an open set ω in Ω biharmonic if there exists an (Ω, H∗)-
harmonic function h∗ in ω such that Lb = −h∗ in ω.

If u is a superharmonic function in Ω, the harmonic support of u is the comple-
ment, in Ω, of the largest open set where u is harmonic.

3. Biharmonic-Extension Spaces

Definition 3.1. A biharmonic space (Ω, H, H∗, λ) is said to be a biharmonic-
extension space if for any biharmonic function b defined outside a compact set in



BIHARMONIC-EXTENSION SPACE 3

Ω, there exists a biharmonic function B in Ω such that (b−B) is bounded near
infinity.

Terminology: The term “near infinity” is used to denote a set that is the com-
plement of a compact set in Ω.

For an outerregular compact set k (that is, if ω is a relatively compact open set
containing k, every point of ∂k is regular for the Dirichlet solution in ω \ k), let
Bkf stands for the Dirichlet solution in Ω \ k with boundary values f on ∂k and 0
at infinity.

Theorem 3.2. Let (Ω, H, H∗, λ) be a biharmonic space, where (Ω, H) is a har-
monic space with potentials > 0. The following are equivalent:

(1) (Ω, H, H∗, λ) is a biharmonic-extension space.
(2) If p∗ is a locally λ-integrable (Ω, H∗) potential with compact harmonic sup-

port and if Lq = −p∗, there exists a biharmonic function B in Ω such that
(q −B) is bounded near infinity.

(3) If h∗ = Bkh
∗ in Ω \ k, where k is an outerregular compact set and if Lb =

−h∗, there exists a biharmonic function B in Ω such that (b−B) is bounded
near infinity.

Proof. (1) ⇒ (2): It is clear.

(2) ⇒ (3): Let h∗ = Bkh
∗ in Ω \ k and Lb = −h∗. Since h∗ is harmonic near

infinity, h∗ = p∗1−p∗2+u∗ near infinity, where p∗1 and p∗2 are finite continuous (Ω, H∗)
potentials with compact harmonic support and u∗ is harmonic in Ω ([7]). Since
p∗i = Bkp

∗
i near infinity for i = 1, 2 and since h∗ = Bkh

∗, we have u∗ = Bku
∗ near

infinity; u∗ is harmonic. Therefore we deduce that u∗ ≡ 0. Let Lqi = −p∗i . Then by
(2), there exist biharmonic functions Bi in Ω such that (qi −Bi) is bounded near
infinity. Consequently, since b − (q1 − q2) is an (Ω, H) harmonic function v near
infinity, b − v − (B1 −B2) is bounded near infinity. However since v is harmonic
outside a compact set in the harmonic space with potentials > 0, there exists an
(Ω, H) harmonic function u in Ω such that (u− v) is bounded near infinity ([1]).
Now set B = u + (B1 −B2) to conclude that (b−B) is bounded near infinity.

(3) ⇒ (1): Let b be a biharmonic function defined outside a compact set. Let
Lb = −g∗. Since (Ω, H∗) is a harmonic space with potentials > 0, g∗ = u∗ + h∗

near infinity, where u∗ is an (Ω, H∗) harmonic function in Ω, and h∗ = Bkh
∗ in

Ω\k for an outerregular compact set k. Let B1 be a biharmonic function in Ω such
that LB1 = −u∗. Then L (b−B1) = −h∗ and consequently by (3) there exists a
biharmonic function B in Ω such that b−B1 −B is bounded near infinity.

This completes the proof of the theorem. ¤
R3 and R4 are not biharmonic-extension spaces since |x| in R3 and log |x| in R4

are biharmonic near infinity which cannot be extended biharmonically in the above
sense. However Rn, n ≥ 5, is a biharmonic-extension space, the reason for which
being that there is a positive solution Q for ∆2Q = δ that is bounded near infinity.
Generalizing this situation we say as in [7] that a biharmonic space (Ω, H, H∗, λ)
is tapered if G∗ is an (Ω, H∗) potential, there exists an (Ω, H) potential Q in Ω
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bounded near infinity such that LQ = −G∗. This definition does not depend on
the choice of G∗. Apart from Rn, n ≥ 5, and any relatively compact domain ω
in Rn, n ≥ 2, is an example of tapered spaces including any Poincaré ball in Rn,
n ≥ 2, in which a bounded quasiharmonic function u (that is, ∆u = 1) exists ([15]).

We have some results in [7] proved in a tapered Riemannian manifold; if the proof
of any of them carries over to the present axiomatic case without many changes,
we assume that this result is proved in the axiomatic case of the biharmonic space
(Ω, H, H∗, λ) also. In the sequel we fix a finite continuous (Ω, H∗) potential G∗

with compact harmonic support in Ω.

Theorem 3.3. In a biharmonic space (Ω, H, H∗, λ), the following are equivalent:

(1) (Ω, H, H∗, λ) is a tapered space.
(2) For any given biharmonic function b outside a compact set in Ω, there exists

a biharmonic function B in Ω such that (b−B) is bounded near infinity
and |L (b−B) | ≤ p∗ outside a compact set in Ω, where p∗ is an (Ω, H∗)
potential.

Proof. (1) ⇒ (2): Let b be a biharmonic function defined outside a compact set
and Lb = −h∗. Since h∗ is harmonic outside a compact set, there exist finite
continuous (Ω, H∗) potentials p∗1 and p∗2 with compact harmonic support and an
(Ω, H∗) harmonic function u∗ in Ω such that h∗ = p∗1 − p∗2 + u∗ near infinity. If
Ls1 = −p∗1, Ls2 = −p∗2 and LB1 = −u∗, then b = s1 − s2 + B1 + v near infinity,
where v is an (Ω, H) harmonic function near infinity. Write v = q1− q2 + v1, where
q1 and q2 are potentials with compact harmonic support and v1 is (Ω, H) harmonic
in Ω, and let B = B1 +v1. Then B is biharmonic in Ω and b = s1−s2 +q1−q2 +B.
Since (Ω, H, H∗, λ) is tapered by assumption, si (i = 1, 2) can be considered as
(Ω, H) potential bounded near infinity ([7, Theorem 10]). Since qi is a potential
with compact harmonic support, it is also bounded near infinity.

Hence (b−B) is bounded near infinity and |L (b−B) | ≤ p∗1 + p∗2 outside a
compact set.

(2) ⇒ (1): We have to show that for the fixed potential G∗, there exists a function
Q bounded near infinity such that LQ = −G∗. Let q be some superharmonic
function in (Ω, H) such that Lq = −G∗. Since q is biharmonic outside a compact
set, by the assumption (2), there exists a biharmonic function B in Ω such that
(q −B) is bounded outside a compact set and |L (q −B) | ≤ p∗ near infinity.

This implies that the harmonic function LB in (Ω, H∗) is bounded by the po-
tential p∗ + G∗ outside a compact set. Hence LB ≡ 0, that is, B is harmonic in
(Ω, H). Now we write Q = q −B to obtain LQ = −G∗. ¤

Remark 3.4. The condition that the biharmonic space (Ω, H, H∗, λ) is tapered is
sufficient to conclude that (Ω, H, H∗, λ) is a biharmonic-extension space. However
it is not necessary. Consider, for example, Ω = (0,∞) with the local affine functions
forming the harmonic sheaf H = H∗ and λ the linear Lebesgue measure. Then a
biharmonic function u outside the compact set [X,Y ] is of the form ax3+bx2+cx+d
in (Y,∞) and αx3 +βx2 +γx+ δ in (0, X). If we take B (x) = ax3 + bx2 + cx+d in
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Ω, clearly B (x) is biharmonic in Ω and (u−B) is bounded near infinity. However
(Ω, H, H∗, λ) is not tapered.

Recall that for a given nonempty set A in Ω, RA
1 stands for the infimum of all

superharmonic functions s > 0 in Ω such that s ≥ 1 on A; and R̂A
1 is its lower

semicontinuous regularization, namely R̂A
1 (x) = lim infy→x RA

1 (y) for each x ∈ Ω.

Corollary 3.5. Let (Ω, H, H∗, λ) be a tapered space in which there is an (Ω, H∗)
potential p∗ tending to 0 at infinity. Then, if h∗ is an (Ω, H∗) harmonic function
tending to 0 at infinity, there exists a bounded biharmonic function b near infinity
such that Lb = −h∗.

Proof. Since there is a potential p∗ tending to 0 at infinity, any (Ω, H∗) potential p∗1
with compact harmonic support in Ω tends to 0 at infinity. For, if k is an (Ω, H∗)
outerregular compact set containing the harmonic support of p∗1 in its interior,
p∗1 = Bkp

∗
1 in Ω \ k; hence p∗1 ≤ αp∗ in Ω \ k for some α; hence p∗1 tends to 0 at

infinity.
Also, if h∗ tends to 0 at infinity, for some (Ω, H∗) outerregular compact set k,

h∗ = Bkh
∗ in Ω \ k and hence if sup∂k |h∗| = β and if p∗2 = β

(
R̂k

1

)
in (Ω, H∗), p∗2

is an (Ω, H∗) potential such that |h∗| ≤ p∗2 in Ω \ k.
Now, let b1 be a biharmonic function such that Lb1 = −h∗. Then by Theorem

3.3, there exists a biharmonic function B in Ω such that b = b1 − B is bounded
near infinity and |L (b1 −B) | ≤ p∗3; this implies (since |Lb1| = |h∗| ≤ p∗2 near
infinity) that |LB| ≤ p∗3 + p∗2 near infinity. Hence LB ≡ 0 and consequently
Lb = Lb1 = −h∗. ¤

In the converse direction, we prove the following:

Proposition 3.6. In a tapered space (Ω, H, H∗, λ) the following are equivalent:

(1) If b is a bounded biharmonic function near infinity, then Lb tends to 0 at
infinity.

(2) There exists an (Ω, H∗) potential tending to 0 at infinity and every bounded
biharmonic function in Ω is (Ω, H) harmonic.

Proof. (1) ⇒ (2): Since (Ω, H, H∗, λ) is tapered. If LQ = −G∗, Q is bounded
near infinity. Hence by (1) , G∗ tends to 0 at infinity. Secondly, if B is a bounded
biharmonic function in Ω, LB should tend to 0 at infinity by (1) since LB is (Ω, H∗)
harmonic and LB ≡ 0, that is, B is (Ω, H) harmonic.

(2) ⇒ (1): Suppose b is a bounded biharmonic function near infinity. Then
by Theorem 3.3, there exists a biharmonic function B in Ω such that (b−B) is
bounded near infinity, and |L (b−B) | ≤ p∗, where p∗ is an (Ω, H∗) potential which
by constructions is finite continuous and also has compact harmonic support; hence
p∗ tends to 0 at infinity. Since B should be bounded biharmonic in Ω, B is harmonic
by (2). Thus |L (b) | = |L (b−B) | ≤ p∗ outside a compact set and consequently
Lb tends to 0 at infinity. ¤
Remark 3.7. In any harmonic space (Ω, H), for a given nonpolar compact set k,
a relatively compact component ω of Ω \ k is said to be a P -domain (resp. an
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S-domain) if Rk
1 < 1 (resp. Rk

1 ≡ 1) in ω. In the context of statement (2) of
Proposition 3.6, we remark that if (Ω, H) is a harmonic space with potentials
> 0 and if for a nonpolar compact set k, Ω \ k contains an S-domain ω, then no
potential p in Ω tends to 0 at infinity. Thus, let β = infk p; then p ≥ βRk

1 in Ω \ k
and consequently lim supx∈ω,x→∞ p (x) ≥ β.

We conclude this section with a different characterization of bounded biharmonic
functions defined outside a compact set in Rn, n ≥ 5, which is a tapered space.

Theorem 3.8. Let h be a harmonic function defined outside a compact set in
Rn, n ≥ 5. Then h ∈ Lp (ω) for some 1 ≤ p < ∞ and some neighborhood ω of
infinity if and only if there exists a bounded biharmonic function b near infinity
such that ∆b = h.

To prove this theorem, we need the following lemmas.

Lemma 3.9. If s is a subharmonic function in Lp (Rn), 1 ≤ p < ∞ and n ≥ 2,
then s ≤ 0 in Rn.

Proof. For x0 ∈ Rn, let Sn = {x : |x− x0| = 1} and σn be the surface area of Sn.
Since t = s+ ≥ 0 and tp is subharmonic, we have tp (x0) ≤ 1

σn

∫
Sn

tp (r, ω) dω, where

x = (r, ω) is the polar coordinate with |x− x0| = r.
Since t ∈ Lp (Rn) by hypothesis,

∞ >

∫ ∞

0

∫

Sn

tp (r, ω) rn−1drdω ≥
∫ ∞

0

σnt
p (x0) rn−1dr.

This is possible if and only if tp (x0) = 0. Since x0 is arbitrary, tp ≡ 0 in Rn and
hence s ≤ 0 in Rn. ¤

For the statement of the following lemma, we shall say that a subharmonic
function f defined outside a compact set in Rn extends subharmonically in Rn,
if there exists a subharmonic function g in Rn such that g is not majorized by a
harmonic function in Rn and f = g outside a compact set.

Lemma 3.10. Let u be an Lp-subharmonic function, 1 ≤ p < ∞, defined outside
a compact set in Rn, n ≥ 2. Then u cannot be extended subharmonically in Rn.

Proof. Suppose there exists a subharmonic function v not majorized by a harmonic
function in Rn such that u = v outside a compact set. Then, for large r, the function
s defined as u in |x| ≥ r and Dru in |x| < r is subharmonic in Rn and s ≥ v, where
Dru is the Dirichlet solution in |x| < r with boundary values u.

If u (x) ∈ Lp in |x| ≥ r, s (x) is in the harmonic Hardy class in |x| < r (Axler
[6, p. 103]) and hence there exists a harmonic function H (x) in |x| < r such that
|sp| < H. Then

∫
|x|<r

|s (x) |pdx ≤ cnH (0) for a constant cn. That is, s belongs to

Lp in |x| < r, which implies that s ∈ Lp (Rn) since s (x) = u (x) in |x| ≥ r. Then,
by Lemma 3.9, s ≤ 0 and hence v ≤ 0 in Rn, this is a contradiction. ¤
Lemma 3.11. Let u be a subharmonic function in an open set ω containing |x| ≥ r
in Rn, n ≥ 2. Suppose u ∈ Lp (ω) for some 1 ≤ p < ∞. Then u is upper bounded
in |x| ≥ r.
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Proof. By hypothesis, u+ (x) is an Lp-subharmonic function in the open set ω
containing |x| ≥ r.

(1) In R2, if u+ is not upper bounded in |x| ≥ r, it can be extended subhar-
monically in R2 ([12, Corollary 1]). This is a contradiction (Lemma 3.10)
since u+ ∈ Lp in |x| ≥ r. This means that u+ and hence u is upper bounded
in |x| ≥ r.

(2) In Rn with n ≥ 3, there exists a subharmonic function s (x) in Rn and some
α ≤ 0 such that u+ (x) = s (x)−α|x|2−n in |x| ≥ r ([3, Theorem 1’]). Hence
s (x) ≥ α|x|2−n.

Denoting by M (R, s) the mean-value of s (x) on |x| = R, suppose limR→∞ M (R, s)
= ∞. Then limR→∞ M (R, u+) = ∞. Hence u+ can be extended subharmonically
in Rn ([3, Theorem 2’]). This is a contradiction (Lemma 3.10); thus limR→∞ M (R, s)
< ∞, in which case s has a harmonic majorant h in Rn. Since h is lower bounded,
it is a constant c and c ≥ 0. Hence u+ is bounded in |x| ≥ r and u is upper bounded
by c− α|x|2−n in |x| ≥ r.

Thus, for all n ≥ 2, u is upper bounded in |x| ≥ r in Rn. ¤
Let ω be a bounded open set in R2 and Ω be an open set containing ω. Let f

be a C2-function on Ω. If ∂g
∂n+ (s) denotes the outer normal derivative at a point s

on ∂ω, then
∫

∂ω
∂g

∂n+ (s) ds is defined as the outward flux of g on ω. As a particular

case of the Green’s Formula, we see that
∫∫

ω
∆g (x) =

∫
∂ω

∂g
∂n+ (s) ds.

Suppose h (z) is a harmonic function defined on |x| > R. Let a and b be two
positive numbers larger than R. Since ∆h (z) = 0 when |x| > R, we obtain∫
|s|=a

∂h
∂n− (s) ds +

∫
|s|=b

∂h
∂n+ (s) ds = 0 from the Green’s Formula on the annulus

ω = {z : a < |x| < b}. This implies that
∫
|s|=a

∂h
∂n+ (s) ds =

∫
|s|=b

∂h
∂n+ (s) ds. Since

a and b are arbitrary, the constant α =
∫
|s|=r

∂h
∂n+ (s) ds is independent of r (> R).

We define α as the flux at infinity of h.

Lemma 3.12. Let h be a harmonic function defined outside a compact set in Rn,
n ≥ 2. Then h tends to 0 at infinity if and only if h ∈ Lp (ω) for some 1 ≤ p < ∞,
and some neighborhood ω of infinity.

Proof. Suppose h ∈ Lp (ω). Then by Lemma 3.11, h is bounded near infinity and
hence tends to a limit l at infinity; l should be 0 since h ∈ Lp (ω).

Conversely, suppose h tends to 0 at infinity.

(1) In Rn, n ≥ 3, write h = p1 − p2 + H near infinity, where pi (i = 1, 2) is a
finite continuous potential with compact harmonic support in Rn and H
is harmonic in Rn. Since pi and h tend to 0 at infinity, H ≡ 0. Now, for
sufficiently large r, if k = {x : |x| ≤ r}, Brpi (x) = Bkpi (x) = pi (x) for |x| >
r. Consequently |pi (x) | ≤ αi|x|n−2 in |x| > r where αi = max|x|=r pi (x)
and hence if ω is the open set |x| > r, pi ∈ Lp (ω) for p > n/(n− 2). Hence
h ∈ Lp (ω).

(2) In R2, write h = s1− s2 + H near infinity, where si (i = 1, 2) is a finite con-
tinuous logarithmic potential with compact harmonic support in R2 (that
is, si (x)− αi log |x| → 0 as |x| → ∞, where αi is the flux of si at infinity)
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and H is harmonic in R2. Then α1 = α2 = α since flux h and flux H at
infinity are 0; also since h and si−α log |x| tend to 0 at infinity, H ≡ 0. Now
for sufficiently large r, |si−α log |x|| ≤ M

|x| when |x| > r. Hence |h (x) | ≤ 2M
|x|

when |x| > r; consequently h ∈ Lp in |x| > r, if p > 2.

¤
Proof of Theorem 3.8:

(1) Suppose h ∈ Lp (ω) for some p ≥ 1. Then by Lemma 3.12, h tends to 0 at
infinity and consequently, Corollary 3.5 can be used to assist the existence
of a bounded biharmonic function b near infinity such that ∆b = h.

(2) Conversely, let h be harmonic outside a compact set such that ∆b = h for
some bounded biharmonic function b. Then by Proposition 3.6, h tends to 0
at infinity. Consequently by Lemma 3.12, h ∈ Lp (ω) for any p > n/(n− 2)
and some neighborhood ω of the point at infinity.

¤

4. Flux Condition

Let (Ω, H, H∗, λ) be a biharmonic space, where (Ω, H) has potentials > 0. A
reformulation of Theorem 3.2 states that (Ω, H, H∗, λ) is a biharmonic-extension
space if and only if the following two conditions are satisfied:

(1) Condition F: If p∗ is a finite continuous (Ω, H∗) potential with compact
harmonic support and if Lq = −p∗, there exist a biharmonic function B in
Ω and a constant α such that (q − αQ−B) is bounded near infinity. (Recall
that LQ = −G∗, where G∗ is a fixed (Ω, H∗) potential, finite continuous
with compact harmonic support).

(2) Condition E: There exists a biharmonic function V in Ω such that Q + V
is bounded near infinity.

Definition 4.1. Let (Ω, H, H∗, λ) be a biharmonic space, where (Ω, H) has poten-
tials > 0. We say that (Ω, H, H∗, λ) satisfies the flux condition if it satisfies the
condition F but not the condition E.

Remark 4.2.

(1) Let (Ω, H, H∗, λ) be a biharmonic space satisfying the flux condition. Then,
for a given finite continuous (Ω, H∗) potential p∗ with compact harmonic
support, the constant α in the flux condition is uniquely determined. For,
suppose we have another set of solutions Lq1 = −p∗ and LQ1 = −G∗ such
that (q1 − α1Q1 −B1) is bounded near infinity; now (q − q1) and (Q−Q1)
are harmonic in (Ω, H), then this implies that there exists a biharmonic
function B2 in Ω such that (α− α1) Q + B2 is bounded near infinity. If
α 6= α1 this means that Q + 1

α−α1
B2 is bounded near infinity; that is the

condition E is satisfied. This is a contradiction. We call this α the flux of
p∗ at infinity.

(2) R3 and R4 are nice examples of biharmonic spaces satisfying the flux con-
dition. For, in R3, take G∗ (x) = 1

|x| and Q (x) = −1
2
|x|. Then if p∗ is any
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potential with its associated measure µ having compact harmonic support,
since (|x| ∗ µ− µ (R3) |x|) is bounded near infinity ([7]), it follows that the
condition F is satisfied in R3. To show that R3 does not satisfy the condition
E, we can make use of the Almansi representation of biharmonic function
(see Proposition 4.5 below). It is also easy to prove that in this case α
is the flux of p∗ at infinity according to the above definition is actually
proportional to the classical definition of flux at infinity of p∗ in R3.

(3) Let h∗ be an (Ω, H∗) harmonic function defined outside a compact set in
a biharmonic space satisfying the flux condition. Write h∗ = p∗1 − p∗2 + u∗

near infinity, where p∗1 and p∗2 are finite continuous (Ω, H∗) potentials with
compact harmonic support and u∗ is harmonic uniquely determined in Ω.
We define the flux at infinity of h∗ as (flux p∗1 − flux p∗2) at infinity . It can
be checked that the flux at infinity of h∗ is well-determined.

Lemma 4.3. Let (Ω, H, H∗, λ) be a biharmonic space satisfying the flux condition.
If b is a biharmonic function defined outside a compact set in Ω, it is of the form
b (x) = αQ (x) + B (x) + u (x) near infinity, where LQ = −G∗ in Ω, B (x) is
biharmonic in Ω, u (x) is bounded biharmonic near infinity, and α = − flux Lb is
uniquely determined.

Proof. Let α be the flux at infinity of h∗ = −Lb. That is, if h∗ = p∗1 − p∗2 + u∗ near
infinity and if flux p∗i is αi, then α = α1−α2. Let Lsi = −p∗i . Then (si − αiQ−Bi)
is bounded near infinity. Let LB0 = −u∗ in Ω.

Hence b = s1 − s2 + B0 + v1 near infinity, where v1 is an (Ω, H) harmonic
function and hence v1 = v + (a bounded harmonic function v2) near infinity, where
v is (Ω, H) harmonic in Ω. This leads to the representation b = (α1 − α2) Q +
(B1 −B2 + B + v) + (a bounded biharmonic function) near infinity, as given in
the lemma.

For the uniqueness of α in the representation b = αQ + B + u, notice that
if b = α1Q + B1 + u1 is another representation with α 6= α1, we should have
Q + 1

α−α1
(B −B1) bounded near infinity. This is a contradiction. ¤

Theorem 4.4. Let (Ω, H, H∗, λ) be a biharmonic space satisfying the flux con-
dition. For a given biharmonic function b outside a compact set, there exists a
biharmonic function B in Ω such that (b−B) is bounded near infinity if and only
if flux Lb is 0.

Proof. Write b = αQ+B +u near infinity as in Lemma 4.3. Suppose −α = flux Lb
is 0, then (b−B) is bounded near infinity. Conversely, suppose there exists a
biharmonic function B1 in Ω such that (b−B1) is bounded near infinity. Then if
α 6= 0, we should have Q+ 1

α
(B −B1) bounded near infinity, this is a contradiction.

¤
We conclude this section with a simple property of s-harmonic functions (that

is, ∆su = 0 ) in Rn which is related to the condition E.

Proposition 4.5. For s ∈ N and 3 ≤ n ≤ 2s, let ∆s−1Q = −|x|2−n in Rn. Then,
for any m-harmonic function v (x) in Rn, Q (x) + v (x) is unbounded near infinity.
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Proof. Since ∆sQ = cδ and n ≤ 2s, up to and additive s-harmonic function, Q (x)
is of the form A|x|2s−n if n is odd and of the form |x|2s−n (B + A log |x|) if n is
even. Suppose Q (x)+v (x) is bounded near infinity for some m-harmonic function
v (x). Let l = max (m, s).

Using the Almansi representation, we can express Q + v in the form A|x|2s−n +
|x|2l−2h1 (x) + · · · + hl (x) if n is odd and |x|2s−n (B + A log |x|) + |x|2l−2h1 (x) +
· · ·+ hl (x) if n is even, where hi is harmonic in Rn. For a fixed point x0 in Rn, let
ρa

x0
denote the harmonic measure on |x| = a (defined by the Poisson kernel). By

assumption,
∫

(Q (x) + v (x)) dρa
x0

is bounded for large a.
That is, Aa2s−n + a2l−2h1 (x0) + · · ·+ hl (x0) is bounded for large a, if n is odd;

and a2s−n (B + A log a) + a2l−2h1 (x0) + · · ·+ hl (x0) is bounded for large a, if n is
even. However, by allowing a → ∞, it is easy to check that this is not possible
(notice that in both cases A 6= 0).

Hence the proof of the proposition is completed. ¤

5. Biharmonic Extensions in parabolic spaces

It can be shown, for example as in [7], that if b (x) is a biharmonic function
defined outside a compact set in R2, then there exist two uniquely determined
constants α and β and a biharmonic function B (x) in R2 unique up to an additive
constant and a bounded biharmonic function u (x) outside a compact set in R2

such that b (x) = α log |x|+ β|x|2 log |x|+ B (x) + u (x) near infinity. We consider
briefly this result in Brelot harmonic spaces without positive potentials; parabolic
Riemann surfaces and parabolic Riemannian manifolds are examples of such spaces.

Let H and H∗ be two Brelot harmonic sheaves defined on Ω, both without
positive potentials defined on Ω, (Ω, H) satisfies locally the axiom of proportionality
and the axiom A∗, λ is a fixed Radon measure in Ω with respect to which the
biharmonic functions are defined as before.

Let k be an outerregular compact set in (Ω, H) and let F ≥ 0 be a fixed un-
bounded continuous function on Ω, equal to 0 on k and harmonic in Ω \ k. (F is
like log |x| in |x| > 1). Let F ∗ ≥ 0 be a similarly fixed function in (Ω, H∗). Let Q
be a function on Ω such that LQ = −F ∗. Let flux F (and fluxF ∗) at infinity be
1. We recall that any (Ω, H) harmonic function h defined outside a compact set in
Ω is of the form h = αF + f + u near infinity, where f is harmonic in Ω and u is
bounded harmonic near infinity.

Theorem 5.1. Let (Ω, H, H∗, λ) be a biharmonic space as above without positive
potentials. Then the following are equivalent:

(1) If h∗ is a bounded harmonic function defined outside a compact set in
(Ω, H∗) and if Lb = −h∗, then there exist a constant α and a biharmonic
function B (x) in Ω such that (b− αF −B) is bounded near infinity.

(2) If s∗ is a locally λ-integrable superharmonic function in (Ω, H∗) with com-
pact harmonic support and if Lq = −s∗, then there exist constant α and
β and a biharmonic function B in Ω such that q (x) = αF (x) + βQ (x) +
B (x)+u (x) near infinity, where u (x) is bounded biharmonic function near
infinity for which flux Lu at infinity is 0 and β = flux s∗.
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(3) Any biharmonic function b defined outside a compact set is of the form
b (x) = αF (x) + βQ (x) + B (x) + u (x) near infinity, where B (x) is bi-
harmonic in Ω, u (x) is bounded biharmonic function near infinity, −β =
flux Lb and 0 = flux Lu.

Proof. (1) ⇒ (2): Let Lq = −s∗, where s∗ is a locally λ-integrable (Ω, H∗) super-
harmonic function with compact harmonic support in Ω. Then s∗ is of the form
βF ∗+f ∗+h∗ near infinity, where f ∗ is (Ω, H∗) harmonic in Ω and h∗ is bounded har-
monic near infinity. Let LB1 = −f ∗ and Lb = −h∗. Then L (q − βQ−B1) = −h∗

near infinity and hence by (1), there exist a constant α and a biharmonic function
B in Ω such that q − βQ − B1 = αF + B + u near infinity, where u is bounded
biharmonic function near infinity and fluxLu = − flux h∗ = 0, since h∗ is bounded
near infinity. This proves (2).

(2) ⇒ (3): Let b be biharmonic function defined outside a compact set. Let
Lb = −u∗. Since u∗ can be written as s∗1 − s∗2 near infinity, where s∗1 and s∗2
are finite continuous superharmonic functions with compact harmonic support in
(Ω, H∗) and consequently since flux u∗ = flux s∗1 − flux s∗2, we obtain (3).

(3) ⇒ (1): Let h∗ be a bounded (Ω, H∗) harmonic function defined outside a
compact set and let Lb = −h∗. Then by (3) , b (x) = αF (x)+βQ (x)+B (x)+u (x)
near infinity, where u (x) is bounded biharmonic function near infinity. Since h∗ is
bounded, flux h∗ is 0 and consequently, −β = flux Lb = − flux h∗ = 0. Hence we
have (1).

Hence the proof of Theorem 5.1 is completed. ¤

6. Removable singularity for bounded biharmonic functions

Let (Ω, H, H∗, λ) be a biharmonic space and k be a compact set in Ω. Suppose
for an open set ω ⊃ k, there exists a bounded biharmonic function in ω \ k which
does not extend biharmonically in ω. Is it then possible to find in any open set
ω0 ⊃ k, a bounded biharmonic function in ω0 \ k which does not extend as a
biharmonic function in ω0? We leave out the simple case where the answer is yes if
ω ⊃ ω0 ⊃ k. It is proved in this section that the answer is yes even if ω0 ⊃ ω ⊃ k,
provided (Ω, H, H∗, λ) is a biharmonic-extension space.

First we prove a similar result for bounded harmonic functions in a harmonic
space (Ω, H) with or without potentials > 0. If there is no potential > 0 in Ω,
we fix as in the previous section an unbounded continuous function F ≥ 0 in Ω, 0
on an outerregular compact set k, and harmonic in Ω \ k. Then a combination of
Lemma 1 in [2] and Theorem 2.2 in [5] permits us to prove the following:

Lemma 6.1. Let (Ω, H) be a harmonic space with or without potentials > 0 in
Ω. Let ω be an open set and k a compact set in Ω such that k ⊂ ω. Let h be a
harmonic function in ω \ k. Then there exist a harmonic function s in Ω \ k and a
harmonic function t in ω such that h = s− t in ω \ k. Moreover, s can be taken as
bounded near infinity if there are potentials > 0 in Ω, and (s− αF ) can be taken
as bounded near infinity for some constant α if there are no potentials > 0 in Ω.
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Lemma 6.2. Let (Ω, H, H∗, λ) be a biharmonic space. Let k be a compact set and
ω an open set in Ω such that k ⊂ ω. Let b be a biharmonic function in ω \k. Then
there exist a biharmonic function u in Ω\k and a biharmonic function v in ω such
that b = u− v in ω \ k.

Proof. Let Lb = −h∗ in ω \ k. Write h∗ = s∗ − t∗ as in Lemma 6.1, where s∗ is
harmonic in Ω \ k and t∗ is harmonic in ω. Let u1 and v1 be such that Lu1 = −s∗

and Lv1 = −t∗. Then u1 is biharmonic in Ω \ k and v1 is biharmonic in ω such
that b = u1 − v1 + (a harmonic function h1) in ω \ k.

Again by Lemma 6.1, h1 = s1− t1 in ω \ k, where s1 is (Ω, H) harmonic in Ω \ k
and t1 is (Ω, H) harmonic in ω. Writing u = u1 + s1 and v = v1 + t1, we obtain the
decomposition b = u− v in ω \ k as stated in the lemma. ¤

Theorem 6.3. Let (Ω, H, H∗, λ) be a biharmonic space in which every biharmonic
function is infinite continuous. Let k be a compact set and ω an open set such that
k ⊂ ω ⊂ Ω. Suppose there exists a bounded biharmonic function b in ω \ k which
does not extend biharmonically in ω. Then in any domain Ω0 ⊃ ω, there exists a
bounded biharmonic function B in Ω0 \ k which does not extend biharmonically in
Ω0, provided (Ω0, H, H∗, λ) is a biharmonic-extension space.

Proof. By Lemma 6.2, b = u − v in ω \ k, where u is biharmonic in Ω \ k and v
is biharmonic in ω. Suppose (Ω0, H, H∗, λ) is a biharmonic-extension domain and
k ⊂ ω ⊂ Ω0. Then we can find a biharmonic function b1 in Ω0 such that (u− b1)
is bounded near infinity in Ω0. Define B = u− b1 in Ω0 \ k.

Let ω1 be a relatively compact open set such that k ⊂ ω1 ⊂ ω1 ⊂ ω. Since every
biharmonic function is assumed to be finitely continuous, v is bounded on ω1 and
hence u is bounded in ω1 \k; b1 being biharmonic in Ω0, it is also bounded in ω1 \k.
Thus B is bounded in ω1 \ k as well as near infinity in Ω0. Consequently, B is a
bounded biharmonic function in Ω0 \ k. However B cannot extend biharmonically
in Ω0 for B = b + v − b1 in ω1 \ k, where v − b1 is biharmonic in ω. Hence if B
extends biharmonically in Ω0, b should extend biharmonically in ω. It contradicts
the hypothesis. ¤

Corollary 6.4. Let (Ω, H, H∗, λ) be a biharmonic-extension space in which every
biharmonic function is finite continuous. Suppose k is a compact set and ω is
an open set such that k ⊂ ω and that every bounded biharmonic function in ω \
k extends bihamronically in ω. Then for any open set ω0 ⊃ k if b is bounded
biharmonic in ω0 \ k, b extends biharmonically in ω0.

Proof. In view of the above theorem, it is enough to prove that if Ω0 is any domain
in Ω, (Ω0, H, H∗, λ) is also a biharmonic-extension space.

Let p∗0 be a locally λ-integrable (Ω0, H
∗) potential with compact harmonic sup-

port A in Ω0 and let Lq0 = −p∗0 in Ω0. Let p∗1 be an (Ω, H∗) potential in Ω with
the same support A such that p∗1 = p∗0 in a neighborhood of A. Then p∗1 is lo-
cally λ-integrable in Ω and let Lq1 = −p∗1 in Ω. Since Ω is a biharmonic-extension
space, there exists a biharmonic function B1 in Ω such that (q1 −B1) is bounded
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outside a compact set. Since (q1 −B1) is biharmonic outside A and since a bihar-
monic function is finite continuous, if X is a relatively compact open set such that
A ⊂ X ⊂ X ⊂ Ω0, (q1 −B1) is bounded in Ω \X.

Let B0 = q0− q1 +B1 in Ω0. Since p∗1− p∗0 is harmonic in Ω0, B0 is biharmonic in
Ω0 and (q0 −B0) is bounded outside X in Ω0. Hence Ω0 is a biharmonic-extension
space. ¤

7. Boundary-value problem for biharmonic functions

Let R be a Riemannian manifold and ω a relatively compact domain in R. Let
ω be the Wiener compactification of ω and let ∂ω = ω − ω. Suppose f and g are
two finite continuous functions on ∂ω. If Hω

f denotes the Dirichlet solution in ω
with boundary value f . Since ∂ω is resolutive, h = Hω

f is a bounded harmonic

function in ω. If G (x, y) is the Green function in ω, G ∈ L1 (ω) and hence if
u (x) =

∫
ω

G (x, y) h (y) dy, u (x) is bounded and ∆u = −h; since h is in C∞ (ω),
we can assume u also is in C∞ (ω).

Recall that if µ is a measure in ω with ||µ|| finite, then
∫

G (x, y) dµ (y) is a
potential in ω. Hence

u (x) =

∫

ω

G (x, y) h+ (y) dy −
∫

ω

G (x, y) h− (y) dy

is the difference of two potentials and hence harmonizable. Thus, u is a bounded
Wiener function in ω and consequently u extends as a continuous function on the
Wiener compactification of ω.

Let v = Hω
g−u. Then v is a bounded harmonic function in ω and if b = u + v,

then b is a bounded biharmonic function in ω, ∆b = −h, b tends to g and ∆b tends
to f at the regular points of ∂ω. (see [15, Section 4, Chapter VII]).

Proceeding in the same way, we prove the following theorem in the axiomatic case
where the theory of Wiener compactification is due to Constntinecu and Cornea
[10] and that of self-adjoint harmonic spaces is due of F. Y. Maeda [12].

Theorem 7.1. Let (Ω, H, H∗, λ) be a biharmonic space, where (Ω, H) is a self-
adjoint harmonic space. Let ω be a relatively compact domain in Ω. Let Γ and
Γ∗ be the Wiener harmonic boundaries of ω in (Ω, H) and (Ω, H∗) respectively.
Assume that a biharmonic function in an open set in Ω is finite continuous. Then
if g and f ∗ are finite continuous on Γ and Γ∗ respectively, there exists a unique
biharmonic function b in ω such that b and Lb are bounded, b tends to g on Γ and
Lb tends to f ∗ on Γ∗.

Proof. Extend f ∗ and g as finite continuous functions on the Wiener boundaries
∂ω∗ and ∂ω respectively. Let h∗ = Hω∗

−f∗ in ω∗ and Lv = −h∗. Let ω1 be an (Ω, H)
regular domain containing ωc, the closure of ω in Ω. By the assumption on the
continuity of the biharmonic functions, there exists a finite continuous function
u in ω1 such that Lu = −1, that is, if Gω1 (x, y) is the symmetric (Ω, H) Green
kernel in ω1, u (x) =

∫
ω1

Gω1 (x, y) dλ (y) is finite continuous in ω1. Since u is finite
continuous on ω1 ⊃ ωc, u is bounded on ωc.
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Hence, for x ∈ ω,
∫

ω

G (x, y) dλ (y) ≤
∫

ω

Gω1 (x, y) dλ (y) ≤
∫

ω1

Gω1 (x, y) dλ (y) = u (x) < ∞.

Consequently, since h∗ is bounded in ω and since Gω (x, y) is symmetric by hy-
pothesis,

∫
ω

Gω (x, y) h∗
+

(y) dλ (y) and
∫

ω
Gω (x, y) h∗

−
(y) dλ (y) are well-defined

bounded potentials in ω; hence v is the difference of two bounded potentials and
hence harmonizable; also v being biharmonic, is continuous. Thus v is a bounded
Wiener function in ω and hence v extends continuously on the Wiener compactifi-
cation of ω.

Since g is a finite continuous function on ∂ω, there exists a bounded (Ω, H)
harmonic function h1 in ω tending to g − v on Γ. Let b = v + h1 in ω. Then b is a
bounded biharmonic function in ω such that b tends to g on Γ, and Lb = Lv = −h∗

tends to f ∗ on Γ∗.
For the uniqueness of b, notice that if u is bounded biharmonic in ω and if Lu is

bounded in ω∗ such that u and Lu tend to 0 on Γ and Γ∗ respectively, then u ≡ 0.
For, Lu is bounded (Ω, H∗) harmonic in ω and tends to 0 on Γ∗ and hence Lu ≡ 0;
this means that u is bounded (Ω, H) harmonic in ω and tends to 0 on Γ and hence
u ≡ 0. ¤
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