REAL HYPERSURFACES OF COMPLEX SPACE FORMS WITH
SYMmetric RICCI *-TENSOR

TATSUYOSHI HAMADA AND JUN-ICHI INOGUCHI

Communicated by Sadahiro Maeda
(Received: September 7, 2004)

Abstract. Real hypersurfaces M’s in non-flat complex space forms such that
the symmetric part of the Ricci *-tensor of M is a constant multiple of the metric
are classified.

1. INTRODUCTION

This note is a continuation of our previous paper [1].

Let \((M, \phi, \xi, \eta, g)\) be an almost contact metric manifold with Ricci tensor \(S\). The
Ricci *-tensor \(S^*\) is defined by

\[S^*(X, Y) = \frac{1}{2} \text{trace}(Z \mapsto R(X, \phi Y)\phi Z), \quad X, Y \in TM. \]

An almost contact metric manifold is said to be *-Einstein if \(S^*\) is a constant
multiple of the metric \(g\) on the holomorphic distribution \(T^\circ M\).

It should be remarked that Ricci *-tensor is not symmetric, in general. Thus the
condition “*-Einstein” automatically requires a symmetric property of the Ricci
*-tensor.

On real hypersurfaces in almost Hermitian manifolds, almost contact structures
are naturally induced from the almost Hermitian structure of the ambient space.
In our previous paper [1], the first named author investigated real hypersurfaces in
non-flat complex space forms in terms of Ricci *-tensor. In particular, he classi-
fied *-Einstein real hypersurfaces in non-flat complex space forms whose structure
vector fields are principal.

The purpose of present note is to generalize the classification result of [1]. We
shall weaken the assumption “*-Einstein” to “the symmetric part of \(S^*\) is a constant
multiple of \(g\) on \(T^\circ M\)”. More precisely, we shall prove the following two results.

Theorem 1.1. Let \(M\) be a connected real hypersurface of \(P_n(C)\) of constant holo-
monic sectional curvature \(4c > 0\). Assume that the symmetric part \(\text{Sym}S^*\) of

Key words and phrases. real hypersurface, complex space form, Ricci *-tensor, *-Einstein.
Ricci $*$-tensor of M is a constant multiple of the induced metric over the holomorphic distribution and the structure vector field ξ is a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r $(0 < r < \pi/(2\sqrt{c}))$,
(ii) a tube over a totally geodesic complex projective space $P_k(\mathbb{C})$ of radius $\pi/(4\sqrt{c})$, where $0 < k < n - 1$,
(iii) a tube over a complex quadric Q_{n-1} of radius r $(0 < r < \pi/(4\sqrt{c}))$.

Theorem 1.2. Let M be a connected real hypersurface of $H_n(\mathbb{C})$ of constant holomorphic sectional curvature $4c < 0$. Assume that the symmetric part $\text{Sym} S^*_{\text{Ricci}}$ of Ricci $*$-tensor of M is a constant multiple of the induced metric over the holomorphic distribution and the structure vector field ξ is a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r $(0 < r < \infty)$,
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r $(0 < r < \infty)$,
(iii) a tube over a totally real hyperbolic space $H^n(\mathbb{R})$ of radius r $(0 < r < \infty)$,
(iv) a horosphere.

2. Preliminaries

A complex n-dimensional Kähler manifold of constant holomorphic sectional curvature $4c < 0$ is called a complex space form, which is denoted by $\tilde{M}_n(4c)$. A complete and simply connected complex space form is a complex projective space $P_n(\mathbb{C})$, a complex Euclidean space \mathbb{C}^n or a complex hyperbolic space $H_n(\mathbb{C})$, according as $c > 0$, $c = 0$ or $c < 0$. Let M be a real hypersurface of a non-flat complex space form $\tilde{M}_n(4c)$.

Take a local unit normal vector field N of M in $\tilde{M}_n(4c)$. Then the Riemannian connections $\tilde{\nabla}$ of $\tilde{M}_n(4c)$ and ∇ of M are related by the following Gauss formula and Weingarten formula:

$$\tilde{\nabla}_X Y = \nabla_X Y + g(AX, Y)N, \quad X, Y \in \mathfrak{X}(M),$$
$$\tilde{\nabla}_X N = -AX, \quad X \in \mathfrak{X}(M).$$

Here g is the Riemannian metric of M induced by the Kähler metric G of the ambient space $\tilde{M}_n(4c)$. The $(1,1)$-tensor field A is called the shape operator of M derived from N.

An eigenvector X of the shape operator A is called a principal curvature vector. The corresponding eigenvalue λ of A is called a principal curvature. As is well known, the Kähler structure (J, G) of the ambient space induces an almost contact metric structure (ϕ, ξ, η, g) on M. In fact, the structure vector field ξ and its dual 1-form η are defined by

$$\eta(X) = g(\xi, X) = G(JX, N), \quad X \in TM.$$

The $(1,1)$-tensor field ϕ is defined by

$$g(\phi X, Y) = G(JX, Y), \quad X, Y \in TM.$$
One can easily check that this structure \((\phi, \xi, \eta, g)\) is an almost contact structure on \(M\), that is, it satisfies
\[
\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0.
\]
It follows that
\[
\nabla_X\xi = \phi AX.
\]

Let \(\tilde{R}\) and \(R\) be the Riemannian curvature tensors of \(\tilde{M}_n(4c)\) and \(M\), respectively.

From the expression of the curvature tensor \(\tilde{R}\) of \(\tilde{M}_n(4c)\), we have the following equations of Gauss and Codazzi:
\[
\begin{align*}
R(X, Y)Z &= c(g(Y, Z)X - g(X, Z)Y \\
&\quad + g(\phi Y, Z)\phi X - g(\phi X, Z)\phi Y - 2g(\phi X, Y)\phi Z) \\
&\quad + g(AY, Z)AX - g(AX, Z)AY, \\
(\nabla_X A)Y - (\nabla_Y A)X &= c(\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi).
\end{align*}
\]

To close this section, we recall the following two fundamental results (See e.g., [2]).

Lemma 2.1. If \(\xi\) is a principal curvature vector, then the corresponding principal curvature \(\alpha\) is locally constant.

Lemma 2.2. Assume that \(\xi\) is a principal curvature vector and the corresponding principal curvature is \(\alpha\). If \(AX = \lambda X\) for \(X \perp \xi\), then we have
\[
(2\lambda - \alpha)A\phi X = (\alpha \lambda + 2c)\phi X.
\]

We refer to the reader [2] about general theory of differential geometry of real hypersurfaces in complex space forms.

3. \(*\)-Einstein Real Hypersurfaces

Let us denote by \(S^*\) the Ricci \(*\)-tensor of a real hypersurface \(M\) which is defined by
\[
S^*(X, Y) = \frac{1}{2}\text{trace}(Z \mapsto R(X, \phi Y)\phi Z).
\]

Then the Gauss equation implies that
\[
S^*(X, Y) = 2cn(g(X, Y) - \eta(X)\eta(Y)) - g(\phi A\phi AX, Y),
\]
for all \(X, Y \in TM\).

The Ricci \(*\)-operator \(Q^*\) is the linear endomorphism field associated to \(S^*\):
\[
S^*(X, Y) = g(Q^*X, Y), \quad X, Y \in TM.
\]

The trace \(\rho^*\) of \(Q^*\) is called the \(*\)-scalar curvature of \(M\).

Let \(T^oM\) be a distribution defined by a subspace
\[
T^o_xM = \{X \in T_xM : X \perp \xi_x\}
\]
in the tangent space \(T_xM\). The formulas (1) imply that the distribution \(T^oM\) is invariant under \(\phi\). The distribution \(T^oM\) is called the holomorphic distribution of
If the Ricci \ast-tensor is a constant multiple of the Riemannian metric for the holomorphic distribution, i.e.

$$S^\ast(X, Y) = \frac{\rho^\ast}{2(n-1)}g(X, Y)$$

for $X, Y \in T^\circ M$ on M, then M is said to be a \ast-Einstein real hypersurface.

The first author proved the following results in [1].

Proposition 3.1. Let M be a connected \ast-Einstein real hypersurface of $P_n(C)$ of constant holomorphic sectional curvature $4c > 0$, whose structure vector field ξ is a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r ($0 < r < \pi/(2\sqrt{c})$),
(ii) a tube over a totally geodesic complex projective space $P_k(C)$ of radius $\pi/(4\sqrt{c})$, where $0 < k < n - 1$,
(iii) a tube over a complex quadric Q_{n-1} of radius r ($0 < r < \pi/(4\sqrt{c})$).

Proposition 3.2. Let M be a connected \ast-Einstein real hypersurface of $H_n(C)$ of constant holomorphic sectional curvature $4c < 0$, whose structure vector field ξ is a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r ($0 < r < \infty$),
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r ($0 < r < \infty$),
(iii) a tube over a totally real hyperbolic space $H^n(R)$ of radius r ($0 < r < \infty$),
(iv) a horosphere.

Now we take the symmetric part $\text{Sym} S^\ast$ and the alternate part $\text{Alt} S^\ast$ of Ricci \ast-tensor S^\ast of M;

$$\text{Sym} S^\ast(X, Y) = \frac{1}{2}(S^\ast(X, Y) + S^\ast(Y, X)),$$
$$\text{Alt} S^\ast(X, Y) = \frac{1}{2}(S^\ast(X, Y) - S^\ast(Y, X)),$$

for any $X, Y \in TM$.

Using (2), we see that

$$\text{Sym} S^\ast(X, Y) = 2cn(g(X, Y) - \eta(X)\eta(Y))$$
$$- \frac{1}{2}g((\phi A\phi A + A\phi A\phi)X, Y),$$
(3)
$$\text{Alt} S^\ast(X, Y) = \frac{1}{2}g((A\phi A\phi - \phi A\phi A)X, Y).$$
(4)

4. Proof of main theorems

To prove our theorems, we need the following lemma.

Lemma 4.1. Let M be a real hypersurface of a non-flat complex space form $\tilde{M}_n(4c)$. If ξ is a principal curvature vector, then the Ricci \ast-tensor of M is symmetric, i.e. $\text{Alt} S^\ast = 0$.
Proof. Let X be a unit principal curvature vector orthogonal to ξ with principal curvature λ. From Lemma 2.2, the tangent vector ϕX is also a principal curvature vector. By calculating (4), we get $\text{Alt} S^∗(X, Y) = 0$, for any $X \in T^o M$ and $Y \in TM$.

On the other hand, by the assumption, we have $\phi A \phi A \xi = 0$ and (1) shows $A \phi A \phi \xi = 0$. Thus, we get $\text{Alt} S^∗(\xi, Y) = 0$ for any $Y \in TM$. □

Proof of theorems. Now let M be a real hypersurface in $\widetilde{M}_n(4c)$ with $c \neq 0$ whose $\text{Sym} S^∗$ is a constant multiple of g over $T^o M$. Assume that the structure vector field ξ is principal. Then Lemma 4.1 implies that $S^∗(X, Y) = \text{Sym} S^∗(X, Y)$ for $X, Y \in TM$. Hence M is $*$-Einstein. This fact, together with Propositions 3.1 and 3.2, yields the required results. □

References

Department of Applied Mathematics, Faculty of Science, Fukuoka University, Fukuoka, 814-0180, Japan
E-mail address: hamada@sm.fukuoka-u.ac.jp

Department of Mathematics Education, Faculty of Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
E-mail address: inoguchi@cc.utsunomiya-u.ac.jp