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Abstract. Real hypersurfaces M ’s in non-flat complex space forms such that
the symmetric part of the Ricci ∗-tensor of M is a constant multiple of the metric
are classified.

1. Introduction

This note is a continuation of our previous paper [1].
Let (M,φ, ξ, η, g) be an almost contact metric manifold with Ricci tensor S. The

Ricci ∗-tensor S∗ is defined by

S∗(X,Y ) =
1

2
trace(Z 7→ R(X,φY )φZ), X, Y ∈ TM.

An almost contact metric manifold is said to be ∗-Einstein if S∗ is a constant
multiple of the metric g on the holomorphic distribution T ◦M .

It should be remarked that Ricci ∗-tensor is not symmetric, in general. Thus the
condition “∗-Einstein” automatically requires a symmetric property of the Ricci
∗-tensor.

On real hypersurfaces in almost Hermitian manifolds, almost contact structures
are naturally induced from the almost Hermitian structure of the ambient space.
In our previous paper [1], the first named author investigated real hypersurfaces in
non-flat complex space forms in terms of Ricci ∗-tensor. In particular, he classi-
fied ∗-Einstein real hypersurfaces in non-flat complex space forms whose structure
vector fields are principal.

The purpose of present note is to generalize the classification result of [1]. We
shall weaken the assumption “∗-Einstein” to “the symmetric part of S∗ is a constant
multiple of g on T ◦M”. More precisely, we shall prove the following two results.

Theorem 1.1. Let M be a connected real hypersurface of Pn(C) of constant holo-
morphic sectional curvature 4c > 0. Assume that the symmetric part SymS∗ of
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Ricci ∗-tensor of M is a constant multiple of the induced metric over the holomor-
phic distribution and the structure vector field ξ is a principal curvature vector.
Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < π/(2
√

c)),
(ii) a tube over a totally geodesic complex projective space Pk(C) of radius

π/(4
√

c), where 0 < k < n− 1,
(iii) a tube over a complex quadric Qn−1 of radius r (0 < r < π/(4

√
c)).

Theorem 1.2. Let M be a connected real hypersurface of Hn(C) of constant holo-
morphic sectional curvature 4c < 0. Assume that the symmetric part SymS∗ of
Ricci ∗-tensor of M is a constant multiple of the induced metric over the holomor-
phic distribution and the structure vector field ξ is a principal curvature vector.
Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < ∞),
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r

(0 < r < ∞),
(iii) a tube over a totally real hyperbolic space Hn(R) of radius r (0 < r < ∞),
(iv) a horosphere.

2. Preliminaries

A complex n-dimensional Kähler manifold of constant holomorphic sectional cur-

vature 4c is called a complex space form, which is denoted by M̃n(4c). A complete
and simply connected complex space form is a complex projective space Pn(C), a
complex Euclidean space Cn or a complex hyperbolic space Hn(C), according as
c > 0, c = 0 or c < 0. Let M be a real hypersurface of a non-flat complex space

form M̃n(4c).

Take a local unit normal vector filed N of M in M̃n(4c). Then the Riemannain

connections ∇̃ of M̃n(4c) and ∇ of M are related by the following Gauss formula
and Weingarten formula:

∇̃XY = ∇XY + g(AX, Y )N, X, Y ∈ X(M),

∇̃XN = −AX, X ∈ X(M).

Here g is the Riemannian metric of M induced by the Kähler metric G of the

ambient space M̃n(4c). The (1, 1)-tensor field A is called the shape operator of M
derived from N .

An eigenvector X of the shape operator A is called a principal curvature vector.
The corresponding eigenvalue λ of A is called a principal curvature. As is well
known, the Kähler structure (J,G) of the ambient space induces an almost contact
metric structure (φ, ξ, η, g) on M . In fact, the structure vector field ξ and its dual
1-form η are defined by

η(X) = g(ξ, X) = G(JX, N), X ∈ TM.

The (1, 1)-tensor field φ is defined by

g(φX, Y ) = G(JX, Y ), X, Y ∈ TM.
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One can easily check that this structure (φ, ξ, η, g) is an almost contact structure
on M , that is, it satisfies

(1) φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0.

It follows that

∇Xξ = φAX.

Let R̃ and R be the Riemannian curvature tensors of M̃n(4c) and M , respectively.

¿From the expression of the curvature tensor R̃ of M̃n(4c), we have the following
equations of Gauss and Codazzi:

R(X,Y )Z = c(g(Y, Z)X − g(X,Z)Y

+g(φY, Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ)

+g(AY, Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X = c(η(X)φY − η(Y )φX − 2g(φX, Y )ξ).

To close this section, we recall the following two fundamental results (See e.g., [2]).

Lemma 2.1. If ξ is a principal curvature vector, then the corresponding principal
curvature α is locally constant.

Lemma 2.2. Assume that ξ is a principal curvature vector and the corresponding
principal curvature is α. If AX = λX for X ⊥ ξ, then we have (2λ − α)AφX =
(αλ + 2c)φX.

We refer to the reader [2] about general theory of differential geometry of real
hypersurfaces in complex space forms.

3. ∗-Einstein real hypersurfaces

Let us denote by S∗ the Ricci ∗-tensor of a real hypersurface M which is defined
by

S∗(X,Y ) =
1

2
trace(Z 7→ R(X,φY )φZ).

Then the Gauss equation implies that

(2) S∗(X,Y ) = 2cn(g(X,Y )− η(X)η(Y ))− g(φAφAX, Y ),

for all X,Y ∈ TM .
The Ricci ∗-operator Q∗ is the linear endomorphism field associated to S∗;

S∗(X,Y ) = g(Q∗X,Y ), X, Y ∈ TM.

The trace ρ∗ of Q∗ is called the ∗-scalar curvature of M .
Let T ◦M be a distribution defined by a subspace

T ◦
xM = {X ∈ TxM : X ⊥ ξx}

in the tangent space TxM . The formulas (1) imply that the distribution T ◦M is
invariant under φ. The distribution T ◦M is called the holomorphic distribution of
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M . If the Ricci ∗-tensor is a constant multiple of the Riemannian metric for the
holomorphic distribution, i.e.

S∗(X,Y ) =
ρ∗

2(n− 1)
g(X,Y )

for X,Y ∈ T ◦M on M , then M is said to be a ∗-Einstein real hypersurface.
The first author proved the following results in [1].

Proposition 3.1. Let M be a connected ∗-Einstein real hypersurface of Pn(C) of
constant holomorphic sectional curvature 4c > 0, whose structure vector field ξ is
a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < π/(2
√

c)),
(ii) a tube over a totally geodesic complex projective space Pk(C) of radius

π/(4
√

c), where 0 < k < n− 1,
(iii) a tube over a complex quadric Qn−1 of radius r (0 < r < π/(4

√
c)).

Proposition 3.2. Let M be a connected ∗-Einstein real hypersurface of Hn(C) of
constant holomorphic sectional curvature 4c < 0, whose structure vector field ξ is
a principal curvature vector. Then M is an open subset of one of the following:

(i) a geodesic hypersphere of radius r (0 < r < ∞),
(ii) a tube over a totally geodesic complex hyperbolic hyperplane of radius r

(0 < r < ∞),
(iii) a tube over a totally real hyperbolic space Hn(R) of radius r (0 < r < ∞),
(iv) a horosphere.

Now we take the symmetric part SymS∗ and the alternate part AltS∗ of Ricci
∗-tensor S∗ of M ;

SymS∗(X,Y ) =
1

2
(S∗(X,Y ) + S∗(Y, X)),

AltS∗(X,Y ) =
1

2
(S∗(X,Y )− S∗(Y, X)),

for any X,Y ∈ TM .
Using (2), we see that

SymS∗(X,Y ) = 2cn(g(X,Y )− η(X)η(Y ))(3)

− 1

2
g((φAφA + AφAφ)X,Y ),

AltS∗(X,Y ) =
1

2
g((AφAφ− φAφA)X,Y ).(4)

4. Proof of main theorems

To prove our theorems, we need the following lemma.

Lemma 4.1. Let M be a real hypersurface of a non-flat complex space form M̃n(4c).
If ξ is a principal curvature vector, then the Ricci ∗-tensor of M is symmetric, i.e.
AltS∗ = 0.
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Proof. Let X be a unit principal curvature vector orthogonal to ξ with principal
curvature λ. From Lemma 2.2, the tangent vector φX is also a principal curvature
vector. By calculating (4), we get AltS∗(X,Y ) = 0, for any X ∈ T ◦M and Y ∈
TM .

On the other hand, by the assumption, we have φAφAξ = 0 and (1) shows
AφAφξ = 0. Thus, we get AltS∗(ξ, Y ) = 0 for any Y ∈ TM . ¤

Proof of theorems. Now let M be a real hypersurface in M̃n(4c) with c 6= 0 whose
SymS∗ is a constant multiple of g over T ◦M . Assume that the structure vector
field ξ is principal. Then Lemma 4.1 implies that S∗(X,Y ) = SymS∗(X,Y ) for
X,Y ∈ TM . Hence M is ∗-Einstein. This fact, together with Propositions 3.1 and
3.2, yields the required results. ¤
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