Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **37** (2004), pp. 59–65

SURFACES WHICH CONTAIN HELICAL GEODESICS IN THE 3-SPHERE

MICHIKO TAMURA

Communicated by Sadahiro Maeda (Received: December 27, 2003)

INTRODUCTION

A helical curve (or a helix) is a curve in 3-dimensional space form $\mathcal{M}^3(c)$ of constant curvature c whose both curvature and torsion are constants. It reduces to a *Riemannian circle* or a *geodesic*, if its curvature is constant and torsion is zero, or if its curvature is zero, respectively. A helical curve is said to be a *proper helix* if both curvaure and torsion are non zero constants.

As is well known, circular cylinders in Euclidean 3-space E^3 contain these curves as geodesics.

On the other hand, although a helicoid in E^3 contains ordinary helices, they are not geodecics. Furthermore, (meridian) circles on a surface of revolution in E^3 are not always geodesics. Based on these facts, we mean by a *helical geodesic* on a surface M in $\mathcal{M}^3(c)$ a curve which is helical as a curve in $\mathcal{M}^3(c)$ and a geodesic as a curve on M.

In our previous paper [12], we have shown that complete surfaces of constant mean curvature in E^3 on which there exist two helical geodesics through each point are planes, spheres or circular cylinders.

In this paper we generalize this characterization obtained in [12] to Riemannian space forms of non-negative curvature. More precisely we show the following result for surfaces in the 3-sphere. We assume that all surfaces in $\mathcal{M}^3(c)$ are smooth and connected in this paper.

Theorem Let M be a complete surface of constant mean curvature in the 3-sphere S^3 . If there exist two helical geodesics on M through each point of M, then M is either a great sphere, a small sphere, or a Hopf torus over a circle.

1. Preliminaries

Throughout this paper, we denote by $\mathcal{M}^3(c)$ the simply connected 3-dimensional Riemannian space form of constant curvature c with metric $\langle \cdot, \cdot \rangle$.

²⁰⁰⁰ Mathematics Subject Classification. 53C40.

Key words and phrases. helical geodesic, Hopf torus, constant mean curvature surface.

Without loss of generality, we may choose $c = 0, \pm 1$. Namely $\mathcal{M}^3(0) = E^3$ (Euclidean 3-space), $\mathcal{M}^3(1) = S^3$ (unit 3-sphere) or $\mathcal{M}^3(-1) = H^3$ (unit hyperbolic 3-space).

Let M be surface in space form $\mathcal{M}^3(c)$. Let $\mathfrak{X}(M)$ be the Lie algebra of all smooth tangent vector fields to M. Further, let D be the Levi-Civita connection of $\mathcal{M}^3(c)$, and let ∇ be the Levi-Civita connection of M with the metric induced by $\langle \cdot, \cdot \rangle$. Let ξ be a unit normal vector field to M. Then the second fundamental form \mathbb{I} of M derived from ξ is defined by the Gauss formula:

(1)
$$\mathbb{I}(X,Y)\xi = D_XY - \nabla_XY$$

for all $X, Y \in \mathfrak{X}(M)$. The shape operator S of M derived from ξ is a (1,1)-tensor field on M given by $\mathbb{I}(X,Y) = \langle S(X),Y \rangle$ for all $X, Y \in \mathfrak{X}(M)$. It is well known that $D_X \xi = -S(X)$ for all $X \in \mathfrak{X}(M)$.

The shape operator S satisfies the *Codazzi equation*:

(2)
$$(\nabla_V S)W = (\nabla_W S)V$$

for all vector fields V and W on M.

The Gaussian curvature K and the mean curvature H are computed by the formulas:

$$K = c + \det S, \ H = \frac{1}{2} \operatorname{tr} S.$$

The determinant det S of S is called the Gauss-Kronecker curvatue of M in $\mathcal{M}^3(c)$ and denoted by K_e .

Let γ be a helical curve in $\mathcal{M}^3(c)$ parametrized by the arc length. Then, by the *Frenet-Serret formula*, there exist unit vector fields X, Y along γ and constants κ , τ such that

$$D_{\gamma'}\gamma' = \kappa X,$$

$$D_{\gamma'}X = -\kappa\gamma' + \tau Y,$$

$$D_{\gamma'}Y = -\tau X,$$

where γ' denotes the unit tangent vector field of γ . A helical curve with non-zero curvature and zero torsion is called a *Riemannian circle*. A helical curve is said to be *proper* if both κ and τ are non-zero.

Example 1. (Helices in S^3) Let S^3 be the unit 3-sphere imbedded in the Euclidean 4-space E^4 . A model helix in $S^3 \subset E^4$ is given by

$$\gamma(s) = (\cos\phi\cos(as), \cos\phi\sin(as), \sin\phi\cos(bs), \sin\phi\sin(bs)),$$

with

$$a^2 \cos^2 \phi + b^2 \sin^2 \phi = 1$$

Here s is the arclength parameter. It is easy to see that γ lies in the flat torus:

$$x_1^2 + x_2^2 = \cos^2 \phi, \ x_3^2 + x_4^2 = \sin^2 \phi.$$

Note that this flat torus has constant mean curvature $H = \cot(2\phi)$. The curvature κ and torsion τ are given by

$$\kappa=\sqrt{(a^2-1)(1-b^2)},\ \tau=ab.$$

Every proper helix in S^3 is congruent to one of these helices.

The following lemma due to Liouville (see e.g., p.291 in Spivak [11]) plays basic role in our proof of Theorems 1 and 2.

Lemma 1.1. Let M be a Riemannian 2-manifold. If two families of geodesics intersect at a constant angle everywhere on M, then M is flat.

To close this section, here we recall the classification of *isoparametric surfaces* (surfaces with constant principal curvatures) in $\mathcal{M}^3(c)$ with $c \ge 0$ and flat surfaces in E^3 .

Proposition 1.1. ([2], [5], [8]) Let M be a complete flat surface in Euclidean 3-space E^3 . Then M is a cylinder over a plane curve.

Let us denote by $\pi : S^3 \to S^2(4)$ be the Hopf fibering of S^3 onto the 2-sphere of curvature 4 and let $\bar{\gamma}$ be a curve in $S^2(4)$ with curvature $\bar{\kappa}$. Then the inverse image $M = \pi^{-1}\{\gamma\}$ is a flat surface in S^3 . This flat surface has mean curvature $H = (\bar{\kappa} \circ \pi)/2$ and called the *Hopf cylinder* over $\bar{\gamma}$. In particular, if $\bar{\gamma}$ is closed, then M is diffeomorphic to torus and called the *Hopf torus* over $\bar{\gamma}$ (H. B. Lawson. See Pinkall [7]). The Hopf cylinder over a geodesic in $S^2(4)$ is the Clifford (minimal) torus. Flat tori in S^3 are classified by Kitagawa [3].

Proposition 1.2. ([4]) Let M be an isoparametric surface in E^3 . Then M is either a (totally geodesic) plane, a (totally umbilical) sphere or a circular cylinder.

Proposition 1.3. (cf. [1]) Let M be an isoparametric surface in S^3 . Then M is either a totally geodesic 2-sphere, or a totally umbilical 2-sphere or a Hopf tori over circles.

2. Proof of Theorem

To prove Theorem, we give the following two results.

Theorem 2.1. Let M be a complete surface of constant mean curvature in space form $\mathcal{M}^3(c)$. If M has no umbilic points, and there exists a helical geodesic on Mthrough each point of M whose curvature (as a curve in $\mathcal{M}^3(c)$) is never zero, then M is a "circular cylinder".

Here by a "circular cylinder" in $\mathcal{M}^3(c)$, $c \neq 0$, we mean a Hopf cylinder (torus) over a circle in S^3 , and tubes (equidistant surface) around geodesics in H^3 . Note that Theorem 2.1 holds for negative c.

Lemma 2.1. Let M be a surface of constant mean curvature in $\mathcal{M}^3(c)$ and U be an open set in M. Assume that there exist two families of asymptotic curves on U all of which are geodesics in the ambient space. Then U is totally geodesic or congruent to an open portion of a circular cylinder in E^3 or a Hopf torus over a circle in S^3 .

Proof. If U is totally geodesic then U admits two families of asymptotic curves which are ambient geodesics.

M. TAMURA

Thus without loss of generality, we may restrict our attention to the case U is non totally geodesic.

Let α_1 and α_2 be the asymptotic curves on U through a point $p \in U$ which are geodesics as a curve in $\mathcal{M}^3(c)$.

Let λ and $2H - \lambda$ be the principal curvatures of M with corresponding principal vector fields E_1 and E_2 . Here H is the mean curvature of M which is constant by our assumption. Further let θ be the angle between E_1 and α'_1 so that

$$\alpha_1' = \cos \theta E_1 + \sin \theta E_2,$$

$$\alpha_2' = -\cos \theta E_1 + \sin \theta E_2,$$

where α'_1 and α'_2 denote the unit tangent vector fields of α_1 and α_2 , respectively. Put $\nabla_{E_1}E_1 = \alpha E_2$ and $\nabla_{E_2}E_1 = \beta E_2$, then $\nabla_{E_1}E_2 = -\alpha E_1$ and $\nabla_{E_2}E_2 = -\beta E_1$. Then the Codazzi equation (2) implies

(3)
$$\nabla_{E_1}\lambda = -2\beta(\lambda - H), \quad \nabla_{E_2}\lambda = 2\alpha(\lambda - H).$$

Since both asymptotic curves $\alpha_1 \alpha_2$ are geodesics in M,

(4)
$$\nabla_{\alpha_1'}\theta + \alpha\cos\theta + \beta\sin\theta = 0,$$

(5)
$$\nabla_{\alpha_2'}\theta + \alpha\cos\theta - \beta\sin\theta = 0.$$

Since, α_1 and α_2 are asymptotic curves and $\mathbb{I}(E_1, E_1) = \lambda$, $\mathbb{I}(E_2, E_2) = 2H - \lambda$,

(6) $\lambda \cos^2 \theta + (2H - \lambda) \sin^2 \theta = 0.$

Differentiating (6) with respect to α'_1 and α'_2 , and using (4) and (5), respectively,

$$\alpha \sin \theta (3\cos^2 \theta - \sin^2 \theta) - \beta \cos \theta (\cos^2 \theta - 3\sin^2 \theta) = 0,$$

$$\alpha \sin \theta (3\cos^2 \theta - \sin^2 \theta) + \beta \cos \theta (\cos^2 \theta - 3\sin^2 \theta) = 0.$$

Hence α or β is zero, $3\cos^2\theta = \sin^2\theta$, or $\cos^2\theta = 3\sin^2\theta$. The equations (3) and (6) imply that curvature lines are geodesics on U, since U is not totally geodesic. As is well known, two families of curvature lines intersect at a constant angle $\pi/2$. Therefore by Lemma 1.1, U is flat. Thus det S = -c. On the other hand, since U admits two family of asymptotic curves, det $S \leq 0$. Hence $c \geq 0$. Moreover (3) implies that U has constant principal curvatures.

Theorem 2.2. Let M be a complete surface of constant mean curvature in $\mathcal{M}^3(c)$ of non-negative curvature. If there exist two helical geodesics on M through each point of M, then M is either a totally geodesic surface, a totally umbilical surface, a circular cylinder (c = 0) or a Hopf torurs (c > 0).

Proof. The case $\mathcal{M}^3(c) = E^3$ is proved in [12]. It suffices to consider the case $\mathcal{M}^3(c) = S^3$.

If γ is a helical geodesic of M, then the following three cases will be occurred,

CASE 1. $\kappa \neq 0$ and $\tau \neq 0$. In this case we can take $X = \xi$ in the Frenet-Serret formula, because $D_{\gamma'}\gamma' = \mathbb{I}(\gamma',\gamma')\xi$ is normal to M. Then

$$D_{\gamma'}\xi = -\kappa\gamma' + \tau Y$$
 and $D_{\gamma'}Y = -\tau \xi$

62

CASE 2. $\kappa \neq 0$ and $\tau = 0$. Also we can take $X = \xi$ in the Frenet-Serret formula. Then

$$D_{\gamma'}\xi = -\kappa\gamma'$$

CASE 3. $\kappa = 0$. By the Gauss formula (1) and the Frenet-Serret formula,

$$\mathbb{I}(\gamma',\gamma')=0.$$

Now, let γ_1 and γ_2 be helical geodesics on M through a point $p \in M$. Then, by Cases 1-3, we have following possibilities:

- (i) γ_1 and γ_2 are ambient geodesics,
- (ii) γ_1 and γ_2 are Riemannian circles,
- (iii) γ_1 and γ_2 are proper helices,
- (iv) γ_1 is an ambient geodesic and γ_2 is a Riemannian circle,
- (v) γ_1 is an ambient geodesic and γ_2 is a proper helix,
- (vi) γ_1 is a Riemannian circle and γ_2 is a proper helix.

Firstly suppose that the Gauss-Kronecker curvature K_e is positive at least one point, and put

$$M_1 = \{ p \in M \mid K_e(p) > 0 \}.$$

Then each point of M_1 is a point of types (ii), (iii) or (vi). Let M_{11} be the set of all umbilic points of M_1 and $M_{12} = M_1 - M_{11}$. If $M_{12} \neq \emptyset$, then K = 0 on M_{12} by Theorem 2.1. This contradicts $K_e > 0$ on M_{12} , so M_1 is totally umbilic. Therefore, M is a totally umbilic surface since M_1 is open and closed.

Secondly suppose that $K_e \leq 0$ on M and put

$$M_2 = \{ p \in M \mid K_e(p) < 0 \}.$$

Then each point of M_2 can be a point of all types (i)–(vi). Put

 $M_{21} = \{p \in M_2 \mid \text{there exists a circle or a proper helix through } p\}$

and $M_{22} = M_2 - M_{21}$. Then $M_2 = M_{21} \cup M_{22}$ and it is easily seen that $M_2 = \operatorname{Cl} M_{21} \cup \operatorname{Int} M_{22}$ and $M_2 = \operatorname{Cl} M_{22} \cup \operatorname{Int} M_{21}$. Here, for a set A, $\operatorname{Cl} A$ is the closure of A, and $\operatorname{Int} A$ denotes the interior of A. Hence M_{21} or M_{22} has interior points; or else M_{21} or M_{22} is dense in M_2 . Now we show that M_2 is flat. If $\operatorname{Int} M_{21} \neq \emptyset$ or M_{21} is dense in M_2 , then M_2 is flat by Theorem 2.1. Next, if $\operatorname{Int} M_{22} \neq \emptyset$ and M_{22} is dense in M_2 . Then all asymptotic curves on M_2 are ambient geodesics. Hence, by Lemma 2.1, K = 0 on M_2 . Thus $M_2 = \{p \in M \mid K_e(p) = -1\}$. Hece M_2 is closed. This implies that M is flat since M_2 is open and closed.

Therefore M is a Hopf torus over a circle. Because M is complete flat and isoparametric.

This completes the proof of Theorem 2.2.

Appendix

Theorem 2.1 can be proved in much the same way in our previous paper [12]. For completeness and reader's convinence (making the paper to be selfcontained), we give the proof.

M. TAMURA

First we recall the classification of complete flat surfaces and isoparametric surfaces in H^3 .

Proposition A.1 ([10],[13]) Let M be a complete flat surface in hyperbolic 3-space H^3 . Then M is either a (totally umbilical) horosphere or an equidistant tube of a geodesic in H^3 .

Proposition A.2 ([1]) Let M be an isoparametric surface in H^3 . Then M is either a totally geodesic hyperbolic 2-space, or a totally umbilical surface or an equidistant tube around a geodesic.

Proof of Theorem 2.1. Let γ be a helical geodesic on M through a point $p \in M$. Then the Gauss formula (1) implies $D_{\gamma'}\gamma' = \mathbb{I}(\gamma', \gamma')\xi$, which is normal to M. Hence we can take $X = \xi$ in the Frenet-Serret formula, that is,

(7)
$$\mathbf{I}(\gamma',\gamma') = \kappa, \quad \mathbf{I}(\gamma',Y) = -\tau.$$

Let λ and $2H - \lambda$ be the principal curvatures of M with corresponding principal vector fields on M, as before. Let θ be the angle between γ' and E_1 so that

$$\begin{cases} \gamma' = \cos \theta E_1 + \sin \theta E_2, \\ Y = -\sin \theta E_1 + \cos \theta E_2 \end{cases}$$

Then, since $\mathbf{I}(E_1, E_1) = \lambda$ and $\mathbf{I}(E_2, E_2) = 2H - \lambda$,

(8)
$$\mathbf{I}(\gamma',\gamma') = \lambda \cos^2 \theta + (2H - \lambda) \sin^2 \theta,$$

(9)
$$\mathbf{I}(Y,Y) = \lambda \sin^2 \theta + (2H - \lambda) \cos^2 \theta.$$

The equations (7) and (8) imply $\kappa = \lambda \cos^2 \theta + (2H - \lambda) \sin^2 \theta$, hence by (9), $\mathbb{I}(Y, Y) = 2H - \kappa$. Then the Gaussian curvature K of M is

$$K = c + \mathbb{I}(\gamma', \gamma') \cdot \mathbb{I}(Y, Y) - {\mathbb{I}(\gamma', Y)}^2,$$

= $c + \kappa (2H - \kappa) - \tau^2.$

Since this must equal to $c + \lambda(2H - \lambda)$, the function λ is constant along γ (and hence $2H - \lambda$ is also constant along γ).

Now, differentiating (8) with respect to γ' ,

(10)
$$\nabla_{\gamma'}\theta = 0$$

because M has no umbilic points. Put $\nabla_{E_1}E_1 = \alpha E_2$ and $\nabla_{E_2}E_1 = \beta E_2$. Then $\nabla_{E_1}E_2 = -\alpha E_1$ and $\nabla_{E_2}E_2 = -\beta E_1$. Since γ is a geodesic, from (10),

(11)
$$\alpha \cos \theta + \beta \sin \theta = 0.$$

On the other hand, using the Codazzi equation, we obtain (3). Hence, from the fact that the normal part of $D_{\gamma'}(\lambda\xi)$ vanishes and the equation (3),

(12)
$$\alpha \sin \theta - \beta \cos \theta = 0.$$

Therefore, from (11) and (12), $\alpha = \beta = 0$ along γ . This implies all lines of curvature on M are geodesics on M. Hence, as in the proof of Lemma 2.1, M is flat by Lemma 1.1 and hence M has constant principal curvatures λ and $2H - \lambda$. Therefore Mis either a totally geodesic surface, totally umbilic surfaces or "circular cylinders". However by our assumtion, M is umbilic free. Thus M is a "circular cylinder".

This completes the proof of Theorem 2.1.

References

- E. Cartan, Familles de surfaces isoparametriques dans les espaces a courbure constante, Ann. Mat. Pura Appl. 17 (1938), 177–191.
- [2] P. Hartman and L. Nirenberg, On spherical image maps whose Jacobians do not change sign, Amer. J. Math. 81 (1951), 901–920.
- [3] Y. Kitagawa, Periodicity of the asymptotic curves on flat tori in S³, J. Math. Soc. Japan 40 (1988), no. 3, 457–476.
- [4] T. Levi-Civita, Famiglie di superficie isoparametrische nell'ordinario spacio euclideo, Atti. Accad. naz Lincei. Rend. Cl. Sci. Fis. Mat. Natur. 26 (1937), 355–362.
- [5] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. J. 14 (1962), 73–79.
- [6] B. O'Neill, Elementery Differential Geometry, Academic Press, New York, 1966.
- [7] U. Pinkall, Hopf tori in S^3 , Invent. Math. 81 (1985), 379–386.
- [8] A. V. Pogorelov, Extensions of the theorem of Gauss on spherical representation to the case of surfaces of bounded extrinsic curvature. (Russian) Dokl. Akad. Nauk. SSSR (N.S.) 111 (1956), 945–947.
- [9] S. Sasaki, On complete surfaces with Gaussian curvature zero in 3-sphere, Colloq. Math. 26 (1972), 165–174.
- [10] S. Sasaki, On complete flat surfaces in hyperbolic 3-space, Kōdai Math. Sem. Rep. 25 (1973), 449–457.
- [11] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. III, Publish or Perish, Berkley, 1975.
- [12] M. Tamura, Surfaces which contain helical geodesics, Geom. Dedicata 42 (1992), 311–315.
- [13] Ju. A. Volkov and S. M. Vladimirova, Isometric immersions of the Euclidean plane in Lobačevskiĭ space (Russian), Mat. Zametki. 10 (1971), 327–332 English translation: Math. Notes 10 (1971), 655–661.

E-mail address: inoguchi@cc.utsunomiya-u.ac.jp

Mine 2-28-8-303, Utsunomiya, 321-0942, Japan