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Abstract. We show how the set of strongly monotone and Lipschitz multiter-
minal resistors is closed under forming networks and choosing terminals. We show
that an infinite network of multiterminal resistors can serve as an approximation
for all large finite subnetworks. We show that we may obtain the hierarchy of
infinite networks of A. Zemanian from the set of multiterminal resistors. The
techniques include new notation, nodal analysis and loop space analysis.

1. Introduction

Ohtsuki and colleagues showed in [18] and [19] that a network H has a unique
solution if constructed from multiport resistors with hybrid characteristic functions
which are continuous and strongly monotone. Here we show first that if we assume
(for simplicity) all resistors are Lipschitz, and choose a set of ports from the nodes
of H, we obtain a multiport resistor of the same type, Lipschitz and strongly
monotone, both voltage controlled and current controlled.

This paper is self contained, hence is accessible to mathematicians.
Much of the value in this work consists in it being a rethinking of multiterminal

nonlinear resistors, with notation that allows us to deduce what we will obtain if
we connect not just several multiterminal devices together, but many, and take
limits. We show, using a nodal analysis, that if the multiterminal resistors are
voltage controlled, with continuous, strictly monotone and coercive conductance
functions, then a finite circuit fabricated from these elements is of the same type.
These conditions, in the one variable case, mean that the conductance function is
an increasing homeomorphism. Anderson et al. [1] studied the interconnection of
two nonlinear n-ports, with each conductance function being the subdifferential of
a convex function, without all the previous conditions. Their paper is an extension
to nonlinear networks of the results of [2]. This refers back to [3] to describe the
types of permitted interconnections of the two n-ports. Thus [1] is related to this
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paper, but here we do not focus on this question, but pass on to consider large
networks and their limiting behaviour.

Our study forms part of the body of work that deals with DC operating points of
circuits, as circuit components are resistors when the terminal voltages and currents
are constant in time. In addition, it deals with the voltage-charge relationship for
a capacitor network [12], and there are commercial multiterminal components to
which the monotone operator theory applies. In [16], page 303, the authors report
that the charge on a MOS transistor is a strongly monotonic function of the voltage,
once parasitics are taken into account. Thus this paper could be called “monotone
multiterminal capacitors and large networks,” but traditionally the basic results
are presented for resistors.

We especially consider large networks, that is, we study their limiting behaviour
as the network becomes very large. Such a network is given by granular material,
formed by a large number of bodies of conducting material, packed together and
touching neighbouring bodies. We construct a theory that is relevant to those
large finite networks that approximate some infinite networks, in that their voltage-
current characteristics are all much the same. To do this, we study infinite networks
of multiterminal resistors.

Following on from the seminal works [14], which gave a unique current flow in
an infinite network of two terminal resistors, and [26], which analysed extremal
problems on an infinite network, the hierarchy of “transfinite” resistive networks
has been defined by A. Zemanian, [27], [28], [29] and [30]. The idea of a 1-network,
the basic transfinite graph, is that one forms infinite loops from infinite paths, for
example by shorting together some ends of the graph. These 1-networks have been
used in a study of the classical equations of traffic flow in an infinite network [7]
to give existence of equilibrium flows.

The motivation of this paper was to give a theory of transfinite resistive networks
which was much more accessible, rather less general, and more powerful, in that
the theory was rich and required few definitions. The conclusion is that we may
construct transfinite resistive networks of all ranks as multiterminal resistors whose
current-voltage characteristics are quite well understood.

We develop our approach to infinite networks of multiterminal resistors, using
a current space analysis. The conclusion is simply that when suitable bounds are
assumed, an infinite network of multiterminal resistors with Lipschitz and strongly
monotone resistance functions, with a choice of some nodes as terminals, is a mul-
titerminal resistor of the same type. Now, with infinite networks at our disposal,
we are able to return to discuss finite networks, and show that we can describe the
limiting behaviour of their voltage-current characteristics.

Existence and solution algorithms for general resistive networks, often containing
only two terminal devices, received considerable attention around the 1960s and
70s, sometimes using degree theory [18], [21] and sometimes assuming mappings to
be monotone [12], [21], [1]. Around the 1990s, there has been continuing interest in
this sort of problem, using dissipativity [17], homotopy methods [24], [15], and the
simplex method [25], as well as a survey [23] . Multiterminal resistors have been
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included in studies of network dynamics, for example [17]. The paper [8] shows
that multiterminal representations can speed up calculations in SPICE.

The articles [5] and [6] and the book [30] give the most accessible account of
some topics in the theory of 1-networks of two terminal resistors. The volume [22]
presents a sound study of infinite networks.

Large networks of resistors have been measured experimentally, see [11].

2. Definitions

2.1. Multiterminal resistors. We will consider a multiterminal resistor or ele-
ment to be our basic building block for constructing resistive circuits as explained
in [9]. Rather than giving node to datum voltages, and modelling a multiterminal
resistor as a digraph with n nodes and n − 1 branches, one node having degree
n− 1 and the others degree one, together with an allowable set of branch currents
and voltages, or equivalently as an n− 1 port with half the terminals shorted, we
use a more symmetric representation of terminal voltages as elements of a quotient
vector space.

Given any set T we let RT denote the functions f : T → R, and write 1T for
the element of RT taking the value 1 at all t ∈ T . Write 〈a〉 for the linear span
of {a} for a ∈ RT . We suppose T is finite. Then the quotient space, RT /〈1T 〉,
and 〈1T 〉⊥ = {y ∈ RT :

∑
yt = 0} are in duality under the pairing (y, v + 〈1T 〉) =∑

t∈T vtyt.

Definition 1. We define a multiterminal resistor, or resistor for short, d, to be a
nonempty finite set T (d) of “terminals”, together with a set

G(d) ⊂ (RT (d)/〈1T (d)〉)× 〈1T (d)〉⊥
of allowable terminal “voltages” and “currents.”

The notation Gd is avoided because we put superscripts and subscripts on the
d, which would give GdF

B
. We use the convention [10] that a current flowing into

a resistor through a terminal is positive. We call d voltage controlled if G(d) is
the graph of a function with domain RT (d)/〈1T (d)〉 , denoted G(d) too, called the
conductance function.

2.2. Networks. We wish to construct a network from some resistors by joining
some of their terminals together. The first theorem in this paper gives simple con-
ditions on the conductance functions which ensure that the network itself becomes
a resistor of the same type if we choose some nodes as terminals.

Definition 2. Let D denote a set of resistors, and let G denote the function taking
each d ∈ D to G(d). Let N be a nonempty set of “nodes.” Suppose that for all
d, there is a function ϕd : T (d) → N , giving ϕ : D → ∏

d∈D NT (d), the incidence
function. We call (D, G,N, ϕ) a network of of resistors, or multiterminal resistors
if we wish to emphasise they need not be two terminal resistors.

The network (D, G,N, ϕ) is called finite if D and N are finite. Given (D, G, N, ϕ),
we say d ∈ D is incident to n ∈ N if there is t ∈ T (d) such that ϕd(t) = n, and
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we say also that n is incident to d. We say nodes a and b are adjacent if they are
both incident to the same resistor in D. We say resistors d and e are adjacent if
they are both incident to the same node in N .

With loss of flexibility, but giving the same results, we could equate nodes with
elements of a partition of

⋃
d∈D T (d), i.e. assume ϕ to be surjective. If ϕ is surjective

we obtain a hypergraph on N , that is, [4], relaxing the finiteness assumed there, a
family {Em}m∈M of nonempty subsets of N , whose union is N , by taking Ed for
d ∈ D, to be the nodes to which d is incident. This enables us to say (D, G, N, ϕ) is
connected to mean ϕ is surjective and the hypergraph is connected [4], that is, the
intersection graph of the edges is connected. This means that given any two nodes
a and b, there is a finite sequence x0, . . . , xn of nodes with xi and xi−1 adjacent for
i = 1 to n, x0 = a and xn = b.

A subnetwork of (D, G, N, ϕ) is a network (D∗, G∗, N∗, ϕ∗) such that D∗ ⊂ D,
N∗ ⊂ N , ϕd(Td) ⊂ N∗ for all d ∈ D∗, and ϕ∗ is the restriction of ϕ to D∗.
A component is a maximal connected subnetwork. We say a network is locally
finite if for each node there are only finitely many resistors incident to it. Given
a network H = (D,G, N, ϕ) we write E(H) for its resistor set D, and V (H) for
its node set N . Given a network H = (D, G,N, ϕ) and a set E ⊂ D we write
〈E〉 for the subnetwork with resistor set E, incidence function ϕ|E, and node set⋃

d∈E ϕd(T (d)). If V ⊂ N , 〈V 〉 denotes the subnetwork with node set V , resistor
set {d ∈ D : ϕd(T (d)) ⊂ V } and incidence function the restriction of ϕ to its
resistor set.

2.3. Kirchhoff’s Laws.

Definition 3. Let H = (D, G,N, ϕ) be given, and suppose that i maps each d ∈ D
to id ∈ 〈1T (d)〉⊥. For n ∈ N , the flow of i into n, I(i, n) := −∑

d∈D

∑
ϕd(t)=n id(t).

We say i satisfies Kirchhoff’s current law (KCL) on A ⊂ N if for all n ∈ A, I(i, n)
is zero. If there is ambiguity we write {id}d∈D for i. We suppose that v maps each
d ∈ D to vd + 〈1T (d)〉 ∈ RT (d)/〈1T (d)〉. We say v satisfies Kirchhoff’s voltage law
(KVL) on H if there exists p : N → R such that for d ∈ D, p ◦ ϕd + 〈1T (d)〉 =
vd + 〈1T (d)〉 . We say p is a potential for v.

3. Finite networks of monotone resistors

Suppose X is a Banach space and X
′

is its dual. We say M : X → X ′ is
strongly monotone [13], page 18, with constant K > 0 to mean that for x and y
in X, (M(x)−M(y), x− y) ≥ K‖x− y‖2. We say M : X → X ′ is Lipschitz with
constant K to mean that for x and y in X, ‖M(x) − M(y)‖ ≤ K‖x − y‖. We
write ‖M‖Lip for the least such K. We say M : X → X ′ is strictly monotone [13]
to mean that for x and y in X, x 6= y implies (M(x) − M(y), x − y) > 0. We
say M : X → X ′ is coercive [13], page 23, to mean that (M(x), x)/‖x‖ → ∞ as
‖x‖ → ∞.

Our first result shows that by forming a finite network from voltage controlled re-
sistors whose conductance functions are strictly monotone, coercive and continuous,
we obtain, by using some of the nodes as terminals, a resistor whose conductance
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function is strictly monotone, coercive and continuous. We note that a hybrid
resistor is really both current and voltage controlled if its characteristic function,
(giving some port voltages and other port currents in terms of port currents and
voltages on appropriate ports), is strictly monotone, coercive and continuous.

This is related to two terminal case studied in [12], where they allowed weaker
conditions, depending on whether a resistor was a a tree branch or not. Although
Dolezal [13] considers monotone multiports, there is no real overlap with this work.
The paper [1] is strongly related, and yet quite different in approach. The closest
result to this paper is Theorem 5 of [19], which was clarified in Remark 16 of [18].
The point of assuming conductances to be monotone is to give elegant, simple
and positive results for what is a rather undeveloped theory. The theory does not
cover transistors as resistors, because circuits with transistors can have multiple
operating points, see [23].

Then in the next section we move on to an infinite network, and, having to
control bounds, we show that by forming an infinite network from voltage controlled
resistors whose conductance functions are strongly monotone and Lipschitz, we
obtain, by using some of the nodes as terminals, a resistor whose conductance
function is strongly monotone and Lipschitz. The point of using strongly monotone
and Lipschitz maps is to obtain an elegant theory, and control the parameters when
taking limits.

The non-Lipschitz theory uses weaker assumptions, and it is an open question
as to what estimates would allow one to pass from finite to infinite networks in
this setting. We solve the finite and non-Lipschitz case by a nodal analysis, but
approach the infinite and Lipschitz case by a loop space analysis. We do the finite
network theory partly to give a result without the difficulties of infinite networks,
partly to show how a nodal analysis can appear, partly to include current sources,
and partly because we use it in the subsection on approximation of finite subnet-
works.

3.1. Non-Lipschitz Case. Problem A Let (D, G, N, ϕ) be a connected finite
network of resistors. Let B ⊂ N be given and let eB + 〈1B〉 ∈ RB/〈1B〉, and
i∗N\B ∈ RN\B, with i∗N\B ∈ 〈1N〉⊥ if B is empty. (We assume that just i∗N\B is

given if B is empty and just eB + 〈1B〉 is given if B = N .) Does there exist
e + 〈1N〉 ∈ RN/〈1N〉, with e extending eB, and i∗ ∈ 〈1N〉⊥, extending i∗N\B, such

that for all d ∈ D, there exists id ∈ 〈1T (d)〉⊥, such that (e◦ϕd + 〈1T (d)〉), id) ∈ G(d),
and such that for all n ∈ N ,

I({id}d∈D, n) + i∗(n) = 0, that is,(1) ∑

d∈D

∑

ϕd(t)=n

id(t) = i∗(n)?

A solution will be (e + 〈1N〉, i) ∈ (RN/〈1N〉,
∏

d∈D〈1T (d)〉⊥), or, if all d ∈ D are
voltage controlled, simply e + 〈1N〉 ∈ RN/〈1N〉. We note the contrast with the
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presentation in terms of current sources between nodes and voltage sources con-
nected in series with network branches, used for example in [19]. The following
result essentially appears in [19].

Theorem 1. Let H = (D,G, N, ϕ) be a connected finite network of resistors. Let
B ⊂ N be given and let eB ∈ RB, and i∗N\B ∈ RN\B, with i∗N\B ∈ 〈1N〉⊥ if B
is empty. Suppose each d ∈ D is a voltage controlled resistor whose conductance
function is strictly monotone, coercive and continuous. Then Problem A has a
unique solution e + 〈1N〉.
Proof. (a) Suppose B = N . Then (1) gives i∗ and summing over n shows i∗ ∈ 〈1N〉.

(b) Suppose B = ∅. Define G :
∏

d∈D RT (d)/〈1T (d)〉 →
∏

d∈D〈1T (d)〉⊥ by, for each
d ∈ D,

(G({ed + 〈1T (d)〉}d∈D))d = G(d)(ed + 〈1T (d)〉).
Define A : RN/〈1N〉 →

∏
d∈D RT (d)/〈1T (d)〉 to be the linear operator mapping

e + 〈1N〉 to the point in the product with dth component e ◦ϕd + 〈1T (d)〉. We have∏
d∈D RT (d)/〈1T (d)〉 with dual

∏
d∈D〈1T (d)〉⊥ under the pairing

({ed + 〈1T (d)〉}d∈D, {id}d∈D) =
∑

d∈D

(ed, id).

The dual A′ :
∏

d∈D〈1T (d)〉⊥ → 〈1N〉⊥ is given by A′({id}d∈D) = i ∈ 〈1N〉⊥, where
for all n ∈ N ,

i(n) =
∑

d∈D

∑

ϕd(t)=n

id(t).

We claim A is injective. Suppose A(e+〈1N〉) = 0. Then for each d, e◦ϕd is constant
on all terminals of d, and since H is connected, e is constant on N , proving the
claim.

Let i∗ ∈ 〈1N〉⊥ be given. Now e + 〈1N〉 is a solution iff

(2) A′GA(e + 〈1N〉) = i∗.

Now A′GA is continuous, strictly monotone by the injectivity of A, and coercive,
again because of the injectivity of A. By e.g. [20], Chapter III, Section 2.8, A′GA
is surjective, and injective by strict monotonicity, giving a unique solution to (2).

(c) Now we suppose B is equal to neither N nor ∅. Consider RN as the direct
sum RB ⊕ RN\B. Suppose eB and i∗N\B are given, and we want eN\B and i∗B with

(i∗B, i∗N\B) ∈ 〈1N〉⊥, and

(3) A′GA((eB, eN\B) + 〈1N〉) = (i∗B, i∗N\B).

Define Q : RN\B → RN/〈1N〉 by Q(xN\B) = (0, xN\B) + 〈1N〉. Then the dual

Q′ : 〈1N〉⊥ → RN\B is given by Q′(x)(n) = x(n) for all n ∈ N \ B. Note Q is
injective. Now (3) is equivalent to

(4) Q′A′GA(Q(eN\B) + ((eB, 0) + 〈1N〉)) = i∗N\B.

The map taking eN\B to the left hand side is monotone, indeed strictly monotone,
using injectivity of Q and A. It is likewise coercive, as well as continuous. Hence
this map is a bijection, and (4) has a unique solution, solving Problem A. ¤
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In the next result we require only that B contain at least one node, but of course
we need it to contain at least two to have a nontrivial case.

Theorem 2. Suppose H = (D, G,N, ϕ) is a connected finite network, with each
resistor being voltage controlled, with coercive, strictly monotone and continuous
conductance function. Let B ⊂ N be nonempty. Let us form a resistor dB with
terminal set B and the set G(dB) of allowable terminal voltages and currents be-
ing (eB + 〈1B〉, i∗B), where eB + 〈1B〉 is arbitrary and i∗B is given by Problem A
corresponding to eB + 〈1B〉 and i∗N\B = 0. Then dB is voltage controlled, and its

conductance function G(dB), is continuous, strictly monotone and coercive.

Proof. By definition, dB is a resistor, and by Theorem 1 it is voltage controlled. We
suppose that B 6= N , the case B = N being altogether similar. Now G(dB)(e∗B +
〈1B〉) = i∗B iff there is e∗N\B such that

(5) A′GA((e∗B, e∗N\B) + 〈1N〉) = (i∗B, 0N\B).

Let us show monotonicity of G(dB). Suppose (5) holds, and likewise

(6) A′GA((e
′
B, e

′
N\B) + 〈1N〉) = (i

′
B, 0N\B).

Then

(i
′
B − i∗B, e

′
B − e∗B + 〈1B〉) = (A′GA((e

′
B, e

′
N\B) + 〈1N〉)− A′GA((e∗B, e∗N\B) + 〈1N〉),

(e
′
B, e

′
N\B)− (e∗B, e∗N\B) + 〈1N〉)

=
∑

d∈D

(G(d)(e
′ ◦ ϕd + 〈1T (d)〉)−G(d)(e∗ ◦ ϕd + 〈1T (d)〉),

e
′ ◦ ϕd − e∗ ◦ ϕd + 〈1T (d)〉)

≥ 0,

since each G(d) is monotone. Thus G(dB) is monotone. We claim it is strictly
monotone. Suppose the left hand side is zero, then for all d ∈ D,

(7) (G(d)(e
′ ◦ϕd + 〈1T (d)〉)−G(d)(e∗ ◦ϕd + 〈1T (d)〉), e′ ◦ϕd− e∗ ◦ϕd + 〈1T (d)〉) = 0.

Hence, using the strict monotonicity of G(d), for all nodes n incident to d, e
′
(n)

and e∗(n) differ by a constant. Since H is connected, e
′
and e∗ differ by a constant,

and therefore G(dB) is strictly monotone.
We claim G(dB) is coercive.

(i∗B, eB + 〈1B〉) = (A′GA((eB, eN\B) + 〈1N〉), (eB, eN\B) + 〈1N〉)
=

∑

d∈D

(G(d)(e ◦ ϕd + 〈1T (d)〉), e ◦ ϕd + 〈1T (d)〉)

≥
∑

d∈D

cd(‖e ◦ ϕd + 〈1T (d)〉‖)(‖e ◦ ϕd + 〈1T (d)〉‖),

where any norms may be used, since the spaces are finite dimensional, and for each
d, cd : (0,∞) → (0,∞) is increasing, and cd(x) diverges to ∞ as x → ∞. Let
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A(d) denote the operator A followed by projection on RT (d)/〈1T (d)〉. There exists
c ∈ (0,∞) such that for all e ∈ RN ,

max
d∈D

‖A(d)(e + 〈1N〉)‖ ≥ c‖e + 〈1N〉‖,

since A is injective and RN/〈1N〉 is finite dimensional. Hence

(i∗B, eB + 〈1B〉, ) ≥ max
d∈D

cd(‖A(d)(e + 〈1N〉)‖)‖A(d)(e + 〈1N〉)‖
≥ max

d∈D
cd(c‖e + 〈1N〉‖)c‖e + 〈1N〉‖

≥ max
d

cd((c‖eB + 〈1B〉‖)c‖eB + 〈1B〉‖,

assuming that we use the quotient norm from the `∞ norm on RT (d)/〈1T (d)〉, and
therefore (i∗B, eB + 〈1B〉, )/‖eB + 〈1B〉‖ → ∞ as ‖eB + 〈1B〉‖ → ∞.

Now we claim that G(dB) is continuous. Suppose we have a convergent sequence,
en

B +〈1B〉 → e0
B +〈1B〉 as n →∞. Suppose that for all n ∈ {0, 1, . . .}, eN\B satisfies

A′GA((en
B, en

N\B) + 〈1N〉) = (inB, 0) ∈ 〈1N〉⊥.

Now {inB}n∈N is bounded since a monotone operator is locally bounded at points
in the interior of its domain by [20], page 104. We want to show if a subsequence

i
n(m)
B → i∗B then i∗B = G(dB)(e0

B + 〈1B〉). We claim {en
N + 〈1N〉} is bounded. Now

(inB, en
B + 〈1B〉) = ((inB, 0), (en

B, en
N\B) + 〈1N〉)

=
∑

d∈D

(G(d)(en ◦ ϕd + 〈1T (d)〉), en ◦ ϕd + 〈1T (d)〉),

and coercivity gives {en ◦ ϕd + 〈1T (d)〉} bounded for each d ∈ D, so that {en
N +

〈1N〉} is bounded. Taking a subsequence n(m(k)), we have i∗B and e∗N\B such that

(e
n(m(k))
B , e

n(m(k))
N\B ) + 〈1N〉 → (e0

B, e∗N\B) + 〈1N〉, and i
n(m(k))
B → i∗B. Then

A′GA((e0
B, e∗N\B) + 〈1N〉) = (i∗B, 0)

since G is continuous, giving

i∗B = G(dB)(e0
B + 〈1B〉).

¤

4. 1-networks of monotone resistors

In this section we define a 1-network in terms of ends, rather than more general
terminals as in [6], to keep it as simple as we can. We note G plays no role in this
definition, and in some others.

Definition 4. We define an end in a connected, infinite, locally finite network
H = (D, G, N0, ϕ) to be a function e mapping each finite subset F of D to an
infinite component e(F ) of (D \ F, G|D\F , N0, ϕ|D\F ) such that if E ⊂ F then
V (e(F )) ⊂ V (e(E)).
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Assumption L We will assume H = (D, G, N0, ϕ) to be an infinite locally finite
network with a finite number of components, all infinite, and a finite number of
ends in each.

Definition 5. A 1-node is a nonempty set of ends. We assume every end is
in exactly one 1-node, and denote the set of 1-nodes by N1. We will call H1 =
(D, G,N0, ϕ, N1) a 1-network.

Slightly more elaborate 1-networks are useful, and are constructed by including
a node n ∈ N0 in any 1-node, and we shall do this in the proof of the next theorem.

Suppose i satisfies KCL on N0, and W ⊂ N0 is given. We define the flow I(i,W )
of i into W to be

∑
d∈D

∑
ϕd(t)/∈W id(t), if this converges absolutely. We write I(i, n)

for I(i, {n}), if n ∈ N0; see Definition 3.
Suppose i satisfies KCL on N0 and e is an end in a component of H. Suppose

that F is a finite subset of D, such that if f 6= e an end, then e(F ) 6= f(F ).
Suppose E ⊃ F . Then I(i, V (e(E))) = I(i, V (e(F ))). We define the flow of i
into e, I(i, e), to be I(i, V (e(E))). We define the flow of i into a 1-node n to be
I(i, n) :=

∑
e∈n I(i, e). We say that KCL holds at n ∈ N1 to mean the flow of i

into n is 0.

4.1. Lipschitz Case. We remark that a Lipschitz strongly monotone function
from a reflexive Banach space to its dual is bijective, and its inverse is a Lips-
chitz strongly monotone function too. The next theorem is expressed in terms of
resistance functions.

Assumption M Let H1 = (D,G, N0, ϕ, N1) be a 1-network. Suppose L1, L2,
and L3 are positive reals. Suppose that for each d, G(d) is strongly monotone and
Lipschitz, with inverse R(d), called the resistance function. We use the `1 norm on
〈1T (d)〉⊥, and the quotient norm from the `∞ norm on RT (d)/〈1T (d)〉. We assume
the following bounds. Suppose that for each d ∈ D, there is a number rd > 0, and
the following hold. For all x and x∗, and all d ∈ D,

‖R(d)(x)−R(d)(x∗)‖ ≤ L1rd‖x− x∗‖(8)

(R(d)(x)−R(d)(x∗), x− x∗) ≥ L2rd‖x− x∗‖2(9)

‖R(d)(0)‖ ≤ L3rd(10) ∑

d∈D

rd < ∞.(11)

4.2. A 1-network is a resistor. In this subsection we give our main existence
results for 1-networks. They are perhaps easier to think of if we take B ⊂ N1.

Theorem 3. Suppose H1 = (D, G, N0, ϕ,N1) is a 1-network satisfying Assump-
tions L and M. Let B ⊂ N := N1 ∪ N0 be nonempty and finite. Let eB + 〈1B〉 ∈
RB/〈1B〉 be given. There exists a unique x ∈ ∏

d∈D〈1T (d)〉⊥, such that :
1)

∑
d∈D ‖xd‖2rd < ∞ (finite power),

2) x satisfies KCL at all n ∈ N \B,
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3) For all i ∈ ∏
d∈D〈1T (d)〉⊥ satisfying the preceding conditions 1) and 2) with x

replaced by i,

(12)
∑

d∈D

(R(d)xd, id) +
∑

b∈B

I(i, b)eb = 0.

(Tellegen’s equation).

Proof. We form the multiterminal resistor d(B) with terminal set T (d(B)) indexed
by B, T (d(B)) = {tb : b ∈ B}, and resistance function R(d(B)) being the constant
function eB + 〈1B〉. We form the augmented 1-network H∗ with resistor set D∗ =
D∪{d(B)}, with incidence function the extension ϕ∗ of ϕ given by ϕ∗d(B)(tb) = b for

all b ∈ B. With respect to H∗, the flow of the current i into the node b ∈ B ∩N1

is now I(i, b) :=
∑

e∈b I(i, e)− id(B)(tb), which will be zero for KCL to hold.
We let K consist of functions i ∈ ∏

d∈D∗〈1T (d)〉⊥ satisfying KCL on N0 and on
N1, and such that

‖i‖2 :=
∑

d∈D

rd‖id‖2 < ∞.

One checks that this gives a norm, for if ‖i‖ = 0, then for all d ∈ D, id = 0, so for
b ∈ B, the flow of i|D into b is zero, and hence id(B)(tb) = 0. One checks that K
is complete, thus a Banach space. Note that we have an equivalent norm ‖i‖D∗ by
setting rd(B) = 1, and

‖i‖2
D∗ :=

∑

d∈D∗
rd‖id‖2.

Note K is reflexive, being a closed subspace of the space consisting of i ∈∏
d∈D∗〈1T (d)〉⊥ such that

(13) ‖i‖2
D∗ :=

∑

d∈D∗
rd‖id‖2 < ∞.

We claim that we may define R : K → K ′, the dual space, by: for i and i∗ in K,

(Ri, i∗) =
∑

d∈D

(R(d)id, i
∗
d).

Let us define %d := r−1
d R(d).

(Ri, i∗) =
∑

d∈D

rd(%did, i
∗
d)

≤
∑

d∈D

rd‖%did‖‖i∗d‖

≤
√∑

d∈D

rd‖%d(id)‖2‖i∗‖.

By (8) and (10),

(14) ‖%did‖ ≤ L3 + L1‖id‖.
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Hence

(15) (Ri, i∗) ≤ (L3

√∑
rd + L1‖i‖)‖i∗‖.

This shows, using (11), that R maps K to K ′. We claim R is strongly monotone.
Let i and i∗ be in K. Then by (9),

(Ri−Ri∗, i− i∗) =
∑

d∈D

rd(%did − %di
∗
d, id − i∗d)

≥
∑

rdL2‖id − i∗d‖2
1

= L2‖i− i∗‖2.

We claim R is Lipschitz continuous. Let i and i∗ be in K. Then

‖Ri−Ri∗‖ = sup
‖j‖≤1

∑
rd(%did − %di

∗
d, jd)

≤ sup
‖j‖≤1

∑
rdL1‖id − i∗d‖‖jd‖

≤ L1 sup
‖j‖≤1

√∑
rd‖id − i∗d‖2

√∑
rd‖jd‖2

≤ L1‖i− i∗‖.
Hence R : K → K ′ is bijective [20], page 121. Now eB + 〈1B〉 gives an element f
of K ′ by (f, i) = (eB + 〈1B〉, id(B)). Therefore, there is a unique x ∈ K such that
for all i ∈ K,

(16) (Rx, i) +
∑

b∈B

ebid(B)(tb) = 0.

We have id(B)(tb) = I(i|D, b) for all b ∈ B, giving (12).
¤

Before we show in our next theorem that these resistors that we obtain from a
1-network have a strongly monotone and Lipschitz conductance function, we need
to say what we mean by a 1-network being 1-connected.

Definition 6. We say that the 1-network H1 is 1-connected if for any ends e and
f there is a finite sequence {G1, . . . , GK} of components of (D,G, N0, ϕ) with e an
end in G1, f an end in GK, and, if K > 1, for j = 1 to K − 1, there are ends in
Gj and in Gj+1, both in the same 1-node.

Theorem 4. In Theorem 3, assuming H1 is 1-connected, we obtain a a voltage
controlled resistor dB say, with terminal set B, and with conductance function
G(dB) which is Lipschitz and strongly monotone, defined by G(dB)(eB + 〈1B〉)(b) =
−I(x, b) for b ∈ B, x being given by Theorem 3.

Proof. The map G(dB) is defined for all terminal voltages by Theorem 3, and we
have only to check that it is Lipschitz and strongly monotone. Suppose eB + 〈1B〉
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and e∗B +〈1B〉 are given. Let x and x∗ be the corresponding currents. For all i ∈ K,
∑

d∈D

(R(d)xd −R(d)x∗d, id) +
∑

b∈B

(eb − e∗b)id(B)(b) = 0.

Note that for all ends e, the linear map x 7→ I(x, e) is bounded, since I(x, e) =
I(x, V (e(E)) for any large E, and this is a finite sum of terms id(t). Put i = x−x∗

to give

‖xd(B) − x∗d(B)‖ ‖eB − e∗B + 〈1B〉‖ ≥ −
∑

b∈B

(eb − e∗b)(xd(B)(b)− x∗d(B)(b))

=
∑

d∈D

(R(d)xd −R(d)x∗d, xd − x∗d)

≥
∑

d∈D

L2rd‖xd − x∗d‖2

≥ L‖xd(B) − x∗d(B)‖2(17)

for some L independent of x and x∗ since x 7→ xd(B) is bounded. Hence G(dB) has
Lipschitz constant L−1.

There is some scope for giving the following definitions in different ways.
Given H1 = (D, G,N0, ϕ, N1), and H∗ as in Theorem 3,we refer to d : Z → D

such that for all i and j, di is adjacent to dj iff |i − j| = 1, as an endless path of
resistors (in H1, if there is ambiguity). We say it is from end e to end f , if for all
finite subsets F of D, there exists k ∈ N such that di is in E(f(F )) for i > k and
in E(e(F )) for i < −k. We say it is from 1-node n to 1-node m, if it is from an
end e ∈ n to an end f ∈ m.

An endless path of resistors and terminals from 1-node n to 1-node m is an endless
path of resistors together with sequences of terminals si ∈ T (di) and ti ∈ T (di)
with ϕdi

(ti) = ϕdi+1
(si+1) for all i ∈ Z. Analogously we define a one-ended path of

resistors and terminals from node n to 1-node m using sequences defined on N in
place of Z. We define a one-ended path of resistors and terminals from 1-node n
to node m using sequences defined on −N in place of Z. Analogously we define a
path of resistors and terminals from node n to node m using finite sequences.

A loop of resistors and terminals in H∗ is a finite sequence di : i ∈ ZK , defined
on the additive group ZK , for some K ≥ 2, with di and dj adjacent iff i− j = ±1,
together with sequences of terminals si ∈ T (di) and ti ∈ T (di) with ϕdi

(ti) =
ϕdi+1

(si+1) for all i ∈ ZK .
A 1-loop in H∗ is a finite sequence dk : k ∈ ZK of paths, one ended paths and

endless paths of resistors and terminals, for some K ≥ 2, such that there is an
injective sequence nk : k ∈ ZK of nodes and 1-nodes, with di from ni−1 to ni for
all i ∈ ZK , and dk

i and dh
j adjacent iff k = h and |i − j| = 1. A 1-path in H∗ is

defined similarly, using a finite sequence {dk : k = 0 . . . , K− 1}, where K ≥ 1, and
nodes or 1-nodes n0 to nK , so we do not require a path, one-ended path or endless
path from nK to n0. A loop current of value Z ∈ R is defined to be a function
z ∈ ∏

d∈D∗ RT (d) such that there is a loop of resistors and terminals and for each si

and ti in T (di) (with ϕdi
(ti) = ϕdi+1

(si+1)), we have zdi
(si) = Z, zdi

(ti) = −Z, and
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zd(t) = 0 otherwise. Analogously, a 1-loop current of value Z ∈ R is a function
z ∈ ∏

d∈D∗ RT (d) such that there is a 1-loop of resistors and terminals and for each
sk

i and tki in T (dk
i ) with ϕdk

i
(tki ) = ϕdk

i+1
(sk

i+1), we have zdk
i
(sk

i ) = Z, zdk
i
(tki ) = −Z,

and zd(t) = 0 otherwise.
Now we use 1-loop currents in H∗ to show that for some L ∈ R,

(18) ‖eB − e∗B + 〈1B〉‖ ≤ L‖x− x∗‖.
Now

(19) ‖eB − e∗B + 〈1B〉‖ =
1

2
|(eB − e∗B)(n)− (eB − e∗B)(m)|

for some m and n in B. Since H1 is 1-connected, there exists a 1-path P of resistors
and terminals from n to m, in H1. From the path of resistors and terminals in H∗

from m to n, given by d(B), tm and tn, and from P , we form a loop or 1-loop, P ∗

say. Let i be the 1-loop or loop current of value 1 in P ∗. Now i ∈ K, and by (12),

(20)
∑

d∈P

(R(d)xd −R(d)x∗d, id) +
∑

b∈B

I(i, b)(eb − e∗b) = 0.

Therefore

|(eB − e∗B)(n)− (eB − e∗B)(m)| ≤ 2
∑

d∈P

‖R(d)xd −R(d)x∗d‖

≤ 2
∑

d∈D

rdL1‖xd − x∗d‖

≤ 2(
∑

rd)
1/2‖x− x∗‖.

This gives (18). By this and (17),

‖eB − e∗B + 〈1B〉‖2 ≤ −
∑

b∈B

(eb − e∗b)(xd(B)(b)− x∗d(B)(b))

= (G(dB)eB −G(dB)e∗B, eB − e∗B),

and G(dB) is strongly monotone. Note that G(dB) gives the currents into each
terminal b ∈ B of dB, which is minus the current into the terminal tb of d(B). ¤

4.3. Approximation of Finite Subnetworks. We show that if we approximate
a 1-network by finite subnetworks formed by shorting together all nodes near each
1-node, their conductance functions approximate that of the 1-network. Thus,
under Assumption F, a 1-network serves as a metaphor, or approximation, for any
finite network which is large enough but of unknown size. For clarity we restrict
ourselves by making assumptions about connectedness.

Assumption F In the following, we let H1 be a 1-connected 1-network satisfying
Assumptions L and M, and let B be a nonempty finite subset of N. Let F denote
a finite subset of D. We say F satisfies Assumption F if for any component G of
H1, 〈F ∩E(G)〉 is connected, there is no finite component of 〈E(G) \ F 〉, for each
end e in G there is only one end in e(F ), and F contains all resistors adjacent to
any node n ∈ N0 in the given terminal set B.
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Given eB+〈1B〉, and F finite, with F ⊂ D, and supposing F satisfies Assumption
F, we consider the following finite network with resistor set F . For all a ∈ N1, we
identify all n ∈ V (e(F ))∩V 〈F 〉 such that e ∈ a, to form a node aF . Then our finite
network has resistor set F , conductance function G|F , node set the equivalence
classes of V 〈F 〉 given by this identification, and corresponding incidence function.
Note it is connected. We have a resistor dF

B say, given by this network with terminal
set BF := (B∩N0)∪{bF : b ∈ B∩N1}, and conductance function G(dF

B), say. We
have an identification of B and BF .

Given eB on B, this identification induces eB on BF , and denote by (pF +
〈1V 〈F 〉〉, xF ) the solution given by Theorem 1, so pF gives the nodal voltages extend-
ing eB, corresponding to a current xF . Thus I(xF , bF ) = −G(dF

B)(eB + 〈1B〉)(bF ).
The next result shows that for all large F , these conductances are approximately
equal.

Theorem 5. Let H1 = (D,G, N0, ϕ, N1) be a 1-connected 1-network satisfying
Assumptions L and M, and let B be a nonempty finite subset of N. Given M > 0
and ε > 0, there exists a finite F0 ⊂ D such that for F satisfying Assumption F,
with F0 ⊂ F ⊂ D, and ‖eB + 〈1B〉‖ ≤ M , for all b ∈ B,

|I(xF , bF )− I(x, b)| ≤ ε.

Proof. (a) We bound ‖xF‖ :=
√∑

d∈F rd‖xF
d ‖2 independently of F .

‖xF‖2 =
∑

d∈F

rd‖xF
d ‖2

≤ L−1
2 (

∑

d∈F

(R(d)xF
d , xF

d ) + L3rd‖xF
d ‖)

≤ L−1
2 (|

∑

b∈B

I(x, b)eb|+ L3

∑

d∈F

rd‖xF
d ‖) by (9)

≤ L−1
2 (

∑

b∈B

|I(x, b)| ‖eB + 〈1B〉‖+ L3

∑

d∈F

rd‖xF
d ‖.)(21)

Let F0 satisfy Assumption F. Now

I(xF , b) =
∑

e∈b

I(xF , V (e(F0)))

for b ∈ N1. Hence, there exists K = K(F0) > 0 such that

(22)
∑

b∈B

|I(xF , b)| ≤ K

√∑

d∈F0

rd‖xF
d ‖2 ≤ K‖xF‖.

Hence, by (21) and (22),

(23) ‖xF‖ ≤ L−1
2 (K‖eB + 〈1B〉‖+ L3

√∑
rd ).

(b) Suppose b ∈ N1 ∩ B is given. Let F as above be given and let e ∈ b ∈ B be
given. Let m ∈ V (e(F0)) ∩ V 〈F0〉 be given. Take a path P in e(F0) from m to a
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node n ∈ V (e(F )) ∩ V 〈F 〉. We may assume all resistors of P are in F , by taking
the first such n.

|pF (m)− eB(b)| ≤ 2
∑

d∈P

‖R(d)xF
d ‖

≤ 2
∑

d∈P

rd(L3 + L1‖xF
d ‖)

≤ 2
∑

d/∈F0

rdL3 + 2
∑

d∈F\F0

rdL1‖xF
d ‖

≤ 2L3

∑

d/∈F0

rd + 2L1

√∑

d/∈F0

rd ‖xF‖

≤ 2L3

∑

d/∈F0

rd + 2
L1

L2

√∑

d/∈F0

rd(K‖eB + 〈1B〉‖+ L3

√∑
rd ), by (23).

(c) Similarly, in Theorem 4, x being the current given by eB, and v = {R(d)xd}d∈D,
v satisfies KVL on (D, G,N0, ϕ) by Tellegen’s equation, using loop currents. Thus
we find there exists a potential p : N0 → R, unique up to an additive constant on
each component, for v, and satisfying p(n) = eB(n) for all n ∈ B∩N0. We say that
a sequence nk of nodes converges to n1 ∈ N1 when for all finite F ⊂ D, for all large
k, there is e ∈ n1 such that nk ∈ V (e(F )). We find, using 1-loop currents, that
there exists a unique p : N → R which is continuous and such that p(n) = eB(n)
for all n ∈ B, and the restriction of p to N0 is a potential for v. We have, with m
as in (b), and P a one ended path in e(F 0) from m to e,

|p(m)− eB(b)| ≤ 2
∑

d∈P

‖R(d)xd‖

≤ 2
∑

d∈P

rd(L3 + L1‖xd‖)

≤ 2L3

∑

d/∈F0

rd + 2L1(
∑

d∈P

rd‖xd‖2)1/2(
∑

d/∈F0

rd)
1/2.

By Assumption F, since all d ∈ F \ F0 are in some e(F0),

|I(xF , bF )− I(x, b)| ≤ 2‖G(F0, B)‖Lip(2
L1

L2

√∑

d/∈F0

rd(K‖eB + 〈1B〉‖+ L3

√∑
rd )

+4L3

∑

d/∈F0

rd + 2L1(
∑

d∈P

rd‖xd‖2)1/2(
∑

d/∈F0

rd)
1/2).

The result follows. ¤

5. Transfinite Networks

The first type of transfinite network is the 1-network, and the key point of view
is that it may be considered as a multiterminal resistor by taking the terminal set
to be N1. We do not go over the details of the general definition of transfinite
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networks here, but by forming a 1-network of 1-networks we obtain a 2-network,
as conceived of in [27], that is, we consider infinite paths of infinite paths. But
under our conditions, this is a 1-network of multiterminal resistors, and hence just
another multiterminal resistor. One may think either of a) starting with infinitely
many 1-networks and joining them together, or b) starting with a 1-network of
resistors and substituting each resistor with a 1-network of resistors.

A 3-network is a 1-network of 2-networks, and hence a resistor again, and so on.
This gives a simple construction of some of the transfinite networks considered in
Chapters 5 and 6 of [28], and Chapters 4 and 5 of [30]. We do not generalize the
definitions of Zemanian, rather, we particularize, in order to obtain a manageable
structure. The existence and uniqueness result of [30], Theorem 6.8-1 and Th 6.9-
1, will follow from this paper under the assumption of Condition M, rather than
Condition 6.1-1 of [30]. The no-gain property gave a-priori bounds in the case of
two terminal devices, which are not available if general multiterminal devices are
considered.

We have focussed on working with particular conductance functions that allowed
us to give the conductance function of a 1-network in terms of the conductance
functions of its components, the former conductance function having the same
properties as these latter, so that the 1-network could be used as a component too.
We were able to deal with this analytical problem in case the conductances are
all Lipschitz and strongly monotone. It is important to note that the 1-network
enjoys the same properties that we required of its components, because then we
may repeat the process, forming new networks from these 1-networks, and so on,
inductively.

6. Conclusion

In this paper the accent has been on understanding what happens when we join
together a number of multiterminal resistors, especially how the resulting circuit
gives a multiterminal resistor again. Section 3 studied finite networks, Section
4 studied 1-networks, and Section 5 sketched the application to the hierarchy of
transfinite networks.

We saw that a finite network, and then a 1-network, together with a terminal
set, B, gives a resistor whose conductance can be calculated, and then we saw how
1-networks approximate large finite networks.

One implication of our theory is that 1-networks, 2-networks and so on may be
largely understood as multiterminal resistors with conductance functions which are
Lipschitz continuous and strongly monotone. We remark that the figures in [30],
for example the one on the cover, show that transfinite networks may be visualized
to be much like multiterminal resistors.

The other main conclusion is that (classes of) finite networks of multiterminal
resistors have a limiting behaviour as the number of resistors becomes large.
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