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CIRCLES AND HYPERSURFACES IN SPACE FORMS

SADAHIRO MAEDA AND TOSHIAKI ADACHI
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Abstract. In this expository paper, we study hypersurfaces of space forms by
investigating circles on their hypersurfaces.

1. Introduction

In this paper we discuss hypersurfaces in a real space form, and real and
complex hypersurfaces in a complex space form by observing the extrinsic shape
of circles of these hypersurfaces. An n-dimensional real space form Mn(c) is
a Riemannian manifold of constant curvature c, which is locally isometric to
either a standard sphere Sn(c), a Euclidean space Rn or a real hyperbolic space
Hn(c), according as c is positive, zero or negative. A complex n-dimensional
complex space form Mn(c) is a Kähler manifold of constant holomorphic sectional
curvature c, which is locally complex analytically isometric to either a complex
projective space CPn(c), a complex Euclidean space Cn or a complex hyperbolic
space CHn(c), according as c is positive, zero or negative. In this paper we mean
by space form either a real space form or a complex space form.

A smooth curve γ on a Riemannian manifold M parametrized by its arclength
is called a circle if it satisfies ∇γ̇∇γ̇ γ̇ = −κ2γ̇ with some nonnegative constant κ,
where ∇γ̇ denotes the covariant differentiation along γ with respect to the Rie-
mannian connection ∇ on M . This condition is equivalent to the condition that
there exist a nonnegative constant κ and a field of unit vectors Y along this curve
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which satisfy the following differential equations: ∇γ̇ γ̇ = κY and ∇γ̇Y = −κγ̇.
We call the constant κ curvature of γ. As we have κ = ‖∇γ̇ γ̇‖, we treat geodesics
as circles of null curvature. For given a point x ∈ M , an orthonormal pair of
tangent vectors u, v ∈ TxM and a positive constant κ, by the existence and
uniqueness theorem on solutions for ordinary differential equations we have lo-
cally a unique circle γ = γ(s) with initial condition that γ(0) = x, γ̇(0) = u and
∇γ̇ γ̇(0) = κv. It is well-known that in Euclidean space a circle of positive curva-
ture κ is nothing but a circle of radius 1/κ in the sense of Euclidean geometry.

Our study is motivated by the following fact on extrinsic spheres due to Nomizu
and Yano [NY]. An extrinsic sphere is a totally umbilic submanifold of M̃ with
parallel mean curvature vector in M̃ . Their result states that a Riemannian
submanifold Mn of M̃n+p through an isometric immersion f is an extrinsic sphere
of M̃ if and only if there exists a positive constant κ such that for every circle γ

of curvature κ on Mn the curve f ◦ γ is a circle in M̃ .
The key word in this paper is the first curvature of a curve in the sense of

Frenet formula. We establish our result by paying attention to the first curvature
‖∇̃γ̇ γ̇‖ of the curve f ◦γ for a circle γ on a hypersurface in the ambient space form
M̃(c). Here we denote by ∇̃ the Riemannian connection of M̃(c). We investigate
hypersuraces Mn−1 in a real space form M̃n(c) and real hypersurfaces M2n−1 in a
nonflat complex space form M̃n(c) (Theorems 1, 2, 3 and 4). We also investigate
complex hypersurfaces Mn−1 in a complex space form M̃n(c) (Theorems 5 and 6).
At the end of this paper, as an application of our discussion on hypersurfaces we
characterize some Kähler embeddings of complex projective spaces into complex
projective spaces which are called Veronese embeddings (Theorem 7).

2. Hypersurfaces of real space forms

We consider parallel hypersurfaces in a real space form. By the results due to
Ferus[F] and Takeuchi[T] a hypersurface Mn−1 with parallel second fundamental
form in a real space form M̃n(c) is either totally umbilic in M̃n(c) or locally
congruent to one of the following product spaces:

i) Mn−1 = Rk × Sn−k−1(c1), 1 5 k 5 n− 2 in Rn,
ii) Mn−1 = Sk(c1) × Sn−k−1(c2), 1 5 k 5 n − 2 with (1/c1) + (1/c2) = 1/c

in Sn(c),
iii) Mn−1 = Hk(c1)× Sn−k−1(c2), 1 5 k 5 n− 2 with (1/c1) + (1/c2) = 1/c

in Hn(c).

By investigating the first curvature of each geodesic on these parallel hyper-
surfaces we obtain the following well-known theorem:

Theorem 1. A hypersurface Mn−1 of a real space form M̃n(c) has parallel sec-
ond fundamental form if and only if every geodesic on M being considered as a
curve in the ambient space has constant first curvature.
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Proof. In a neighborhood of each point of M we choose a unit normal vector field
N in M̃n(c). The Riemannian connections ∇̃ in M̃n(c) and ∇ in M are related
by the following formulas for arbitrary vector fields X, Y on M :

∇̃XY = ∇XY + 〈AX,Y 〉N ,(2.1)

∇̃XN = −AX,(2.2)

where A is the shape operator of M in M̃n(c). Suppose that every geodesic
γ : I → M on M has, considered as a curve in M̃n(c), constant first curvature.
This hypothesis means, by definition, that ‖∇̃γ̇ γ̇‖ is constant on the interval I.
But from equation (2.1) it follows ‖∇̃γ̇ γ̇‖2 = 〈Aγ̇, γ̇〉2, hence our hypothesis is
equivalent to the constancy of 〈Aγ̇, γ̇〉 on I. Therefore as ∇γ̇ γ̇ = 0, we have
〈(∇γ̇A)γ̇, γ̇〉 = ∇γ̇〈Aγ̇, γ̇〉 = 0 on I. Thus we obtain 〈(∇XA)X, X〉 = 0 for
every tangent vector X of M . By use of the Codazzi equation 〈(∇XA)Y, Z〉 =
〈(∇Y A)X, Z〉 this property shows that M has parallel second fundamental form.
By the same discussion as above we get the converse. ¤

Next, we study the first curvature of each circle of positive curvature on parallel
hypersurfaces Mn−1 in a real space form(cf. [M]):

Theorem 2. A hypersurface Mn−1 of a real space form M̃n(c) through an iso-
metric immersion f is totally umbilic in M̃n(c) if and only if there exists some
κ > 0 satisfying that every circle of curvature κ on M being considered as a curve
in the ambient space has constant first curvature.

Proof. Suppose that for every circle γ : I → M of positive curvature κ on M the
curve f ◦ γ has constant first curvature in the ambient space M̃n(c). We take a
point x ∈ M and choose an arbitrary orthonormal pair of vectors u, v ∈ TxM .
Let γ = γ(s), s ∈ I be a circle of curvature κ on the submanifold Mn with initial
condition that γ(0) = x, γ̇(0) = u and∇γ̇ γ̇(0) = κv. It follows from equation (2.1)
that the first curvature κ̃ of the curve f ◦ γ is expressed as κ̃ =

√
κ2 + 〈Aγ̇, γ̇〉2.

This equality tells us that 〈Aγ̇, γ̇〉 is constant on I, so that we have

(2.3) 0 =
d

ds
〈Aγ̇, γ̇〉 = 〈(∇γ̇A)γ̇, γ̇〉+ 2〈Aγ̇,∇γ̇ γ̇〉 = 〈(∇γ̇A)γ̇, γ̇〉+ 2κ〈Aγ̇, Y 〉.

Evaluating the equation (2.3) at s = 0, we get

(2.4) 〈(∇uA)u, u〉+ 2κ〈Au, v〉 = 0.

On the other hand, for another circle ρ = ρ(s) of the same curvature κ on the
submanifold Mn−1 with initial condition that ρ(0) = x, ρ̇(0) = u and ∇ρ̇ρ̇(0) =
−κv, we find

(2.5) 〈(∇uA)u, u〉 − 2κ〈Au, v〉 = 0,
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which corresponds to the equation (2.4). Thus, from (2.4) and (2.5) we can see
that 〈Au, v〉 = 0 for each orthonormal pair of vectors u, v at each point x of M ,
so that the hypersurface M is totally umbilic in M̃n(c).

The converse is obvious from the fact that every circle on a totally umbilic sub-
manifold Mn of M̃n+p(c) is mapped to a circle in the ambient space M̃n+p(c). ¤

3. Real hypersurfaces of nonflat complex space forms

It is well-known that there exist no real hypersurfaces with parallel second fun-
damental form in a nonflat complex space form M̃n(c), which is either a complex
projective space or a complex hyperbolic space. We hence consider a bit weak
condition on real hypersurfaces in a complex space form.

Let M2n−1 be an orientable real hypersurface of M̃n(c) and N a unit normal
vector field on M in M̃n(c). It is known that M admits an almost contact metric
structure (φ, ξ, η, 〈 , 〉) induced from the Kähler structure J of M̃n(c) which
satisfies

φ2 = −Id + η ⊗ ξ, η(ξ) = 1, and 〈φX, φY 〉 = 〈X, Y 〉 − η(X)η(Y ),

where Id denotes the identity map of the tangent bundle TM of M . Then it is
known that the following equalities

(∇Xφ)Y = η(Y )AX − 〈AX, Y 〉ξ and ∇Xξ = φAX

hold. The condition that the structure vector ξ = −JN is principal is natural. It
is well-known that this condition is equivalent to the condition that every integral
curve of the vector field ξ is a geodesic on M2n−1. As was shown in [NR], for a
real hypersurface M2n−1 in M̃n(c) (n = 2), if Aξ = αξ holds with some function
α on M then α is locally constant. In CPn(c) each real hypersurface M lying
on a tube of constant radius r (0 < r < π/

√
c) around a complex submanifold of

CPn(c) satisfies this condition on ξ. In CHn(c) each real hypersurface M lying on
a tube of radius r (0 < r < ∞) around a complex submanifold or around a totally
real submanifold of CHn(c) satisfies this condition. Real hypersurfaces M2n−1

with the structure vector ξ as a principal curvature vector in M̃n(c) are called
Hopf hypersurfaces. In CPn(c) we have the following typical Hopf hypersurfaces:

(A1) A tube of radius r over hyperplane CPn−1(c), where 0 < r < π/
√

c,
(A2) a tube of radius r over totally geodesic CP k(c) (1 5 k 5 n − 2), where

0 < r < π/
√

c.
In CHn(c) we have the following typical Hopf hypersurfaces:

(A0) A horosphere in CHn(c),
(A1) a tube of radius r over CHk(c) (k = 0, n− 1), where 0 < r < ∞,
(A2) a tube of radius r over CHk(c) (1 5 k 5 n− 2), where 0 < r < ∞.

These Hopf hypersurfaces are usually called hypersurfaces of type A. The following
theorem gives a characterization of such hypersurfaces([NR]):
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Theorem A. Let M2n−1 be a real hypersurface in a nonflat complex space form
M̃n(c). Then the following conditions are mutually equivalent:

1) M is locally congruent to a hypersurface of type A.
2) The structure tensor φ and the shape operator A of M are commutative:

φA = Aφ.
3) 〈(∇XA)X, X〉 = 0 on M for each X ∈ TM2n−1.

It follows from Theorem A and the discussion in the proof of Theorem 1 yields
the following (cf. [NR]):

Theorem 3. A real hypersurface M2n−1 of a nonflat complex form M̃n(c) is
of type A if and only if every geodesic of M being considered as a curve in the
ambient space has constant first curvature.

Since we have no totally umbilic real hypersurfaces in a nonflat complex space
form, the proof of Theorem 2 implies

Theorem 4. There exist no real hypersurfaces M2n−1 in a nonflat complex space
form M̃n(c) satisfying that for some κ > 0 every circle of curvature κ on M being
considered as a curve in the ambient space has constant first curvature.

4. Complex hypersurfaces of complex space forms

In this section we consider complex hypersurfaces with parallel second funda-
mental form in a complex space form M̃n(c). It is known that they are

i) either totally geodesic in M̃n(c),
ii) or locally congruent to a complex quadric Qn−1(C) in the case c >

0([NT]).
By investigating the first curvature of each geodesic on these parallel hyper-

surfaces we obtain the following theorem:

Theorem 5 [MO]. A complex hypersurface Mn−1 of a complex space form M̃n(c)
has parallel second fundamental form if and only if every geodesic on M being
considered as a curve in the ambient space has constant first curvature.

Proof. Suppose that every geodesic γ of Mn−1, considered as a curve in the
ambient space M̃n(c), has constant first curvature. Then by the Gauss formula
∇̃XY = ∇XY + σ(X, Y ) we see that ‖σ(γ̇, γ̇)‖ is constant along γ. This implies
that 〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 = 0 and hence we have

(4.1) 〈(∇̄Xσ)(X, X), σ(X, X)〉 = 0

for every vector field X tangent to M . Here, the covariant differentiation ∇̄
of the second fundamental form σ with respect to the connection in (tangent
bundle)⊕(normal bundle) by

(∇̄Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY,Z)− σ(Y,∇XZ),
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where D is the normal connection of Mn−1 in M̃n(c).
Let J be the complex structure of the ambient space M̃n(c). We denote by

the same letter J the complex structure of the hypersurface Mn−1. Then, by
replacing X by JX in (4.1), we obtain

(4.2) 〈(∇̄Xσ)(X, X), Jσ(X, X)〉 = 0

for all X. It follows from (4.1) and (4.2) that (∇̄Xσ)(X,X) = 0 for all X.
Then, thanks to the Codazzi equation (∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z), we know
that M has parallel second fundamental form. The converse is obvious by the
same discussion as above. ¤

We obtain the following by studying the first curvature of each circle of posi-
tive curvature on parallel complex hypersurfaces Mn−1 in a complex space form
M̃n(c).

Theorem 6 [SMA]. A complex hypersurface Mn−1 of a complex space form
M̃n(c) is totally geodesic in M̃n(c) if and only if there exists some κ > 0 satisfying
that every circle of curvature κ on M being considered as a curve in the ambient
space has constant first curvature.

Proof. Let f : Mn−1 → M̃n(c) be an isometric Kähler immersion satisfying the
condition on the extrinsic shape of circles. For an arbitrary orthonormal pair
(u, v) of vectors at a fixed point x of M we choose a circle γ = γ(s), s ∈ I of
curvature κ on the submanifold M with initial condition that γ(0) = x, γ̇(0) = u
and ∇γ̇ γ̇(0) = κv. By the same discussion as in the proof of Theorem 2 we have

0 =
d

ds
〈σ(γ̇, γ̇), σ(γ̇, γ̇)〉 = 2〈Dγ̇(σ(γ̇, γ̇)), σ(γ̇, γ̇)〉

= 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉+ 4κ〈σ(γ̇, Y ), σ(γ̇, γ̇)〉.

Evaluating this equation at s = 0, we find

(4.3) 〈(∇̄uσ)(u, u), σ(u, u)〉+ 2κ〈σ(u, v), σ(u, u)〉 = 0.

Starting with the circle γ with initial condition that γ(0) = x, γ̇(0) = u and
∇γ̇ γ̇(0) = −κv, we find the equation (4.3) turns to

(4.4) 〈(∇̄uσ)(u, u), σ(u, u)〉 − 2κ〈σ(u, v), σ(u, u)〉 = 0.

Hence these two equations (4.3) and (4.4) guarantee that

〈(∇̄uσ)(u, u), σ(u, u)〉 = 0,(4.5)

〈σ(u, u), σ(u, v)〉 = 0(4.6)
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for each orthonormal pair of vectors u, v at every point x.
The equality (4.5) tells us that our hypersurface M has parallel second fun-

damental form (see the proof of Theorem 5), hence that the hypersurface M is
totally geodesic or locally congruent to a complex quadric Qn−1(C). Next we
shall show that M is not a complex quadric Qn−1(C). It is well-known that the
equality (4.6) implies that our immersion is λ-isotropic, namely at each point
of M the normal curvature vector σ(v, v) determined by a unit vector v has the
same length λ for every v (cf.[O]). Moreover, (4.5) shows this function λ : M → R
is locally constant. Indeed, for every geodesic τ = τ(s) on the hypersurface Mn−1

we see by differentiating ‖σ(τ̇(s), τ̇(s))‖2 along τ that λ = λ(s) is constant along
τ .

On the other hand we denote by R and R̃ the curvature tensors of M and
M̃n(c), respectively. Since M is a Kähler submanifold in M̃n(c), by substituting

R̃(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X, Z〉X + 〈JY, Z〉JX − 〈JX, Z〉JY + 2〈X, JY 〉JZ),

to the Gauss equation

〈R̃(X,Y )Z, W 〉 = 〈R(X,Y )Z, W 〉+ 〈σ(X,Z), σ(Y, W )〉 − 〈σ(X, W ), σ(Y,Z)〉,
we find that the holomorphic sectional curvature K(X, JX) of Mn−1 determined
by a unit vector X is given by

K(X,JX) = 〈R(X, JX)JX, X〉 = c− 2‖σ(X,X)‖2 = c− 2λ2

holds for an arbitrary unit vector X. This implies that the hypersurface M is
a complex space form, so that M is not a complex quadric Qn−1(C). Therefore
we get the desirable result. Needless to say our totally geodesic hypersurface is
zero-isotropic. ¤

5. Appendix

As a generalization of Theorem 6 we shall provide a characterization of a
Kähler isometric full immersion of a complex projective space CPn(c) of con-
stant holomorphic sectional curvature c into a complex projective space CPN (c̃)
of constant holomorphic sectional curvature c̃. By virtue of the classification
theorem ([C, NO]) this Kähler immersion is nothing but a Kähler embedding
fk : CPn(c/k) → CPN (c) given by

[zi]05i5n 7→
[√ k!

k0! · · · kn!
zk0
0 · · · zkn

n

]
k0+···+kn=k,

where [∗] means the point of the projective space with the homogeneous coor-
dinates ∗ and N = (n + k)!/(n!k!) − 1. We usually call fk the k-th Veronese
embedding. The embedding fk has various geometric properties.
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Theorem B [C, NO]. Let f : Mn(c) → M̃N (c̃) be a Kähler isometric immersion
of a complex space form of constant holomorphic sectional curvature c into an-
other complex space form of constant holomorphic sectional curvature c̃. If c̃ > 0
and f is full, then c̃ = kc and N = (n + k)!/(n!k!) − 1 for some positive integer
k.

We now show the following characterization of Veronese embeddings:

Theorem 7 [SMA,M]. Let f : Mn → M̃N (c) be a Kähler isometric full immer-
sion of an n-dimensional Kähler manifold Mn into an N -dimensional complex
space form M̃N (c) of constant holomorphic sectional curvature c > 0. Then the
following conditions are equivalent:

(1) For some positive integer k, the submanifold Mn is locally congruent to
CPn(c/k), N = (n + k)!/(n!k!)− 1 and f is locally equivalent to the k-th
Veronese embedding fk.

(2) There exists κ > 0 satisfying that for each circle γ of curvature κ on the
submanifold Mn the curve f ◦ γ in M̃N (c) has constant first curvature
along this curve.

Proof. (1) ⇒ (2). For each Veronese embedding fk : CPn(c/k) → CPN (c) we see
that ‖σ(v, v)‖2 = c(k − 1)/2k for any unit vector v at each point x ∈ CPn(c/k)
(see [Og]). We then find for each circle γ of curvature κ on CPn(c/k) that

the curve fk ◦ γ has constant first curvature κ̃ =
√

κ2 + c(k−1)
2k in the ambient

manifold CPN (c).
(2)⇒ (1). Let f : Mn → M̃N (c) be a Kähler isometric full immersion satisfying

the condition (2). By virtue of the discussion in the proof of Theorem 6 we
find Mn is a complex space form. This, combined with Theorem B, yields the
statement (1). ¤

Remark 1. Theorem 7 is not true when we set κ = 0 in the statement (2). Every
geodesic on a parallel Kähler submanifold being considered as a curve in the
ambient space has constant first curvature.

Remark 2. We make mention of other curvatures of the curve f ◦ γ for a circle γ
on submanifolds in a space form through an isometric immersion f in all theorems
in this paper. All curvatures of every curve f ◦ γ are constant, since this curve is
an orbit of one-parameter subgroup of the isometry group of the ambient space
form.
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