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Abstract. We give a survey of our recent results [KM, MA, Su, SMA] on sub-
manifolds from the viewpoint of curves of order 2. We characterize some of nice

submanifolds by the extrinsic shape of circles.

1. Introduction

Let f : M → M̃ be an isometric immersion of a Riemannian manifold M into
an ambient Riemannian manifold M̃ . In this paper, we keep our mind on each
circle γ on the submanifold M and study the extrinsic shape f ◦γ in the ambient
space M̃ . From this point of view we recall the following two surfaces. Let f1 be a
totally umbilic imbedding of a 2-dimensional standard sphere S2(c) of curvature
c into a Euclidean space R5 and f2 = ι ◦ f be an isometric parallel immersion of
S2(c) into R5. Here f is the second standard minimal immersion of S2(c) into
S4(3c) and ι is a totally umbilic imbedding of S4(3c) into R5. We know that for
each great circle γ on S2(c), both of the curves f1 ◦ γ and f2 ◦ γ are circles in
the ambient space R5. This implies that we cannot distinguish f1 from f2 by the
extrinsic shape of geodesics of S2(c) in R5. However we emphasize that we can
distinguish these two isometric immersions f1 and f2 by the extrinsic shape of
(small) circles of S2(c) in R5. In fact, for each small circle γ on S2(c), the curve
f1 ◦ γ is also a circle in R5 but the curve f2 ◦ γ is a helix of proper order 4 in the
ambient space R5 (for details, see Proposition 1).

It is hence interesting to investigate the extrinsic shape of circles of the sub-
manifold. We here recall the following well-known fact due to Nomizu and
Yano[NY]. Let Mn be a Riemannian submanifold of M̃n+p through an isometric
immersion f . Then Mn is an extrinsic sphere of M̃n+p if and only if, for some
positive constant k and for every circle γ = γ(s) of curvature k on Mn, the curve
f ◦ γ is a circle in M̃n+p.
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We relax the condition that f ◦γ is a circle to the condition that it is a curve of
order 2 in order to improve this characterization of extrinsic spheres (see Theorem
1). The notion of curves of order 2 is a natural extension of that of circles (for
details, see section 2). Motivated by Theorem 1, throughout this paper we study
the problem: For an isometric immersion f : M → M̃ if some circles on M

are mapped to curves of order 2 in M̃ through f , what can we say about the
submanifold M?

Along this context we chracterize all parallel isometric immersions of complex
projective spaces, quaternionic projective spaces and Cayley projective plane into
a complete simply connected real space form M̃m(c̃) of constant curvature c̃,
which is either a standard sphere Sm(c̃), a Euclidean space Rm or a real hyperbolic
space Hm(c̃) (see Theorems 2,3 and 4). We also give a characterization of all
totally geodesic Kähler isometric immersions into an arbitrary Kähler manifold
(see Theorem 5). Theorems 1, 2, 3 and 4 are improvements of the results in
[AMO1, AMO2, KM, Su].

2. Curves of order 2

Let M be a Riemannian manifold with Riemannian metric 〈 , 〉. In this
section we introduce the notion of curves of order 2. A smooth curve γ on M
parametrized by its arclength s is called a curve of order 2 if it satisfies the
following differential equation:

(2.1) ‖∇γ̇ γ̇‖2
{
∇γ̇∇γ̇ γ̇ + ‖∇γ̇ γ̇‖2γ̇

}
= 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉∇γ̇ γ̇,

where ∇γ̇ denotes the covariant differentiation along γ with respect to the Rie-
mannian connection ∇ of M .

To see that the class of curves of order 2 is very wide, we recall the notion
of Frenet curves. A smooth curve γ = γ(s) parametrized by its arclength s is
called a Frenet curve of proper order d if there exist orthonormal frame fields
{V1 = γ̇, V2, . . . , Vd} along γ and positive functions κ1(s), . . . , κd−1(s) which
satisfy the following system of ordinary equations

(2.2) ∇γ̇Vj(s) = −κj−1(s)Vj−1(s) + κj(s)Vj+1(s), j = 1, . . . , d,

where V0 ≡ Vd+1 ≡ 0. Equation (2.2) is called the Frenet formula for the Frenet
curve γ. The functions κj(s) (j = 1, . . . , d − 1) and the orthonormal frame
{V1, . . . , Vd} are called the curvatures and the Frenet frame of γ, respectively.
We sometimes call κj the j-th curvature.

A Frenet curve is called a Frenet curve of order d if it is a Frenet curve of proper
order r(5 d). For a Frenet curve of order d which is of proper order r(5 d), we
use the convention in (2.2) that κj ≡ 0 (r 5 j 5 d−1) and Vj ≡ 0 (r+1 5 j 5 d).
We call a Frenet curve a helix when all its curvatures are constant. A helix of
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order 1 is nothing but a geodesic. A helix of order 2, namely a curve which
satisfies the following differential equations, is called a circle of curvature k:

(2.3) ∇γ̇V1(s) = kV2(s),∇γ̇V2(s) = −kV1(s) and V1(s) = γ̇(s).

We regard a geodesic as a circle of null curvature.

Lemma 1. (1) A Frenet curve γ of order 2 is a curve of order 2.
(2) If a curve γ of order 2 satisfies ‖∇γ̇ γ̇(s)‖ > 0, for all s, then it is a Frenet

curve of proper order 2, whose curvature and Frenet frame are

κ(s) = ‖∇γ̇ γ̇(s)‖ and
{
γ̇, V2 = ∇γ̇ γ̇

/
‖∇γ̇ γ̇‖

}
, respectively.

Proof. (1) When γ is a geodesic, it is clear that γ satisfies (2.1). When γ is a
Frenet curve of proper order 2, since it satisfies

∇γ̇ γ̇(s) = κ(s)V2(s), ∇γ̇V2(s) = −κ(s)γ̇(s),

we find
∇γ̇∇γ̇ γ̇(s) = −κ̇(s)γ̇(s)− κ2(s)γ̇(s).

This guarantees that γ satisfies (2.1).
(2) If we put κ(s) = ‖∇γ̇ γ̇(s)‖, we have κκ′ = 〈∇γ̇ γ̇,∇γ̇∇γ̇ γ̇〉. Therefore by

(2.1) the vector V2 = (1/κ)∇γ̇ γ̇ satisfies

∇γ̇V2 =
1
κ3

(
κ2∇γ̇∇γ̇ γ̇ − κκ′∇γ̇ γ̇

)
= −κγ̇.

We get the conclusion. �

Following this lemma, for a curve γ of order 2 we shall call the nonnegative
function ‖∇γ̇ γ̇‖ its curvature. We see in particular all geodesics and circles satisfy
the equation (2.1), and there are many examples of curves of order 2. But, in
general, a curve of order 2 is not a Frenet curve of order 2. In fact, we admit
the case that a curve γ of order 2 has an inflection point γ(s0), that is a point
which satisfies (∇γ̇ γ̇)(s0) = 0, so that every plane curve is a curve of order 2.
Here a curve is said to be a plane curve if it is locally contained on some real
2-dimensional totally geodesic submanifold.

At the mention of inflection points, we here introduce the notion of a Frenet
curve of order 2 in a wide sense. A smooth curve γ parametrized by its arclength
is called a Frenet curve of order 2 in a wide sense if there exist a smooth unit
vector field V along γ which is orthogonal to γ̇ and a smooth function κ satisfying
that

(2.4) ∇γ̇ γ̇(s) = κ(s)V (s), ∇γ̇V (s) = −κ(s)γ̇(s).
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Here we do not suppose κ to be positive. We shall also call this function κ the
curvature of γ. When γ is a Frenet curve of order 2 in a wide sense which is
not a geodesic, the pair (κ, V ) is determined up to their signatures, that is either
(κ, V ) or (−κ,−V ) satisfies (2.4). Every smooth plane curve parametrized by its
arclength is a Frenet curve of order 2 in a wide sense. In a Euclidean space, every
Frenet curve of order 2 in a wide sense is a plane curve. The proof of Lemma 1
tells us that every Frenet curve of order 2 in a wide sense is a curve of order 2,
but not vice versa. The following example tells us that even in a Euclidean space
there exists a curve of order 2 which is not a plane curve.

Example 1. Let γ be a smooth curve in a Euclidean space R3 defined by

γ(t) =


(t, e−1/t2 , 0), t < 0,

(0, 0, 0), t = 0,

(t, 0, e−1/t2), t > 0.

When we reparametrize t to the arclength parameter s, the curve γ(s) satisfies
Equation (2.1). This example shows that there is a curve of order 2 in R3 which
is not a plane curve, namely, it is not contained in a plane R2. Hence this curve
is not a Frenet curve of order 2 in a wide sense. Note that γ̈(0)(= (∇γ̇ γ̇)(0)) = 0
and that we can not smoothly extend the vector field ∇γ̇ γ̇(s)

/
‖∇γ̇ γ̇(s)‖ (−ε <

s < 0, 0 < s < ε) along γ to the origin.

At an inflection point we should take care in handling curves of order 2. For
example, the differential equation (2.1) may have a bifurcation point.

Example 2. Let ρ be a smooth curve in a Euclidean space R3 defined by

ρ(t) =
{

(t, e−1/t2 , 0), t < 0,

(t, 0, 0), t ≥ 0.

When we reparametrize t to the arclength parameter s, the curve ρ(s) also satisfies
Equation (2.1). Comparing this with the curve γ(s) in Example 1, we find a
solution of (2.1) branches at the origin. We remark that this curve ρ is a plane
curve, so that it is a Frenet curve of order 2 in a wide sense.

On the contrary, we have the following result on Frenet curves of order 2 in
a wide sense in a complete Riemannian manifold M . Given a smooth function
κ(s),−∞ < s < ∞ and a pair X, Y ∈ TxM of orthonormal vectors at an arbitrary
point x ∈ M , we have a unique Frenet curve γ of order 2 in a wide sense with
curvature κ and with initial condition γ(0) = x, γ̇(0) = X,∇γ̇ γ̇(0) = κ(0)Y .

3. Extrinsic spheres

We shall start our study on submanifolds by extending the result of Nomizu
and Yano which is stated in the introduction.
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Theorem 1. Let Mn be a Riemannian submanifold of M̃n+p through an iso-
metric immersion f . Then the following conditions are equivalent.

(1) Mn is an extrinsic sphere of M̃n+p.
(2) There exists some positive constant k satisfying that for every circle γ of

curvature k on Mn the curve f ◦ γ is a curve of order 2 in M̃n+p.

For an isometric immersion f : M → M̃ we denote by σ the second funda-
mental form of f and by Aξ the shape operator in the direction of ξ. In this
study of submanifolds the formulae of Gauss and Weingarten are basic relations.
If we denote by ∇̃ the Riemannian connection of M̃ and by D the covariant
differentiation in the normal bundle, these formulae are

∇̃XZ = ∇XZ + σ(X, Z), ∇̃Xξ = DXξ −AξX.

We define the covariant differentiation ∇̄ of the second fundamental form σ with
respect to the connection in (tangent bundle)+(normal bundle) as follows:

(∇̄Xσ)(Y,Z) = DX(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ).

When ∇̄σ = 0, we call an isometric immersion f parallel. A submanifold is called
an extrinsic sphere if it is totally umbilic with parallel second fundamental form.

To prove Theorem 1 we give the following a priori lemma.

Lemma 2. Let f : M → M̃ be an isometric immersion. If the extrinsic shape
f ◦ γ of a circle γ of curvature k on M is a curve of order 2 in M̃ , then the
following equalities hold:

κ2
{
−Aσ(γ̇,γ̇)γ̇ + ‖σ(γ̇, γ̇)‖2γ̇

}
= κκ′∇γ̇ γ̇,(3.1)

κ2
{

3σ(γ̇,∇γ̇ γ̇) + (∇̄γ̇σ)(γ̇, γ̇)
}

= κκ′σ(γ̇, γ̇),(3.2)

where κ =
√

k2 + ‖σ(γ̇, γ̇)‖2 is the curvature of f◦γ and ∇̃γ̇ denotes the covariant
differentiation along f ◦ γ with respect to ∇̃.

In particular, for an orthonormal pair X, Y ∈ TxM at an arbitrary point
x ∈ M if the extrinsic shape f ◦ γ of a circle γ of curvature k(> 0) with initial
condition that γ(0) = x, γ̇(0) = X and ∇γ̇ γ̇(0) = kY is a curve of order 2, then
we have

(3.3)
(
3k2 + ‖σ(X, X)‖2

)
〈σ(X, X), σ(X, Y )〉+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.

Proof. In the following, we also denote f ◦ γ by γ. By hypothesis the curve f ◦ γ
satisfies the following differential equation which corresponds to Equation (2.1):

(3.4) ‖∇̃γ̇ γ̇‖2
{
∇̃γ̇∇̃γ̇ γ̇ + ‖∇̃γ̇ γ̇‖2γ̇

}
= 〈∇̃γ̇ γ̇, ∇̃γ̇∇̃γ̇ γ̇〉∇̃γ̇ γ̇.
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On the other hand, since γ is a circle of curvature k, which satisfies (2.3), it
follows from the formulae of Gauss and Weingarten that

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + σ(γ̇, γ̇) = kV2 + σ(γ̇, γ̇),(3.5)

∇̃γ̇∇̃γ̇ γ̇ = −k2γ̇ −Aσ(γ̇,γ̇)γ̇ + 3kσ(γ̇, V2) + (∇̄γ̇σ)(γ̇, γ̇).(3.6)

In particular, we have κ2 = ‖∇̃γ̇ γ̇‖2 = k2+‖σ(γ̇, γ̇)‖2. From these three equalities
(3.4), (3.5) and (3.6), we obtain

κ2
{
− k2γ̇ −Aσ(γ̇,γ̇)γ̇ + 3kσ(γ̇, V2) + (∇̄γ̇σ)(γ̇, γ̇) + κ2γ̇

}
= κκ′{kV2 + σ(γ̇, γ̇)}.

Considering the tangential and normal components of this equality, we get

κ2
{
−Aσ(γ̇,γ̇)γ̇ + ‖σ(γ̇, γ̇)‖2γ̇

}
= kκκ′V2,(3.1’)

κ2
{

3kσ(γ̇, V2) + (∇̄γ̇σ)(γ̇, γ̇)
}

= κκ′σ(γ̇, γ̇),(3.2’)

which are the desired equalities (3.1) and (3.2).
We now take the inner product of the both sides of (3.1’) with V2 and that of

the both sides of (3.2’) with σ(γ̇, γ̇). When k > 0, as we can see κ > 0, we have

− κ〈σ(γ̇, γ̇), σ(γ̇, V2)〉 = kκ′,

κ
{

3k〈σ(γ̇, γ̇), σ(γ̇, V2)〉+ 〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉
}

= κ′‖σ(γ̇, γ̇)‖2,

which lead us to

(3.7)
{

3k2 + ‖σ(γ̇, γ̇)‖2
}
〈σ(γ̇, γ̇), σ(γ̇, V2)〉+ k〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 = 0.

Evaluating (3.7) at s = 0, we obtain the equality (3.3). �

We are now in a position to prove Theorem 1. By our hypothesis we have(
3k2 + ‖σ(X, X)‖2

)
〈σ(X, X), σ(X, Y )〉+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.

for an arbitrary orthonormal pair X, Y ∈ TM of vectors. As the pair X,−Y is
also orthonomal, we see

−
(
3k2 + ‖σ(X, X)‖2

)
〈σ(X, X), σ(X, Y )〉+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.
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These two equalities show that 〈σ(X, X), σ(X, Y )〉 = 0 for each orthonormal pair
of vectors X, Y ∈ TM .

For each circle γ on M , taking the inner product of both sides in Equation
(3.1) with ∇γ̇ γ̇, we have

k2κκ′ = −κ2〈σ(γ̇, γ̇), σ(γ̇,∇γ̇ γ̇)〉 = 0,

because γ̇ and ∇γ̇ γ̇ are orthogonal. Since the curvature κ of the curve f ◦ γ of
order 2 is positive, we find it is constant, hence f ◦ γ is a circle in the ambient
space M̃n+p. Therefore by virtue of the result of Nomizu and Yano we get the
conclusion of Theorem 1.

We shall close this section by recalling the notion of isotropic immersions for
the use in the later sections. An isometric immersion f : M → M̃ is said to be
isotropic at x ∈ M if ‖σ(X, X)‖/‖X‖2(= λ(x)) does not depend on the choice of
X(6= 0) ∈ TxM . If the immersion is isotropic at every point, then the immersion
is said to be isotropic. When the function λ = λ(x) is constant on M , we call
M a constant (λ-)isotropic submanifold. Note that a totally umbilic immersion
is isotropic, but not vice versa. The following is well-known ([O]).

Lemma A. Let f be an isometric immersion of M into (M̃, 〈 , 〉). Then f is
isotropic at x ∈ M if and only if the second fundamental form σ of f satisfies
〈σ(X, X), σ(X, Y )〉 = 0 for an arbitrary orthogonal pair X, Y ∈ TxM .

For the extrinsic shape of a helix through a constant isotropic immersion we
have by Gauss formula the following elementary lemma.

Lemma 3. Let f : M → M̃ be a constant λ-isotropic immersion. Then for each
helix γ on M the first curvature κ̃1 of the curve f ◦γ on M̃ is constant. We have
κ̃1 =

√
κ2

1 + λ2 if we denote the first curvature of γ by κ1.

4. Parallel imbeddings of compact symmetric spaces of rank one

In this section we study each parallel and non-totally geodesic immersion f of
a compact symmetric space M of rank one into a complete simply conneted real
space form M̃m(c̃) of constant curvature c̃. This parallel immersion f has many
geometric properties. For example, for each geodesic γ on the submanifold M

the curve f ◦ γ is a circle of positive curvature in the ambient space M̃m(c̃), and
the curvature of f ◦ γ does not depend on the choice of γ.

We shall study these parallel immersions by investigating the extrinsic shape of
circles on the submanifold M in M̃m(c̃). In her paper[Su] the first author studies
the case of a real projective space. Note that every circle on a real projective
space RPn is contained in some totally geodesic RP 2 of RPn. So it is enough
to study the case n = 2. The following clarifies the extrinsic shape of circles of
positive curvature on RPn in M̃m(c̃) under the parallel imbedding.
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Proposition 1. Let f = f2 ◦ f1 : RP 2(c/3)
f1−→ S4(c)

f2−→ M̃2+p(c̃) be an
isometric parallel imbedding of RP 2(c/3) into a real space form M̃2+p(c̃) (c = c̃).
Here f1 is the first standard minimal imbedding of RP 2(c/3) into S4(c) and f2

is a totally umbilic imbedding of S4(c) into M̃2+p(c̃). Then
(1) When c = c̃,

(1a) f maps each circle of curvature
√

c/6 to a helix of proper order 3
whose curvatures are κ1 =

√
c/2, κ2 =

√
c.

(1b) f maps each circle of curvature k 6=
√

c/6 to a helix of proper order
4 whose curvatures are

κ1 =

√
3k2 + c

3
, κ2 =

3k
√

c√
3k2 + c

, κ3 =
|6k2 − c|√
3(3k2 + c)

.

(2) When c > c̃, f maps each circle of curvature k to a helix of proper order
4 whose curvatures are

κ1 =

√
3k2 + 4c− 3c̃

3
, κ2 =

3k
√

c√
3k2 + 4c− 3c̃

,

κ3 =

√
4(3k2 + c)2 − 3c̃(12k2 + c)√

3(3k2 + 4c− 3c̃)
.

Proof. Generally, the second fundamental form σ of a λ-isotropic immersion f :
Mn(c1) → M̃n+p(c2) satisfies the following:

〈σ(X, Y ), σ(Z,W )〉 =
c1 − c2

3
(
2〈X, Y 〉〈Z,W 〉 − 〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉

)
+

λ2

3
(
〈X, Y 〉〈Z,W 〉+ 〈X, W 〉〈Y, Z〉+ 〈X, Z〉〈Y, W 〉)

for any vector fields X, Y, Z,W on the submanifold Mn(c1).
Since our isometric imbedding f is a

√
(4c− 3c̃)/3-isotropic imbedding, it

satisfies that

(4.1)
〈σ(X, Y ), σ(Z,W )〉 =

2c− 3c̃

3
〈X, Y 〉〈Z,W 〉

+
c

3
(
〈X, W 〉〈Y, Z〉+ 〈X, Z〉〈Y, W 〉

)
.

We denote by ∇ the covariant differentiation of RP 2(c/3) and by ∇̃ that of
M̃2+p(c̃). For a circle γ of curvature k on RP 2(c/3) satisfying ∇γ̇ γ̇ = kY and
∇γ̇Y = −kγ̇, we see from the Gauss formula and (4.1) that ∇̃γ̇ γ̇ = κ1V2, where

κ1 =
√

3k2 + 4c− 3c̃√
3

, V2 =
√

3√
3k2 + 4c− 3c̃

(kY + σ(γ̇, γ̇)).
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Since our imbedding f is parallel, we get

∇̃γ̇V2 = −κ1γ̇ +
3
√

3k√
3k2 + 4c− 3c̃

σ(γ̇, Y ).

Therefore, from (4.1) we have ∇̃γ̇V2 = −κ1γ̇ + κ2V3 by putting

κ2 =
3k
√

c√
3k2 + 4c− 3c̃

, V3 =

√
3
c

σ(γ̇, Y ).

Continuing calculation and using (4.1), we obtain ∇̃γ̇V3 = −κ2V2 + κ3V4 and
∇̃γ̇V4 = −κ3V3 with

κ3 =

√
4(3k2 + c)2 − 3c̃(12k2 + c)√

3(3k2 + 4c− 3c̃)

and

V4 =
(6k2 − 4c + 3c̃)cY − 3k(3k2 + c− 3c̃)σ(γ̇, γ̇)√
c(3k2 + 4c− 3c̃){4(3k2 + c)2 − 3c̃(12k2 + c)}

+
3k
√

3k2 + 4c− 3c̃ σ(Y, Y )√
c{4(3k2 + c)2 − 3c̃(12k2 + c)}

.

Here we note that{
4(3k2 + c)2 − 3c̃(12k2 + c) > 0, if c > c̃,
4(3k2 + c)2 − 3c̃(12k2 + c) = (6k2 − c)2, if c = c̃,

we hence get the conclusion. �

Proposition 1 shows that under a parallel immersion the extrinsic shape of each
circle of positive curvature on RPn is never a curve of order 2 in the ambient
space M̃m(c̃). On the contrary, some circles on a complex projective space or a
quaternionic projective space are mapped to circles, so that they are curves of
order 2 in the ambient space under a parallel immersion. In order to explain this
geometric property in detail we review the notion of Kähler circles in a Kähler
manifold and that of quaternionic circles in a quaternionic Kähler manifold.

Let γ be a Frenet curve of order 2 in a wide sense which is not a geodesic and
satisfies ∇γ̇ γ̇(s) = κ(s)V (s), ∇γ̇V (s) = −κ(s)γ̇(s) with a smooth vector field V
along γ and a function κ. We put τγ = |〈γ̇, JV 〉|, which is well-defined. Since we
have

d

ds
〈γ̇, JV 〉 = 〈∇γ̇ γ̇, JV 〉+ 〈γ̇, J∇γ̇V 〉 = κ〈V, JV 〉 − κ〈γ̇, Jγ̇〉 = 0,
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we see τγ does not depend on parameter s. We call γ Kähler when τγ = 1. In
other words, we call γ Kähler if γ̇ and V span a holomorphic plane (i.e. either
V = Jγ̇ or V = −Jγ̇). When γ is a Kähler circle of curvature k, the equation
(2.3) reduces to

(4.2) ∇γ̇ γ̇ = kJγ̇ or ∇γ̇ γ̇ = −kJγ̇.

The extrinsic shape of Kähler circles of a complex projective space under a parallel
immersion f into a real space form M̃m(c̃) is known ([CM]). By using fact that
the immersion f is parallel and isotropic, we find the following.

Proposition 2. Let f1 : CPn(2nc/(n + 1)) → Sn(n+2)−1(c) be the first standard
minimal imbedding and f2 : Sn(n+2)−1(c) → M̃m(c̃) a totally umbilic imbedding
into a real space form, where c = c̃. Then the isometric parallel imbedding f =
f2 ◦ f1 : CPn(2nc/(n + 1)) → M̃m(c̃) maps every Kähler circle of curvature k on
CPn(2nc/(n + 1)) to a circle of curvature

√
{(n + 1)(k2 − c̃) + 2nc}/(n + 1) in

the ambient space M̃m(c̃), so that it is a curve of order 2.

Let M be a quaternionic Kähler manifold with local basis {I, J,K} of quater-
nionic structure and γ be a Frenet curve of order 2 in a wide sense which is not
a geodesic on M . Then I, J and K satisfy

(4.3)


∇γ̇I = qJ − rK

∇γ̇J = −qI + pK

∇γ̇K = rI − pJ,

for some functions p, q, r along γ ([I]). We see from (4.3) that τ2
γ := 〈γ̇, IV 〉2 +

〈γ̇, JV 〉2 + 〈γ̇, KV 〉2 is constant along γ. We call γ quaternionic if V is a R-
linear combination of Iγ̇, Jγ̇ and Kγ̇ at each point of γ. In other words, γ is
quaternionic if and only if τγ = 1. When γ is a quaternionic circle of curvature
k, Equation (2.3) reduces to

(4.4) ∇γ̇ γ̇ = k(λIγ̇ + µJγ̇ + νKγ̇),

where λ, µ and ν are functions along γ satisfying λ2 + µ2 + ν2 = 1. The extrinsic
shape of quaternionic circles on a quaternionic projective space under a parallel
immersion f into a real space form M̃m(c̃) is known as follows:

Proposition 3. Let f1 : HPn(2nc/(n+1)) → Sn(2n+3)−1(c) be the first standard
minimal imbedding and f2 : Sn(2n+3)−1(c) → M̃m(c̃) a totally umbilic imbedding
into a real space form, where c = c̃. Then the isometric parallel imbedding f =
f2 ◦f1 : HPn(2nc/(n+1)) → M̃m(c̃) maps every quaternionic circle of curvature
k on HPn(2nc/(n+1)) to a circle of curvature

√
{(n + 1)(k2 − c̃) + 2nc}/(n + 1)

in the ambient space M̃m(c̃), so that it is a curve of order 2.

We consider converses of Propositions 2 and 3 to obtain some characterizations
of parallel imbeddings of complex and quaternionic projective spaces into a real
space form M̃m(c̃).
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Theorem 2. Let f be an isometric immersion of a nonflat real 2n(= 4)-dimen-
sional Kähler manifold M into a complete simply connected real space form
M̃m(c̃). Then the following conditions are equivalent:

(1) M is locally congruent to a complex projective space imbedded into some
sphere in M̃m(c̃) through the first standard minimal imbedding.

(2) There exists k > 0 satisfying that f maps every Kähler circle of curvature
k on M to a circle in M̃m(c̃).

(3) There exists k > 0 satisfying that f maps every Kähler circle of curvature
k on M to a plane curve in M̃m(c̃).

(4) There exists k > 0 satisfying that f maps every Kähler circle of curvature
k on M to a curve of order 2 in M̃m(c̃).

Proof. It suffices to show that (4) implies (1). We shall verify that the subman-
ifold M is locally congruent to a complex space form (i.e a Kähler manifold of
constant holomorphic sectional curvature) and the immersion f is parallel.

Since for an arbitrary unit vector X ∈ TM we have Kähler circles γ1, γ2 with
the initial conditions γ̇1(0) = γ̇2(0) = X,∇γ̇1 γ̇1(0) = kJX,∇γ̇2 γ̇2(0) = −kJX,
we find by (3.3) in Lemma 2 that(

3k2 + ‖σ(X, X)‖2
)
〈σ(X, X), σ(X, JX)〉

+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0,(4.5)

−
(
3k2 + ‖σ(X, X)‖2

)
〈σ(X, X), σ(X, JX)〉

+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.(4.6)

Hence, we see 〈σ(X, X), σ(X, JX)〉 = 0.
By (3.1) and (3.2) we have

κi

{
−Aσ(γ̇i,γ̇i)γ̇i + ‖σ(γ̇i, γ̇i)‖2γ̇i

}
= ±kκ′

iJγ̇i,(4.7)

κi

{
± 3kσ(γ̇i, Jγ̇i) + (∇̄γ̇iσ)(γ̇i, γ̇i)

}
= κ′

iσ(γ̇i, γ̇i),(4.8)

with the positive curvature function κi of the curve f ◦ γi of order 2, where we
take plus signature when i = 1 and minus signature when i = 2 in Equations
(4.7) and (4.8). Taking the inner product of the both sides of (4.7) with Jγ̇i and
evaluating this at s = 0, we obtain κ′

i(0) = 0. It follows from (4.7) at s = 0
that Aσ(X,X)X = ‖σ(X, X)‖2X for each unit vector X ∈ TxM at an arbitrary
point x ∈ M , so that M is an isotropic submanifold of M̃m(c̃) (see Lemma A).
Moreover, from (4.8) at s = 0 we see

±3k · σ(X, JX) + (∇̄Xσ)(X, X) = 0
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for each unit vector X ∈ TM . Thus we have the following two equations:

(∇̄Xσ)(X, X) = 0,(4.9)

σ(X, JX) = 0.(4.10)

Thanks to the Codazzi equation (∇̄Xσ)(Y, Z) = (∇̄Y σ)(X, Z), Equation (4.9)
yields ∇̄σ = 0. Replacing X by X + JX in (4.10), we get

(4.11) σ(JX, JX) = σ(X, X)

for all X ∈ TM . Let R denote the curvature tensor of M . Then it follows from
(4.10), (4.11) and the equation of Gauss that

〈R(X, JX)JX,X〉 = c̃ + 〈σ(X, X), σ(JX, JX)〉 − ‖σ(X, JX)‖2

= c̃ + ‖σ(X, X)‖2

holds for each unit vector X. Since M is isotropic, this implies that M is a
complex space form. Thus our assertion follows from the results of [F] and [T]. �

For a quaternionic Kähler manifold we obtain the following result similar to
Theorem 2.

Theorem 3. Let f be an isometric immersion of a nonflat real 4n(= 8)-dimen-
sional quaternionic Kähler manifold M into a complete simply conneted real space
form M̃m(c̃). Then the following conditions are equivalent:

(1) M is locally congruent to a quaternionic projective space imbedded into
some sphere in M̃m(c̃) through the first standard minimal imbedding.

(2) There exists k > 0 satisfying that f maps every quaternionic circle of
curvature k on M to a circle in M̃m(c̃).

(3) There exists k > 0 satisfying that f maps every quaternionic circle of
curvature k on M to a plane curve in M̃m(c̃).

(4) There exists k > 0 satisfying that f maps every quaternionic circle of
curvature k on M to a curve of order 2 in M̃m(c̃).

Proof. It is enough to show the condition (4) implies the condition (1). By the
same argument as in the proof of Theorem 2 we get

(∇̄Xσ)(X, X) = 0 and σ(X, λIX + µJX + νKX) = 0

for each unit vector X ∈ TM and arbitrary real numbers λ, µ, ν satisfying λ2 +
µ2 + ν2 = 1. These imply that M is a parallel submanifold and

(4.12) σ(X, IX) = σ(X, JX) = σ(X, KX) = 0
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holds for all X ∈ TM . In Equation (4.12), replacing X by X + IX and so on,
we get

(4.13) σ(IX, IX) = σ(JX, JX) = σ(KX, KX) = σ(X, X),

and replacing X by IX and so on, we have

(4.14) σ(IX, JX) = σ(JX,KX) = σ(KX, IX) = 0.

Let R denote the curvature tensor of M . Then it follows from (4.12), (4.13),
(4.14) and the formula of Gauss that

〈R(X, λIX + µJX + νKX)(λIX + µJX + νKX), X〉
= c̃ + 〈σ(X, X), σ(λIX + µJX + νKX, λIX + µJX + νKX)〉

− ‖σ(X, λIX + µJX + νKX)‖2

= c̃ + ‖σ(X, X)‖2

holds for an arbitrary unit vector X and arbitrary λ, µ, ν satisfying λ2+µ2+ν2 =
1. Since M is isotropic, this shows that the submanifold M is a quaternionic space
form. Thus our assertion follows from the results of [F] and [T]. �

At the last stage of this section we give a characterization of a parallel imbed-
ding of Cayley projective plane which corresponds to Theorems 2 and 3. For a
Frenet curve γ of order 2 in a wide sense which is not a geodesic in a locally
symmetric space M , the sectional curvature K(γ̇, V ) of the plane spanned by γ̇

and V is constant along γ. When M is a complex space form M̃m(c), it is an
equivalent invariant to τγ by the following relation: K(γ̇, V ) = c(1 + 3τ2

γ )/4. For
a Frenet curve of order 2 in a wide sense which is not a geodesic on a Cayley
projective plane CaP 2(c) of maximal sectional curvature c, we call it Cayley if it
satisfies K(γ̇, V ) ≡ c, and totally real if it satisfies K(γ̇, V ) ≡ c/4. It is clear that
every Frenet curve of order 2 on CaP 2(c) is contained in some totally geodesic
CP 2(c) in CaP 2(c) (c.f. [MT]). We here restrict ourselves on circles on CaP 2(c).
This, together with the results of [AMU], guarantees that every Cayley circle
on CaP 2(c) is contained in some totally geodesic CP 1(c) in CaP 2(c) and every
totally real circle on CaP 2(c) is contained in some totally geodesic RP 2(c/4) in
CaP 2(c).

It is known that the parallel imbedding f of CaP 2(4c/3) into a real space form
M̃m(c̃) is decomposed as:

(4.15) f : CaP 2
(4

3
c
)

f1−→ S25(c)
f2−→ M̃m(c̃),

where c = c̃, f1 is the first standard minimal imbedding of CaP 2(4c/3) into
S25(c) and f2 is a totally umbilic imbedding of S25(c) into M̃m(c̃). The extrinsic
shape of circles on CaP 2(c) in the ambient manifold M̃m(c̃) through the parallel
imbedding f was studied in [AM].
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Proposition 4. The extrinsic shape f ◦ γ of each circle γ of curvature k(> 0)
on CaP 2(4c/3) in M̃m(c̃) through the isometric imbedding f defined by (4.15) is
as follows:

(1) When γ is Cayley, the curve f◦γ is a plane curve in M̃m(c̃). In particular,
it is a circle of curvature

√
(3k2 + 4c− 3c̃)/3 in this space.

(2) When γ is totally real, the curve f ◦γ is a helix of proper order 3 or proper
order 4 in M̃m(c̃).

(3) When γ is neither Cayley nor totally real, the curve f ◦ γ is a helix of
proper order 5 or proper order 6 in M̃m(c̃).

This proposition tells us that if a circle γ is not Cayley, the curve f ◦ γ is not
a curve of order 2 in the ambient manifold M̃m(c̃). Motivated by this fact, we
shall characterize this parallel imbedding of a Cayley projective plane into real
space forms by Cayley circles.

Theorem 4. Let M be an open set of CaP 2(4c/3) and f : M −→ M̃m(c̃) be
an isometric immersion into a complete simply conneted real space form M̃m(c̃).
Then the following conditions are equivalent:

(1) M is a parallel submanifold of M̃m(c̃), so that our isometric immersion
f of M into M̃m(c̃) is given by (4.15).

(2) There exists k > 0 satisfying that f maps every Cayley circle of curvature
k on M to a circle in the ambient manifold M̃m(c̃).

(3) There exists k > 0 satisfying that f maps every Cayley circle of curvature
k on M to a plane curve in the ambient manifold M̃m(c̃).

(4) There exists k > 0 satisfying that f maps every Cayley circle of curvature
k on M to a curve of order 2 in the ambient manifold M̃m(c̃).

Proof. It is sufficient to show the condition (4) implies the condition (1). For
each orthonormal pair X, Y ∈ TxM of unit vectors with K(X, Y ) = 4c

3 at an
arbitrary point x ∈ M we have a Cayley circle γ with initial condition that
γ(0) = x, γ̇(0) = X and ∇γ̇ γ̇(0) = kY . By (3.3) in Lemma 2 we have(

3k2 + ‖σ(X, X)‖2
)
〈σ(X, X), σ(X, Y )〉+ k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.

For X,−Y we also have(
3k2 + ‖σ(X, X)‖2

)
〈σ(X, X), σ(X, Y )〉 − k〈σ(X, X), (∇̄Xσ)(X, X)〉 = 0.

These equalities guarantee 〈σ(X, X), σ(X, Y )〉 = 0 for each orthonormal pair
X, Y ∈ TxM with K(X, Y ) = 4c

3 . Along the same lines as in the proof of
Theorem 2 we find

−3k · σ(X, Y ) = (∇̄Xσ)(X, X) = 3k · σ(X, Y ),
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which leads us to (∇̄Xσ)(X, X) = 0 for an arbitrary unit vector X ∈ TM .
Thanks to the equation of Codazzi, we obtain ∇̄σ = 0. Therefore our assertion
follows from the results of [F] and [T]. �

5. Characterization of totally geodesic Kähler immersions

In his paper Nomizu[N] gives the following characterization of totally geodesic
complex projective spaces among Kähler submanifolds in a complex projective
space by an extrinsic property of geodesics: A Kähler submanifold Mn in a com-
plex projective space CPn+p is locally congruent to CPn, which is a totally geo-
desic Kähler submanifold of CPn+p, if every geodesic on Mn is locally contained
in a complex projective line CP 1 in CPn+p. Motivated by this characterization,
we shall characterize totally geodesic Kähler immersions into an arbitrary Kähler
manifold by the extrinsic shape of Kähler circles on the submanifold.

Theorem 5. Let f be a Kähler isometric immersion of a Kähler manifold M into
an arbitrary Kähler manifold M̃ . Then the following conditions are equivalent:

(1) f is a totally geodesic immersion.
(2) There exists k > 0 satisfying that f maps every Kähler circle of curvature

k on M to a circle in M̃ .
(3) There exists k > 0 satisfying that f maps every Kähler circle of curvature

k on M to a curve of order 2 in M̃ .

Proof. What we have to show is that (3) implies (1). Let γ be a Kähler circle of
curvature k on M satisfying ∇γ̇ γ̇ = ±kJγ̇. By the assumption we have

(5.1) κ(−Aσ(γ̇,γ̇)γ̇ + ‖σ(γ̇, γ̇)‖2γ̇) = ±kκ′Jγ̇,

where κ(> 0) denotes the curvature function of f ◦ γ. Taking the inner product
of both sides of (5.1) with Jγ̇, we find

±kκ′ = −κ〈Aσ(γ̇,γ̇)γ̇, Jγ̇〉 = −κ〈σ(γ̇, γ̇), σ(γ̇, Jγ̇)〉 = −κ〈σ(γ̇, γ̇), J(σ(γ̇, γ̇))〉 = 0.

This implies that f ◦ γ is a circle of positive curvature in the ambient manifold
M̃ . This shows (3) implies (2).

For an arbitrary unit tangent vector X ∈ TM we denote by γi (i = 1, 2)
Kähler circles of curvature k with γ̇i(0) = X and ∇γ̇1 γ̇1 = kJγ̇1, ∇γ̇2 γ̇2 = −kJγ̇2.
Following (3.2), we have

3kJ(σ(γ̇1, γ̇1)) + (∇̄γ̇1σ)(γ̇1, γ̇1) = 0,

−3kJ(σ(γ̇2, γ̇2)) + (∇̄γ̇2σ)(γ̇2, γ̇2) = 0,

because f ◦ γi is a circle. Evaluating these at s = 0, we obtain

3kJ(σ(X, X)) + (∇̄Xσ)(X, X) = 0,

−3kJ(σ(X, X)) + (∇̄Xσ)(X, X) = 0,
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which lead us to σ(X, X) = 0. As X is an arbitrary unit vector, we find M is
totally geodesic in M̃ . �

Remark. In the statement of Theorem 5, we can not relax the condition on k to
k ≥ 0. For example, we consider the imbedding f : CPn(c) −→ CP (n2+3n)/2(2c)
which is given by all homogeneous monomials of degree 2

(z0, . . . , zn) 7→ (z2
0 ,
√

2z0z1, . . . , z2
n)

in homogeneous coordinates. This (non totally geodesic) Kähler isometric imbed-
ding maps every geodesic on CPn(c) to a totally real circle of the same positive
curvature

√
c/2 in the ambient space CP (n2+3n)/2(2c).

As an immediate consequence of Theorem 5 we obtain the following character-
ization of totally geodesic Kähler submanifolds in a complete simply connected
complex space form M̃m(c̃) of constant holomorphic sectional curvature c̃, which
is either a complex projective space CPm(c̃), a complex Euclidean space Cm or
a complex hyperbolic space CHm(c̃).

Theorem 6. Let f be a Kähler isometric immersion of a Kähler manifold M

into a complete simply connected complex space form M̃m(c̃). Then the following
conditions are equivalent:

(1) f is a totally geodesic immersion.
(2) There exists k > 0 satisfying that f maps every Kähler circle of curvature

k on M to a circle in M̃m(c̃).
(3) There exists k > 0 satisfying that f maps every Kähler circle of curvature

k on M to a plane curve in M̃m(c̃).
(4) There exists k > 0 satisfying that f maps every Kähler circle of curvature

k on M to a curve of order 2 in M̃m(c̃).

6. Veronese imbeddings

In this section we study the following problem: For an isometric immersion
f : M → M̃ if any geodesics on M are mapped to curves of order 2 in M̃ through
f , what can we say on the submanifold M?

We here pay attention to the extrinsic shape of geodesics on a complex pro-
jective space CPn(c) of constant holomorphic sectional curvature c in a complex
projective space CPN (c̃) of constant holomorphic sectional curvature c̃ through
a Kähler isometric full immersion. By virtue of the classification theorem ([C,
NO]) this Kähler immersion is nothing but a Kähler imbedding fk : CPn(c/k) →
CPN (c) given by

[zi]05i5n 7→
[√ k!

k0! · · · kn!
zk0
0 · · · zkn

n

]
k0+···+kn=k,
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where [∗] means the point of the projective space with the homogeneous coordi-
nates ∗ and N = (n+k)!/(n!k!)− 1. We usually call fk the k-th Veronese imbed-
ding. It is known that the second fundamental form of fk is parallel if and only
if k = 1 or k = 2. These parallel imbeddings fk (k = 1, 2) have various geometric
properties. For example, the second Veronese imbedding f2 maps each geodesic
on the submanifold CPn(c/2) to a circle of curvature

√
c/2 in a real projective

plane RP 2(c/4) of curvature c/4 which is a totally real totally geodesic subman-
ifold of the ambient manifold CPn(n+3)/2(c). Using such a property, Nomizu[N]
gives the following characterization. Let f : Mn → CPN (c) be a Kähler isometric
full immersion of an n-dimensional Kähler manifold into an N -dimensional com-
plex projective space of constant holomorphic sectional curvature c. He shows
that either Mn = CPn(c) and N = n, or Mn = CPn(c/2), N = n(n + 3)/2 and
f is locally equivalent to the second Veronese imbedding f2 if and only if for each
geodesic γ on Mn the curve f ◦ γ is a circle in CPN (c).

The main purpose of this section is to improve this characterization. We relax
the condition that f ◦ γ is a circle to the condition that it is a curve of order 2.
We here briefly recall some fundamental results on Veronese imbeddings fk (k =
1, 2, . . . ) (see [PS]). An isometric immersion f of a Riemannian manifold M into
an ambient Riemannian manifold M̃ is called a d-planar geodesic immersion if
for each geodesic γ on M the curve f ◦ γ is locally contained in a d-dimensional
totally geodesic submanifold of M̃ . In particular, a curve ρ is called d-planar if it
is locally contained in a d-dimensional totally geodesic submanifold. A d-planar
curve ρ is said to be proper d-planar if it is not (d−1)-planar. We call a d-planar
geodesic immersion f : M → M̃ proper if the curve f ◦ γ is proper d-planar for
each geodesic γ of the submanifold M .

Proposition B. The k-th Veronese imbedding fk : CPn(c/k) → CPN (c) is
proper k-planar geodesic.

In their paper[PS] J.S. Pak and K. Sakamoto considered the converse of Propo-
sition B to obtain a characterization of each fk:

Theorem C. Let f : Mn → CPN (c) be a proper k-planar geodesic Kähler iso-
metric full immersion of an n-dimensional Kähler manifold into an N -dimensional
complex projective space of constant holomorphic sectional curvature c. Sup-
pose that for each geodesic γ on Mn the curve f ◦ γ is locally contained in a k-
dimensional totally real totally geodesic submanifold RP k(c/4) of CPN (c). Then
Mn is locally congruent to CPn(c/k), N = (n + k)!/(n!k!) − 1 and f is locally
equivalent to the k-th Veronese imbedding fk.

We remark that for each geodesic γ on CPn(c/k) the curve fk ◦ γ is a he-
lix of proper order k in RP k(c/4) with the curvatures κ1, . . . , κk−1 which are
independent of the choice of γ.

The following is another (local) characterization of each Veronese imbedding
fk (see [C, NO]).
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Theorem D. Let f : Mn(c) → MN (c̃) be a Kähler isometric immersion of a
complex space form into another complex space form. If c̃ > 0 and f is full, then
c̃ = kc and N = (n + k)!/(n!k!)− 1 for some positive integer k.

We now state our result. The reader should confer the following result with
Theorem 6.

Theorem 7. Let f : Mn → CPN (c) be a Kähler isometric full immersion of an
n-dimensional connected Kähler manifold into an N -dimensional complex projec-
tive space of constant holomorphic sectional curvature c. If the image f ◦ γ of
each geodesic γ on Mn is a curve of order 2 in CPN (c), then one of the following
holds:

(i) Mn is locally congruent to CPn(c) and N = n,
(ii) Mn is locally congruent to CPn(c/2), N = n(n + 3)/2 and f is locally

equivalent to the second Veronese imbedding f2.

Proof. It is enough to prove our Theorem in case that the immersion f is not
totally geodesic, namely f is not of case (i). Our steps for proof are as follows:
We first show that the submanifold M is (λ-) isotropic at its each point in the
ambient manifold CPN (c), next we verify that the function λ is constant on M
and finally we calculate the holomorphic sectional curvature of M .

As Lemma A holds in a trivial sense at an arbitrary geodesic point of M , we
have only to consider a non-geodesic point x ∈ M and a unit vector X ∈ TxM
with σ(X, X) 6= 0. We take the geodesic γ = γ(s) (s ∈ I) on M with initial
condition that γ(0) = x and γ̇(0) = X. Here, I is a sufficiently small open
interval on R satisfying σ(γ̇(s), γ̇(s)) 6= 0 for all s ∈ I. As κ = |σ(γ̇, γ̇)| is the
curvature of the curve f ◦γ of order 2, we see by Lemma 1 that our curve f ◦γ is
a Frenet curve of proper order 2 whose Frenet frame is {γ̇, 1

κσ(γ̇, γ̇)}. Since f is a
Kähler immersion, we find that τγ = | 1κ 〈Jγ̇, σ(γ̇, γ̇)〉| = 0, where J is the complex
structure of CPN (c). So we can take the totally real totally geodesic RP 2(c/4)
passing x satisfying that the vectors γ̇(0) and σ(γ̇, γ̇)(0) span the tangent space
TxRP 2(c/4). We here consider the Frenet curve ρ of proper order 2 on the surface
RP 2(c/4) passing the point x = ρ(0) with the same curvature κ(s) (> 0) and
the same initial frame {γ̇(0), 1

κ(0)σ(γ̇, γ̇)(0)}. By the uniqueness of solutions for
ordinary differential equations we can see that the curve f ◦ γ locally coincides
with ρ, so that it is locally contained in RP 2(c/4).

The following discussion on the isotropic property of M is the same as in [pp.
40–41, PS]. However we here write it down in detail for readers’ convenience. As
RP 2(c/4) is a 2-dimensional totally geodesic submanifold of CPN (c), the vectors
γ̇(s) and σ(γ̇(s), γ̇(s)) span the tangent space Tγ(s)RP 2(c/4) for each s. This,
together with ∇̃γ̇(σ(γ̇, γ̇)) ∈ Tγ(s)RP 2(c/4), implies

(6.1) ∇̃γ̇(σ(γ̇, γ̇)) = αγ̇ + βσ(γ̇, γ̇)
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for some smooth functions α = α(s) and β = β(s) on the interval I. Let Y be an
arbitrary vector at x which is perpendicular to the vector X = γ̇(0). We extend
the vector Y to a vector field Ỹ on the curve f ◦ γ. Hence Equation (6.1) gives

〈σ(X, X), σ(X, Y )〉 = 〈σ(γ̇, γ̇), σ(γ̇, Ỹ )〉(0) = 〈σ(γ̇, γ̇), ∇̃γ̇ Ỹ 〉(0)

= −〈∇̃γ̇(σ(γ̇, γ̇)), Ỹ 〉(0) = −〈α(0)X + β(0)σ(X, X), Y 〉 = 0.

So it follows from Lemma A that the submanifold M is (λ-)isotropic at its each
point in CPN (c). In order to see the function λ is constant on M , we choose an
arbitary orthonomal pair of vectors Z,W at any fixed point y ∈ M . Assume that
λ(y) 6= 0. We here define a smooth vector field Z̃ (resp. W̃ ) on some sufficiently
small neighborhood Uy by using parallel displacement for the vector Z (resp. W )
along each geodesic with origin y. Note that ∇Z̃ = ∇W̃ = 0 at the point y and
〈Z̃, W̃ 〉 = 0 on Uy. Hence, at the point y we find

Z(λ2) = Z〈σ(W̃ , W̃ ), σ(W̃ , W̃ )〉 = 2〈DZ(σ(W̃ , W̃ )), σ(W,W )〉
= 2〈(∇̄Zσ)(W,W ), σ(W,W )〉.

So, using the equation of Codazzi, Lemma A and an equality ∇̃W (σ(W̃ , W̃ )) =
α0W + β0σ(W,W ) which corresponds to (6.1), at the point y we have

Z(λ2) = 2〈(∇̄W σ)(Z,W ), σ(W,W )〉 = 2〈DW (σ(Z̃, W̃ )), σ(W,W )〉

= 2〈∇̃W (σ(Z̃, W̃ )), σ(W,W )〉 = −2〈σ(Z,W ), ∇̃W (σ(W̃ , W̃ ))〉
= −2〈σ(Z,W ), α0W + β0σ(W,W )〉 = 0.

This implies that if λ(y) 6= 0, then the function λ is constant on Uy. Therefore,
from the connectivity of M and the continuity of λ we can see that the function
λ is (nonzero) constant on the submanifold M .

On the other hand, the holomorphic sectional curvature K(X, JX) of M de-
termined by a unit vector X is given by

K(X, JX) = 〈R(X, JX)JX,X〉 = c− 2‖σ(X, X)‖2,

hence M is a complex space form. Therefore from Theorem D and Proposition
B we can see that Mn is locally congruent to CPn(c/2), N = n(n + 3)/2 and f
is locally equivalent to the second Veronese imbedding f2. �

In the last stage of this section we shall make mention of submanifolds in a real
space form. In his paper[Sa] Sakamoto classified 2-planar geodesic submanifolds
in a complete simply connected real space form M̃N (c̃)(= RN , SN (c̃) or HN (c̃))
of curvature c̃:
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Theorem E. Let f : Mn → M̃n+p(c̃) be a 2-planar geodesic immersion of an
n-dimensional Riemannian manifold into an (n+p)-dimensional complete simply
connected real space form M̃n+p(c̃). Then Mn is totally umbilic in M̃n+p(c̃) or
Mn is locally congruent to a compact symmetric space of rank one imbedded into
some sphere in M̃n+p(c̃) through the first standard minimal imbedding.

Combining Theorem E with our discussion in this paper, we obtain the follow-
ing immediately.

Theorem 8. Let f : Mn → M̃n+p(c̃) be an isometric immersion of an n-dimen-
sional Riemannian manifold into an (n + p)-dimensional complete simply con-
nected real space form M̃n+p(c̃). Suppose that for each geodesic γ on Mn the
curve f ◦ γ is a curve of order 2 in the ambient space M̃n+p(c̃). Then Mn is
totally umbilic in M̃n+p(c̃) or Mn is locally congruent to a compact symmet-
ric space of rank one imbedded into some sphere in M̃n+p(c̃) through the first
standard minimal imbedding.
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