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Abstract. The purpose of this paper is to characterize all totally geodesic
Kähler submanifolds by some circles.

1. Introduction.

This paper is a part of a joint work with Professors T. Adachi and S. Maeda [SMA].
We first review the definition of circles. Let γ = γ(s) be a regular curve

parametrized by its arclength s in a Riemannian manifold M . Then the curve
γ is called a circle if there exist a field V = V (s) of unit vectors along γ and a
constant k (≥ 0) satisfying

(1)

{
∇γ̇ γ̇ = kV,

∇γ̇V = −kγ̇,

where ∇γ̇ denotes the covariant differentiation along γ with respect to the Rie-
mannian connection ∇ of M . The constant k is called the curvature of the circle.
A circle of curvature zero is nothing but a geodesic. For each point x ∈ M , each
orthonormal pair (u, v) of vectors at x and each positive constant k, there exists
locally a unique circle γ = γ(s) on M with initial condition that γ(0) = x, γ̇(0) = u
and ∇γ̇ γ̇(0) = kv. For details, see [NY].

We here recall the following two parallel surfaces in Euclidean space. Let f1 be
a totally umbilic imbedding of a 2-dimensional standard sphere S2(c) of curvature
c into Euclidean space R5, and let f2 = ι ◦ f be an isometric parallel immersion
of S2(c) into R5. Here f is the second standard minimal immersion of S2(c) into
S4(3c) and ι is a totally umbilic imbedding of S4(3c) into R5. We know that for
each great circle γ on S2(c), both of the curves f1 ◦ γ and f2 ◦ γ are circles in
the ambient space R5. This implies that we cannot distinguish f1 from f2 by the
extrinsic shape of geodesics of S2(c) in R5. However we emphasize that we can
distinguish these two isometric immersions f1 and f2 by the extrinsic shape of
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(small) circles of S2(c) in R5. In fact, for each small circle γ on S2(c), the curve
f1 ◦ γ is also a circle in R5 but the curve f2 ◦ γ is a helix of proper order 4 in the
ambient R5 (for details, see [S]).

In this context we are interested in the extrinsic shape of circles of the subman-
ifold.

We recall a Kähler circle in a Kähler manifold (M, J) with complex structure J .
Let γ be a circle in a Kähler manifold M . Then we see from (1) that 〈γ̇, JV 〉 is

constant along γ. Therefore it makes sense to define a Kähler circle as a circle γ
satisfying the condition that γ̇ and Y span a holomorphic plane, that is, Y = Jγ̇
or Y = −Jγ̇. Note that if γ is a Kähler circle, then (1) reduces to ∇γ̇ γ̇ = kJγ̇ or
∇γ̇ γ̇ = −kJγ̇.

Let M be a complex n-dimensional complex space form Mn(c), which is lo-
cally either a complex projective space CP n(c) of holomorphic sectional curvature
c (> 0), a complex Euclidean space Cn or a complex hyperbolic space CHn(c) of
holomorphic sectional curvature c (< 0). Kähler circles γ of curvature k on M are
the following plane curves:

γ
circle
⊂ CP 1(c)

Kähler−−−−−−−−−→
totally geodesic

CP n(c),

γ
circle
⊂ C1 Kähler−−−−−−−−−→

totally geodesic
Cn,

γ
circle
⊂ CH1(c)

Kähler−−−−−−−−−→
totally geodesic

CHn(c).

In this paper we pay particular attention to Kähler circles. Nomizu characterized
totally geodesic complex projective spaces among Kähler submanifolds in a complex
projective space by an extrinsic property of geodesics in his paper [N]. He gives
the following : A Kähler submanifold Mn in a complex projective space CP n+p is
locally congruent to CP n, which is a totally geodesic Kähler submanifold of CP n+p,
if every geodesic on Mn is locally contained in a complex projective line CP 1 in
CP n+p.

Motivated by this characterization, we shall characterize all totally geodesic
Kähler immersions into an arbitrary Kähler manifold by the extrinsic shape of
Kähler circles on the submanifold.

2. Results.

For the characterization of totally geodesic Kähler immersions, we review the
definition of a Frenet curve of order 2 on a Riemannian manifold.

A smooth curve γ = γ(s) parametrized by its arclength s on a Riemannian
manifold M is called a Frenet curve of order 2 if there exist a field V = V (s) of
unit vectors along γ and a positive function κ = κ(s) satisfying

(2)

{
∇γ̇ γ̇ = κV,

∇γ̇V = −κγ̇.

The function κ is called the curvature of γ. Of course a circle of positive curvature
is a Frenet curve of order 2 in a trivial sense and a Frenet curve of order 1 is nothing
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but a geodesic.

Theorem. Let f be a Kähler isometric immersion of a Kähler manifold M into

an arbitrary Kähler manifold M̃ . Then the following conditions are equivalent:

(a) f is a totally geodesic immersion.
(b) There exists k > 0 satisfying that f maps every Kähler circle of curvature k

on M to a circle in M̃ .
(c) There exists k > 0 satisfying that f maps every Kähler circle of curvature k

on M to a Frenet curve of order 2 in M̃ .

Proof. It suffices to show that (c) implies (a). Let γ be a Kähler circle of curvature
k on M which satisfies ∇γ̇ γ̇ = ±kJγ̇. By the assumption it is mapped to a Frenet

curve f ◦ γ of order 2 in the ambient manifold M̃ satisfying the equations

(3)

{
∇̃γ̇ γ̇ = κ̃V,

∇̃γ̇V = −κ̃γ̇,

where ∇̃ denotes the covariant differentiation on M̃ and κ̃ = ‖∇̃γ̇ γ̇‖. Here for
simplicity we usually denote the curve f ◦ γ by γ. We get from (3)

κ̃∇̃γ̇∇̃γ̇ γ̇ = κ̃∇̃γ̇(κ̃V ) = κ̃′∇̃γ̇ γ̇ − κ̃3γ̇,

where κ̃′ = d
ds

κ̃ and s is the arclength parameter of γ. So we obtain equation

(4) κ̃(∇̃γ̇∇̃γ̇ γ̇ + κ̃2γ̇) = κ̃′∇̃γ̇ γ̇.

We calculate the covariant differentiation ∇̃ by use of the formulae of Gauss and
Weingarten :

(5) ∇̃XZ = ∇XZ + σ(X, Z), ∇̃Xξ = DXξ − AξX

where σ denotes the second fundamental form of f . Here, we define the covariant
differentiation ∇̄ of the second fundamental form σ with respect to the connection
in (tangent bundle) + (normal bundle) as follows:

(∇̄Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ).

It follows from (5) that

(6)
∇̃γ̇∇̃γ̇ γ̇ = ∇γ̇∇γ̇ γ̇ + σ(∇γ̇ γ̇, γ̇)− Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

= −k2γ̇ ± 3kJ(σ(γ̇, γ̇))− Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇)

and

(7) κ̃2 = 〈∇̃γ̇ γ̇, ∇̃γ̇ γ̇〉 = k2 + ‖σ(γ̇, γ̇)‖2.

We obtain from (4),(6) and (7)

(8)
κ̃{‖σ(γ̇, γ̇)‖2γ̇ ± 3kJ(σ(γ̇, γ̇))− Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇)}

= κ̃′{±kJγ̇ + σ(γ̇, γ̇)}.
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Taking the tangential and the normal components for the submanifold M in equa-
tion (8), we obtain the following:

κ̃(−Aσ(γ̇,γ̇)γ̇ + ‖σ(γ̇, γ̇)‖2γ̇) = ±κ̃′kJγ̇,(9)

κ̃{±3kJ(σ(γ̇, γ̇)) + (∇̄γ̇σ)(γ̇, γ̇)} = κ̃′σ(γ̇, γ̇).(10)

Take the inner product of both hand-sides of (9) with Jγ̇. We then find

±κ̃′k = −κ̃〈Aσ(γ̇,γ̇)γ̇, Jγ̇〉 = −κ̃〈σ(γ̇, γ̇), σ(γ̇, Jγ̇)〉 = −κ̃〈σ(γ̇, γ̇), J(σ(γ̇, γ̇))〉 = 0.

This implies that the only curvature function κ̃ of the curve f ◦ γ is constant, so

that this curve is a circle of positive curvature in the ambient manifold M̃ . This
shows (c) implies (b).

For an arbitrary unit tangent vector v ∈ TM we denote by γi (i = 1, 2) Kähler
circles of curvature k with γ̇i(0) = v ∈ TM :

∇γ̇1 γ̇1 = kJγ̇1, ∇γ̇2 γ̇2 = −kJγ̇2.

Following (10) we have

3kJ(σ(γ̇1, γ̇1)) + (∇̄γ̇1σ)(γ̇1, γ̇1) = 0,

−3kJ(σ(γ̇2, γ̇2)) + (∇̄γ̇2σ)(γ̇2, γ̇2) = 0.

Evaluating these at s = 0, we obtain

3kJ(σ(v, v)) + (∇̄vσ)(v, v) = 0 = −3kJ(σ(v, v)) + (∇̄vσ)(v, v),

which lead us to σ(v, v) = 0. As v is an arbitrary unit vector we find that M is

totally geodesic in M̃ .

A curve is said to be a plane curve in a Reimannian manifold M if it is locally
contained on some real 2-dimensional totally geodesic submanifold of M .

As an immediate consequence of this Theorem, we obtain the following charac-
terization of totally geodesic Kähler submanifolds in a complete simply connected

complex space form M̃m(c).

Corollary. Let f be a Kähler isometric immersion of a Kähler manifold Mn

into a complete simply connected complex space form M̃m(c). Then the following
conditions are equivalent:

(a) f is a totally geodesic immersion.
(b) There exists k > 0 satisfying that f maps every Kähler circle of curvature k

on Mn to a circle in M̃m(c).
(c) There exists k > 0 satisfying that f maps every Kähler circle of curvature k

on Mn to a Frenet curve of order 2 in M̃m(c).
(d) There exists k > 0 satisfying that f maps every Kähler circle of curvature k

on Mn to a plane curve in M̃m(c).
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3. Remarks.

We first claim following.

Proposition. In a nonflat complex space form M̃m(c)(= CPm(c) or CHm(c))
generally, a Frenet curve γ of order 2 is not a plane curve.

Proof. We take a Frenet curve γ of order 2 in a Kähler manifold M with complex
torsion τ which is defined by τ = 〈γ̇, JV 〉. This complex torsin τ(−1 ≤ τ ≤ 1) is
constant from (2). In fact by direct computation, we find that

∇γ̇〈γ̇, JV 〉 = 〈∇γ̇ γ̇, JV 〉+ 〈γ̇, J∇γ̇V 〉 = κ〈V, JV 〉 − κ〈γ̇, Jγ̇〉 = 0.

Needless to say we can take a Frenet curve of order 2 with each complex torsion
τ(−1 ≤ τ ≤ 1) in an arbitrary Kähler manifold. Indeed, for any unit vector

X ∈ TM̃m(c) and any constant τ (|τ | < 1, τ 6= 0) we can take a unit vector

Y ∈ TM̃m(c) satisfying 〈X, Y 〉 = 0 and 〈X, JY 〉 = τ as follows: For a unit vector

Y1 ∈ TM̃m(c) which satisfies 〈X, Y1〉 = 〈JX, Y1〉 = 0 we put

Y := −τJX +
√

1− τ 2Y1.

Then the vector Y satisfies ‖Y ‖ = 1 and

〈X, Y 〉 = 〈X,−τJX +
√

1− τ 2Y1〉 = 0,

〈X, JY 〉 = 〈X, τX +
√

1− τ 2JY1〉 = τ.

Note that for a Frenet curve γ of order 2 in M̃m(c), γ is a plane curve if and only
if τ = 0,±1.

When τ = 0, this plane curve γ is as follows:

γ ⊂ RP 2( c
4
)

totally real−−−−−−−−−→
totally geodesic

CP n(c),

γ ⊂ RH2( c
4
)

totally real−−−−−−−−−→
totally geodesic

CHn(c).

When τ = ±1, this plane curve γ is as follows:

γ ⊂ CP 1(c)
Kähler−−−−−−−−−→

totally geodesic
CP n(c),

γ ⊂ CH1(c)
Kähler−−−−−−−−−→

totally geodesic
CHn(c).

In the condition (d) of Corollary, the plane curve f ◦ γ is nothing but a Frenet

curve of order 2 with complex torsion τ = 1 or τ = −1 in M̃m(c).

Remark. If we put k = 0 in the statements of Theorem and Corollary, these re-
sults are no longer true. For example, we consider the second Veronese imbedding
f : CP n(c/2) −→ CP (n2+3n)/2(c) which is defined by

(z0, . . . , zn) 7−→ (z2
0 ,
√

2z0z1, . . . , z
2
n),
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where z0, . . . , zn is the homogeneous coordinates of CP n. This non-totally geodesic
Kähler isometric imbedding f maps every geodesic on CP n(c/2) to a circle of
curvature

√
c/2 in a real projective plane RP 2(c/4).
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