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SOME QUESTIONS ON TRANSFINITE DIMENSIONS
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Dedicated to Professor Maretsugu Yamasaki for his 60th birthday

Abstract. In the present note, we summarize open questions arising from recent
research in transfinite dimensions.

1. Introduction

In the present note, we shall consider some open questions on transfinite di-
mensions. Some of them are already asked by the author in the literatures.

We denote trInd (trind) by large (small) transfinite inductive dimension which
is a natural transfinite extension of large (small) inductive dimension Ind (ind).
A normal space X is called strongly countable-dimensional if X is the union of
countably many closed subsets Xn, n = 1, 2, . . . , with dimXn < ∞. For each
ordinal number α, we write α = λ(α) + n(α), where λ(α) is a limit ordinal and
n(α) is a finite ordinal. For a normal space X and a non-negative integer n, we
put

Pn(X) =
∪

{U : U is an open set of X such that dim U ≤ n}.

Let X be a normal space and α be either an ordinal number or the integer −1.
The strong small transfinite dimension sind of X is defined as follows ([B]):

(i) sindX = −1 if and only if X = ∅.
(ii) sindX ≤ α if X is expressed in the form X =

∪
{Pξ : ξ < α}, where

Pξ = Pn(ξ)(X \
∪
{Pη : η < λ(ξ)}).

If sind X ≤ α for some α, we say that X has strong small transfinite dimension.
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Recall from [H4] that a normal space X has strong large transfinite dimension
if X has both large transfinite dimension and strong small transfinite dimen-
sion. The following characterization of spaces that have strong large transfinite
dimension is useful.

Proposition A [H3, Propositions 2.2 and 2.3]. Let X be a metrizable space.
Then X has strong large transfinite dimension if and only if X is finitistic and
strongly countable-dimensional.

The concept of finitistic spaces was introduced by Swan [Sw] for working in
fixed point theory and is applied to the theory of transformation groups by using
the cohomological structures (cf. [AP]). For a family U of a space X the order
ordU of U is defined as follows: ordx U = |{U ∈ U : x ∈ U}| for each x ∈ X and
ordU = sup{ordx U : x ∈ X}. We say a family U has finite order if ordU = n for
some natural number n. A space X is said to be finitistic if every open cover of
X has an open refinement with finite order. We notice that finitistic spaces are
also called boundedly metacompact spaces (cf. [FMS]). It is clear that all compact
spaces and all finite dimensional paracompact spaces are finitistic spaces. More
precisely, we have a useful characterization of finitistic spaces.

Proposition B [H2], [DMS]. A paracompact space X is finitistic if and only
if there is a compact subspace C of X such that dimF < ∞ for every closed
subspace F with F ∩ C = ∅.

The dimension-theoretic properties of finitistic spaces are investigated by sev-
eral authors (cf. [DP], [DS], [DT], [DMS] [H2] and [H6]).

We denote the set of natural numbers by N. We refer the reader to [E] and
[N] for basic results in dimension theory.

2. Questions arising from characterizations

by means of K-approximations

In [DMS], Dydak-Mishra-Shukla introduced a concept of a K-approximation
of a mapping to a metric simplicial complex and characterized n-dimensional
spaces and finitistic spaces in terms of K-approximations. Let X be a space, K

a metric simplicial complex and f : X → K a continuous mapping. A mapping
g : X → K is said to be a K-approximation of f if for each simplex σ ∈ K

and each x ∈ X, f(x) ∈ σ implies g(x) ∈ σ. A K-approximation g : X → K

of f is called an n-dimensional K-approximation if g(X) ⊂ K(n) and a finite
dimensional K-approximation if g(X) ⊂ K(m) for some natural number m, where
K(m) denotes the m-skeleton of K. We have the following characterizations of
infinite-dimensional spaces by means of K-approximations in [H5]. For a space
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X we denote

D(X) = {D : D is a closed discrete subset of X}.

Theorem 2.1 [H5, Theorem]. For a metrizable space X the following are equiv-
alent.

(a) X has strong large transfinite dimension.
(b) There is a function ϕ : D(X) → ω such that for every metric simplicial

complex K and every continuous mapping f : X → K there is a K-
approximation g of f such that g(D) ⊂ K(ϕ(D)) for each D ∈ D(X).

(c) For every integer m ≥ −1 there is a function ψ : D(X) → ω such that
for every metric simplicial complex K and every continuous mapping f :
X → K there is a finite dimensional K-approximation g of f such that
g(D) ⊂ K(ψ(D)) for each D ∈ D(X) and g|f−1(K(m)) = f |f−1(K(m)).

Theorem 2.2 [H5, Corollary]. For a paracompact space X the following are
equivalent.

(a) X is a strongly countable-dimensional space.
(b) There is a function ϕ : X → ω such that for every metric simplicial

complex K and every continuous mapping f : X → K there is a K-
approximation g of f such that g(x) ∈ K(ϕ(x)) for each x ∈ X.

(c) For every integer m ≥ −1 there is a function ψ : X → ω such that
for every metric simplicial complex K and every continuous mapping f :
X → K there is a K-approximation g of f such that g(x) ∈ K(ψ(x)) for
each x ∈ X and g|f−1(K(m)) = f |f−1(K(m)).

Concerning the Theorems 2.1 and 2.2, we can ask the following.

Question 2.1. Are the conditions (a) and (b) in Theorem 2.1 equivalent for
paracompact spaces?

We have a simple answer the question, i.e., the implication (b) ⇒ (a) does not
hold. In fact, for each m,n ∈ N with m ≤ n, Vopěnka [Vo] constructed a compact
space Xm,n such that dimXm,n = m and IndXm,n = n. Let X be the topological
sum

⊕∞
n=1 X1,n of X1,n, n ∈ N. Then X does not have large transfinite dimension

(and hence X does not satisfy (a)). Since dimX = 1, it follows from [DMS] that
for every metric simplicial complex K and every continuous mapping f : X → K

there is a 1-dimensional K-approximation g of f . Hence X satisfies the condition
(b).

Now, we consider the following condition which is weaker than (a).
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(a’) X is a strongly countable-dimensional space satisfying the following condi-
tion (K) (cf. [P]):

(K) There is a compact subspace C of X such that dimF < ∞ for every
closed subspace F of X with F ∩ C = ∅.

We consider the relations between (a), (b) in Theorem 2.1 and (a’) for normal
(paracompact) spaces.

In [E, §7.3], Engelking reformulated the class of spaces that have strong small
transfinite dimension by use of a new dimension function transfinite dimensional
kernel trker. He called a space that has transfinite dimensional kernel as a shallow
space. One should notice that a normal space X is a shallow space if and only
if X has strong small transfinite dimension and sindX = trkerX if sindX is a
limit ordinal and sindX = trkerX + 1 otherwise.

We shall consider four implications separately.

I. (a) ⇒ (a’).

Fact 2.1 ([E, Theorem 7.1.23]). If a weakly paracompact, strongly hereditar-
ily normal space X has large transfinite dimension IndX, then X satisfies the
condition (K).

Fact 2.2 ([E, Theorem 7.3.13]; [H1, Theorem 1.2] for metrizable spaces). If
a weakly paracompact perfectly normal shallow space X, then X is a strongly
countable-dimensional space.

We can ask the following.

Question 2.2. Can we drop the perfectness in Fact 2.2? I.e., is a weakly para-
compact normal shallow space a strongly countable-dimensional?

We have a partial answer the question.

Theorem 2.3. Let X be a hereditarily weakly paracompact and hereditarily nor-
mal space. If X is a shallow space, then X is a strongly countable-dimensional
space.

Proof. We show by the transfinite induction on sindX = α.
Case 1. Suppose that α is a limit ordinal number. We notice that X is expressed
in the form X =

∪
{Pξ : ξ < α}, where Pξ = Pn(ξ)(X \

∪
{Pη : η < λ(ξ)}). We

put Gξ =
∪
{Pη : η < ξ} for ξ < α. Then {Gξ : ξ < α} is an open covering of

X and sindGξ ≤ ξ < α. By the inductive assumption, Gξ is strongly countable-
dimensional for each ξ < α. Hence it follows from [E, Theorem 5.2.17] that X is
strongly countable-dimensional.
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Case 2. Suppose that α = β + 1. Let Y = X \
∪
{Pξ : ξ < λ(α)}).

Then sindY ≤ β < α. By the inductive assumption, Y is strongly countable-
dimensional. Hence there is a countable cover {F1, F2, . . . } of Y by finite di-
mensional closed sets. Since Pα is a closed set of X such that X = Y ∪ Pα and
dimPα = n(α) < ∞. We put Ei = Fi ∪ Pα for each i ∈ N. Then it follows
that Ei closed in X and dimEi ≤ max{dimFi,dimPα}. Hence X is strongly
countable-dimensional. ¤

Corollary 2.1. Let X be a hereditarily weakly paracompact, strongly hereditarily
normal space. Then the implication (a) ⇒ (a’) holds.

Question 2.2’. Do Theorem 2.3 and the Corollary 2.1 hold for weakly paracom-
pact normal spaces?

II. (a’) ⇒ (a).

It is known that a normal space X is a shallow space if and only if every
non-empty closed subspace F of X contains a non-empty normal open subspace
U of F such that dimU < ∞ ([E, Problem 7.3.A]). Hence, by the Baire category
theorem, every normal Čech-complete, strongly countable-dimensional space is a
shallow space. This implies the following.

Proposition 2.1. Let X be a normal space satisfying the condition (K). If X is
a strongly countable-dimensional space, then X is a shallow space.

Proof. Let C be a compact subspace of X such that dimF < ∞ for every closed
subspace F of X with F ∩ C = ∅. Then C is a compact strongly countable-
dimensional space. Hence C is shallow and hence X is a shallow space by [E,
Problem 7.3.H]. ¤

As we mentioned above, there is a paracompact space X such that dimX = 1,
but X does not have large transfinite dimension. This example leads the Ind-
version of the condition (a’). A normal space X is strongly countable-dimensional
with respect to Ind (shortly s.c.d.-Ind) if X is a union of countably many closed
subspaces Xn, n ∈ N, such that IndXn < ∞ for each n ∈ N. Further, we
introduce a notion similar to the condition (K).

(K-Ind) There is a compact subspace C of X such that IndF < ∞ for every closed
subspace F of X with F ∩ C = ∅.

We consider the following.

(a”) X is an s.c.d.-Ind space satisfying the condition (K-Ind).

Then we have
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Proposition 2.2. Let X be a hereditarily normal space. If X is an s.c.d.-Ind
space satisfying the condition (K-Ind), then X has large transfinite dimension
IndX.

Proof. Let C be a compact subspace of X such that IndF < ∞ for every closed
subspace F of X with F ∩ C = ∅. Since C is an s.c.d.-Ind compact space, by
[F, Theroems 1, 3], C has large transfinite dimension. Then it follows from [E,
Lemma 7.1.24] that X has large transfinite dimension and IndX ≤ ω0+IndC. ¤

Question 2.3. Does Proposition 2.2 hold for normal spaces?

Question 2.4 [F, Problem 3]. Does every compact space which can be repre-
sented as the union of countably many subspaces which all have large transfinite
dimension have itself large transfinite dimension?

We notice that if Question 2.4 has an affirmative answer, then Question 2.3
does.

III. (a’) ⇒ (b).

By the proof of Theorem 2.1 (see [H5]), we have the following.

Proposition 2.3. Let X be a strongly countable-dimensional paracompact space.
If there is a compact subspace C of X such that C has a countable character and
IndF < ∞ for every closed subspace F of X with F ∩ C = ∅, then X satisfies
the condition (b).

We do not know the proposition above holds for every strongly countable-
dimensional paracompact space satisfying the condition (K).

IV. (b) ⇒ (a’).

The proof of (b) ⇒ (a) of Theorem 2.1 works well for paracompact spaces and it
shows that the condition (b) implies the condition (a’) ([H5]). (The metrizability
is used for the equivalence between (a) and (a’) in Theorem 2.1). Hence the
implication (b) ⇒ (a’) holds for every paracompact space X.

We turn our attention to finitistic spaces. In [H6], we proved that there is a
universal space L(τ) for the class of finitistic metrizable spaces with the weight
≤ τ and asked if {h : h : X → L(τ) is a homeomorphic embedding} is dense in
the function space C(X,L(τ)) ([H6, Question 1]). Quite recently, Kulesza answers
the question negatively. The following question asked in the same paper still
remains open.
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Question 2.5 [H6, Question 2]. Let X be a metrizable (or paracompact) space
such that {f ∈ C(X, Iω) : f(X) \ f(X) is countable-dimensional} is residual in
C(X, Iω). Is X finitistic?

3. Questions on order dimension

In this section, we shall consider a transfinite dimension defined by an order
of closed mappings. In 1955, K. Morita [M] proved a fundamental theorem on
the dimension and closed mappings in metrizable spaces : For a metrizable space
X dimX ≤ n if and only if there are a metrizable space Z with dimZ = 0 and a
closed mapping f of Z onto X such that every fiber of f contains at most n + 1
points. The theorem has many applications to infinite dimensional spaces. We
begin with some definitions.

Definition 3.1 [B2]. Let L be a set, FinL the collection of all non-empty finite
subsets of L and M a subset of Fin L. Let α > 0 be an ordinal number. For
σ ∈ {∅} ∪ FinL, we put

Mσ = {τ ∈ FinL : σ ∪ τ ∈ M and σ ∩ τ = ∅}.

If σ = {a}, we write Mσ = Ma. Then the order OrdM of M is inductively
defined as follows:

(1) OrdM = 0 if M = ∅.
(2) OrdM ≤ α if OrdMa < α for each a ∈ L.

If OrdM ≤ α for some ordinal number α, we say that OrdM exists (or M has
OrdM).

We notice that OrdM ≤ n iff |σ| ≤ n for each σ ∈ M , where n < ω.

By use of this order, F. G. Arenas ([A]) defined an order of mappings as follows.

Definition 3.2 [A]. Let X and Y be topological spaces and f : X → Y a
mapping. Let T (X) be the topology of X. We put

O(f) = {τ = {U1, . . . , Un} ∈ FinT (X) :

Ui ∩ Uj = ∅ for i 6= j and
n∩

i=1

f(Ui) 6= ∅}.

Then the order Ord f of f is defined as Ord f = OrdO(f).

By use of the transfinite order of mappings, Arenas extended the covering
dimension to a transfinite dimension as follows.
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Definition 3.3 [A]. Let X be a Tychonoff space and α an ordinal number. Then
X has the order dimension O-dimX ≤ α if and only if there are a strongly zero-
dimensional space Z and a perfect mapping f of Z onto X such that Ord f ≤
α + 1. We say that X has the order dimension O-dimX (or O-dimX exists) if
O-dimX ≤ α for some ordinal number α.

The following is a characterization of spaces that have large transfinite dimen-
sion in terms of finite-to-one closed continuous mappings.

Theorem 3.1 [HY, Theorem 2.7]. A metrizable space X has the order dimension
O-dimX if and only if X has large transfinite dimension IndX.

Connects with the theorem, we can ask the following.

Question 3.1. Does the theorem hold for every paracompact space?

A normal space X is called countable-dimensional if X is the union of countably
many subspaces Xn, n = 1, 2, . . . , with dimXn < ∞.

Question 3.2 [HY, Question 2.9]. Let X be a compact space having the order
dimension O-dimX. Is X countable-dimensional?

Remark. In [A], Arenas mentioned that there is a compact space X having the
order dimension O-dimX, but X is not countable-dimensional. However, his
proof is not correct (see [HY, Remark 2.8]). Hence the question above still seems
to be open.

We further the investigation of the relation between the order dimension and
large transfinite dimension.

Theorem 3.2 [HY, Theroem 3.5]. Let X be a metrizable space having the order
dimension O-dimX. Then the inequality IndX ≤ O-dimX holds.

Concerning the result above, we can ask the following:

Question 3.3 [HY, Question 3.6]. Let X be a metrizable space having large
transfinite dimension IndX. Does the inequality O-dimX ≤ IndX hold?

We notice that Ind Sα = O-dim Sα = α holds for every ordinal number α < ω1,
where Sα denotes the Smirnov’s compactum ([HY, Theorem 3.8]).
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[Vo] P. Vopěnka, On the dimension of compact spaces, Czechoslovak Math. J. 8 (1958),

319–327.

Department of Mathematics, Shimane University, Matsue, 690-8504 JAPAN

e-mail: hattori@math.shimane-u.ac.jp


