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Abstract. We are concerned with size-structured population models having aging
and birth functions of general type. We show the continuous dependence of the

solution on the aging and birth functions by showing the exact estimate.

1. Introduction

We are concerned with size structured population models having the aging and
birth functions of general type. In our model, we treat the growth rate depending
on the individual’s size and time. In this framework, N. Kato and H. Torikata
[2] have shown the results on local existence and continuous dependence on the
initial data. It is important to know that the solution of the system is stable with
respect to small purterbations of given data. This is a brief note on the continuous
dependence of the solution on the aging and birth functions as well as the initial
data. Actually, we show the exact estimate which generalizes [2, Theorem 2.2] and
give a generalization of the result given by G. Webb [4, Theorem 2.6].

Our model is motivated by the growth of plants in forests or plantations. In case
of plants, it is natural to consider the growth rate depending on the individual’s
size and time. For, the growth of plants depends on their circumstances, which
certainly change with time, and the size is important to catch the sunlight. The
model is formulated as the following initial boundary value problem in which some
nonlocal terms are involved:

(SDP)


ut + (V (x, t)u)x = G(u(·, t))(x), x ∈ [0, l), 0 ≤ t ≤ T,

V (0, t)u(0, t) = C(t) + F (u(·, t)), 0 ≤ t ≤ T,

u(x, 0) = ν(x), x ∈ [0, l),
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where the unknown function u(x, t) represents the density of population with re-
spect to the size x at time t and hence

∫ x2

x1
u(x, t)dx is the population with size

between x1 and x2 at time t. l ∈ (0,∞] is the maximum size, F corresponds to the
birth process and G corresponds to the death and migration processes. Usually, F
and G involve some nonlocal terms as in the example of Gurtin-MacCamy type (see
below). The function V is the growth rate and C describes the inflow of zero-size
individuals (i.e. newborns) from an external source.

For the related works, we refer to A. Calsina and J. Saldaña [1] where they have
treated the nonlinear growth rate but restricted the birth and aging functions to
the Gurtin-MacCamy type:

F (u(·, t)) =
∫ l

0

β(x, P (t))u(x, t)dx,

G(u(·, t))(x) = −m(x, P (t))u(x, t),

where P (t) :=
∫ l

0
u(x, t)dx is the total population at time t. On the other hand G.

Webb [4] developed the theory of age-dependent population dynamics having aging
and birth functions of general type. Note that the particular case V (x, t) ≡ 1 is
nothing but the age-depandent model.

As mentioned above, our purpose is to show the continuous dependence of the
solution on given data. The result here is not sufficiently general because we fix
the growth rate. The dependence on the growth rate is important but possesses an
intrinsic difficulty. We will publish the full general result elsewhere.

This paper is organized as follows. In Section 2, we review some existence results
obtained in [2] and [3]. Our main result is stated and proved in Section 3.

2. Existence results (Review)

In this section we state our general assumptions for the models and review some
results obtained by N. Kato and H. Torikata [2] and N. Kato [3].

Let L1 := L1(0, l; RN ) be the Banach space of Lebesgue integrable functions from
[0, l) to RN with usual norm ‖f‖L1 :=

∫ l

0
|f(x)|dx for f ∈ L1, where | · | denotes the

norm of RN defined by |x| :=
∑N

i=1 |xi| for x = (x1, · · · , xN ) ∈ RN . For T > 0, let
LT := C([0, T ]; L1) be the Banach space of continuous L1-valued functions on [0, T ]
with the supremum norm ‖u‖LT

:= sup0≤t≤T ‖u(t)‖L1 for u ∈ LT . It is known (cf.
[4, Lemma 2.1]) that u ∈ LT is identified with the elements in L1((0, l)×(0, T ); RN )
by u(t)(x) = u(x, t) for 0 ≤ t ≤ T , a.e. x ∈ (0, l).

We make the following general hypotheses for (SDP).
(F) F : L1 → RN is locally Lipschitz, i.e.,there is an increasing function cF :

[0,∞) → [0,∞) such that

|F (φ1) − F (φ2)| ≤ cF (r)‖φ1 − φ2‖L1

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.
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(G) G : L1 → L1 is locally Lipschitz, i.e., there is an increasing function cG :
[0,∞) → [0,∞) such that

‖G(φ1) − G(φ2)‖L1 ≤ cG(r)‖φ1 − φ2‖L1

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.
(V) V : [0, l) × [0, T ] → (0,∞) is a bounded function with upper bound V̄ .

V (x, t) is Lipschitz continuous with respect to x uniformly for t, i.e., there
is a constant LV > 0 such that

|V (x1, t) − V (x2, t)| ≤ LV |x1 − x2|, ∀x1, x2 ∈ [0, l), t ∈ [0, T ].

For each x ∈ [0, l), V (x, t) is continuous in t. Further, in case l < ∞, we
assume V (l, ·) = 0.

(C) C : [0, T ] → RN is a continuous function.
The characteristic curve through (x0, t0) ∈ [0, l)× [0, T ] is defined by the solution

of the differential equation

(2.1)

{
x′(t) = V (x(t), t), t ∈ [t0, T ]

x(t0) = x0 ∈ [0, l).

We denote the solution by ϕ(t; t0, x0). Note that the Lipschitz continuity of V
assumed in (V) guarantees the existence of the unique solution x(t) = ϕ(t; t0, x0)
of (2.1) on [t0, T ].

Let z(t) := ϕ(t; 0, 0) denote the characteristic curve through the origin (0, 0)
in (x, t)-plane. This curve is the trajectory in the (x, t)-plane of the newborns at
t = 0. For (x0, t0) ∈ [0, l) × [0, T ] satisfying x0 < z(t0), we define the initial time
τ := τ(t0, x0) ∈ [0, t0] implicitly by the relation

(2.2) ϕ(t; τ, 0) = x, or equivalently, ϕ(τ ; t, x) = 0.

For each (x0, t0) ∈ [0, l) × [0, T ], let τ∗(t0, x0) := τ(t0, x0) for x0 < z(t0) and
τ∗(t0, x0) := 0 for x0 ≥ z(t0). Note that the solution x(t) = ϕ(t; t0, x0) of (2.1) can
be extended on [τ∗(t0, x0), T ] and satisfies the integral equation

ϕ(t; t0, x0) = x0 +
∫ t

t0

V (ϕ(σ; t0, x0), σ)dσ for t ∈ [τ∗(t0, x0), T ].

Notice that x(t) = ϕ(t; t0, x0) satisfies 0 ≤ x(t) < l for every t ∈ [τ∗(t0, x0), T ]
provided that x0 ∈ [0, l). In case l < ∞, if x0 = l, then x(t) ≡ l.

Along the characteristic curves, we seek the solution. Observe that if u(x, t)
satisfies (SDP), then u(ϕ(s; t, x), s) is differentiable a.e. s ∈ (τ∗(t, x), T ) and satisfies

d

ds
u(ϕ(s; t, x), s) = G(u(·, s))(ϕ(s; t, x)) − Vx(ϕ(s; t, x), s)u(ϕ(s; t, x), s).

By integrating this relation over (τ∗(t, x), T ), we come to the following
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Definition 2.1. We call u ∈ LT a solution of (SDP) on [0, T ] if u satisfies

u(x, t) =

{ C(τ)+F (u(·,τ))
V (0,τ) +

∫ t

τ
G̃s(u(·, s))(ϕ(s; τ, 0))ds a.e. x ∈ (0, z(t)),

ν(ϕ(0; t, x)) +
∫ t

0
G̃s(u(·, s))(ϕ(s; t, x))ds a.e. x ∈ (z(t), l),

where τ := τ(t, x) is given by (2.2) and G̃t is defined by

G̃t(φ)(x) := G(φ)(x) − Vx(x, t)φ(x), ∀t ∈ [0, T ], a.e. x ∈ (0, l)

for φ ∈ L1.

Remark. Note that if V ≡ 1 (i.e. the age-dependent case), then the above definition
becomes exactly the same as [4, (1.49)].

The following local existence result is obtained by N. Kato and H. Torikata [2,
Theorems 2.1].

Theorem 2.1. (Local existence) Let (F), (G), (V), and (C) hold. Then for each
r > 0, there exists some T > 0 depending on r such that for the initial data ν ∈ L1

satisfying ‖ν‖L1 ≤ r, there exists the uniqne solution u ∈ LT of (SDP) on [0, T ].

Let L1
+ := L1(0, l; RN

+ ), where RN
+ is the usual positive cone in RN . The global

existence of positive solution given by N. Kato [3] is stated as follows.

Theorem 2.2. (Positive global existence) In addition to (F), (G) and (V), we
assume the following hypotheses:

(F+) F (L1
+) ⊂ RN

+ .
(G+) There is an increasing function c+ : [0,∞) → [0,∞) such that r > 0, φ ∈ L1

+

and ‖φ‖L1 ≤ r imply G(φ) + c+(r)φ ∈ L1
+.

(C+) C : [0, T ] → RN
+ is a continuous function.

Assume further that there exists some ω ∈ R satisfying

N∑
i=1

[
F (φ)i +

∫ l

0

G(φ)i(x)dx
]
≤ ω

N∑
i=1

∫ l

0

φi(x)dx, ∀φ ∈ L1
+.

Then for each ν ∈ L1
+ and T > 0, there exists a unique solution u ∈ C([0, T ];L1

+)
of (SDP) on [0, T ] and the following estimate holds:

‖u(·, t)‖L1 ≤ e(ω+LV )t‖ν‖L1 +
∫ t

0

e(ω+LV )(t−s)|C(s)|ds, t ∈ [0, T ].
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3. Continuous dependence on birth and aging functions

Our interest here lies in whether the solution depends continuously on the birth
and aging functions as well as the initial data. For that purpose, let n ∈ N ∪ {0}
and consider the following approximating problem:

(SDPn)


∂tun + ∂x(V (x, t)un) = Gn(un(·, t))(x), x ∈ [0, l), 0 ≤ t ≤ T,

V (0, t)un(0, t) = Cn(t) + Fn(un(·, t)), 0 ≤ t ≤ T,

un(x, 0) = νn(x), x ∈ [0, l).

Corresponding to the conditions (F), (G) and (C), we impose the following hy-
potheses on Fn, Gn and Cn:

(Fn) Fn : L1 → RN and there is an increasing function cF : [0,∞) → [0,∞)
(independent of n) such that

|Fn(φ1) − Fn(φ2)| ≤ cF (r)‖φ1 − φ2‖L1

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.
(Gn) Gn : L1 → L1 and there is an increasing function cG : [0,∞) → [0,∞)

(independent of n) such that

‖Gn(φ1) − Gn(φ2)‖L1 ≤ cG(r)‖φ1 − φ2‖L1

for all φ1, φ2 ∈ L1 with ‖φ1‖L1 , ‖φ2‖L1 ≤ r.
(Cn) Cn : [0, T ] → RN are continuous functions.

By the local existence result reviewed in Section 2, under the hypotheses (Fn),
(Gn), (Cn) and (V), for each n ∈ N ∪ {0} and for each initial data νn ∈ L1, there
exist some Tn > 0 and un ∈ LTn

such that un is a (local) solution of (SDPn) on
[0, Tn] (in the sense of Definition 2.1) :

un(x, t) =

{ Cn(τ)+Fn(un(·,τ))
V (0,τ) +

∫ t

τ
G̃s,n(un(·, s))(ϕ(s; τ, 0))ds a.e. x ∈ (0, z(t)),

νn(ϕ(0; t, x)) +
∫ t

0
G̃s,n(un(·, s))(ϕ(s; t, x))ds a.e. x ∈ (z(t), l),

(3.1)

where τ := τ(t, x) is given by (2.2) and G̃t,n is defined by

G̃t,n(φ)(x) := Gn(φ)(x) − Vx(x, t)φ(x), t ∈ [0, T ], a.e. x ∈ (0, l)

for φ ∈ L1.
Our main result is stated as follows:

Theorem 3.1. Let n ∈ N∪{0} and assume that (Fn), (Gn), (Cn) and (V) hold. Let
un ∈ LTn be the local solutions of (SDPn) on [0, Tn]. Suppose that there exist some
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T > 0 and r > 0 such that 0 < T ≤ infn∈N∪{0} Tn and supn∈N∪{0} ‖un‖LT ≤ r.
Then we have the following estimate:

(3.2) ‖un(·, t) − u0(·, t)‖L1 ≤ exp[(cF (r) + cG(r) + 2LV )t]L(n),∀t ∈ [0, T ],

where

L(n) :=
∫ T

0

|Cn(s) − C0(s)|ds +
∫ T

0

|Fn(u0(·, s)) − F0(u0(·, s))|ds

(3.3)

+
∫ T

0

‖Gn(u0(·, s)) − G0(u0(·, s))‖L1ds + ‖νn − ν0‖L1 .

In particular, assume further the following approximating conditions:

lim
n→∞

Fn(φ) = F0(φ) in RN , ∀φ ∈ L1,

lim
n→∞

Gn(φ) = G0(φ) in L1, ∀φ ∈ L1,

lim
n→∞

Cn = C0 in L1(0, T ; RN ),

lim
n→∞

νn = ν0 in L1.

(3.4)

Then we conclude that limn→∞ ‖un − u0‖LT
= 0.

Remark. Note that from the proof of Theorem 2.1 in Section 2 (see [2]), we find
that the local existing time Tn can be chosen independently of n provided that
the assumptions (Fn), (Gn), (Cn) and (3.4) hold. Also, in view of Theorem 2.2 in
Section 2, the assumption of existence of T > 0 and r > 0 as above is satisfied in
many natural settings.

Proof of Theorem 3.1. Firstly, we have

‖un(·, t) − u0(·, t)‖L1

≤
∫ z(t)

0

|Cn(τ) + Fn(un(·, τ))
V (0, τ)

− C0(τ) + F0(u0(·, τ))
V (0, τ)

|dx

+
∫ z(t)

0

∫ t

τ

|G̃s,n(un(·, s))(ϕ(s; τ, 0)) − G̃s,0(u0(·, s))(ϕ(s; τ, 0))|dsdx

+
∫ l

z(t)

|νn(ϕ(0; t, x)) − ν0(ϕ(0; t, x))|dx

+
∫ l

z(t)

∫ t

0

|G̃s,n(un(·, s))(ϕ(s; t, x))ds − G̃s,0(u0(·, s))(ϕ(s; t, x))|dsdx

=: L1 + L2 + L3 + L4.
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For L1, we have the following estimate:

L1 ≤
∫ z(t)

0

1
V (0, τ)

|Cn(τ) − C0(τ)|dx(3.5)

+
∫ z(t)

0

1
V (0, τ)

|Fn(un(·, τ)) − Fn(u0(·, τ))|dx

+
∫ z(t)

0

1
V (0, τ)

|Fn(u0(·, τ)) − F0(u0(·, τ))|dx

≤
∫ T

0

eLV (t−s)|Cn(s) − C0(s)|ds

+ cF (r)
∫ t

0

eLV (t−s)‖un(·, s) − u0(·, s)‖L1ds

+
∫ T

0

eLV (t−s)|Fn(u0(·, s)) − F0(u0(·, s))|ds.

Here, we have used the change of variable s = τ = τ(t, x) (cf. [2, Lemma 3.4 (i)]).
Next, by Fubini’s theorem and by changing variable ξ = ϕ(s; τ, 0) = ϕ(s; t, x)

(cf. [2, Lemma 3.4 (ii)]), we find that

L2 + L4 =
∫ t

0

∫ l

τ−1
t (s)

|G̃s,n(un(·, s))(ϕ(s; t, x)) − G̃s,0(u0(·, s))(ϕ(s; t, x))|dxds

≤
∫ t

0

eLV (t−s)

∫ l

0

|G̃s,n(un(·, s))(ξ) − G̃s,0(u0(·, s))(ξ)|dξds,

where τ−1
t (s) is the inverse of x 7→ τ(t, x). See [2, Lemma 3.3]. On the other hand,

it follows from (V) and (Gn) that

‖G̃s,n(un(·, s)) − G̃s,0(u0(·, s))‖L1

≤ ‖Gn(un(·, s)) − Gn(u0(·, s))‖L1 + ‖Gn(u0(·, s)) − G0(u0(·, s))‖L1

+ ‖Vx(·, s)un(·, s) − Vx(·, s)u0(·, s)‖L1

≤ (cG(r) + LV )‖un(·, s) − u0(·, s)‖L1 + ‖Gn(u0(·, s)) − G0(u0(·, s))‖L1 .

Hence L2 + L4 is estimated as follows:

L2 + L4 ≤ (cG(r) + LV )
∫ t

0

eLV (t−s)‖un(·, s) − u0(·, s)‖L1ds(3.6)

+
∫ T

0

eLV (t−s)‖Gn(u0(·, s)) − G0(u0(·, s))‖L1ds.

Finally, by changing variable ξ = ϕ(0; t, x) (cf. [2, Lemma 3.4]), it is easily seen
that

(3.7) L3 ≤
∫ l

z(t)

|νn(ϕ(0; t, x)) − ν0(ϕ(0; t, x))|dx ≤ eLV t

∫ l

0

|νn(ξ) − ν0(ξ)|dξ.
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Consequently, combining (3.5), (3.6) and (3.7), we obtain

e−LV t‖un(·, t) − u0(·, t)‖L1

≤ L(n) + (cF (r) + cG(r) + LV )
∫ t

0

e−LV s‖un(·, s) − u0(·, s)‖L1ds,

where L(n) is given by (3.3). Therefore, by Gronwall’s lemma, the desired inequality
(3.2) follows. Finally, the approximating conditions in (3.4) assure that L(n) → 0
as n → ∞ and the proof is complete. ¤
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