Mem. Fac. Sci. Eng. Shimane Univ.
Series B: Mathematical Science
32 (1999), pp. 7584

HARDY’S INEQUALITY ON FINITE NETWORKS

YUKIHIRO SHOGENJI AND MARETSUGU YAMASAKI
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ABSTRACT. The smallest eigenvalue of a weighted discrete Laplacian is closely
related to a generalized Hardy’s inequality on networks. We shall estimate
the smallest eigenvalue by using a discrete Kuramochi potential with some
numerical experiments.

1. PROBLEM SETTING

Let X be a finite set of nodes, Y be a finite set of arcs and K be the node-arc
incidence matrix. Assume that the graph G := {X,Y, K} is connected and has
no self-loop. For every two nodes a, b € X, denote by p(a, b) the geodesic distance
between a and b, i.e., the minimum number of arcs in the paths between a and
b.

For a strictly positive real-valued function r, N := {G,r} is called a network.
Denote by L(X) the set of all real valued functions on X, by LT (X) the set of
all nonnegative u € L(X).

For u € L(X), the discrete derivative du, the discrete Laplacian Au(x) and
the Dirichlet sum D(u) of u on N are defined by

du(y) = —r(y)~" erx K(z,y)u(z),
Au(z) = ZyEY K (z, y)[du(y)],
D(u) = Zyey r(y)|du(y)].

The mutual Dirichlet sum D(u,v) of u,v € L(X) is defined by
Dlw,v) =3 _ r(y)ldu(y)lldo(y)]

Let Ap be a nonempty subset of X such that X\ A is connected and let m € L(X)
satisfy m(z) =0 on Ay and m(z) > 0 on X \ Ay.
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A generalized Hardy’s inequality is to find the best possible constant C,, > 0

such that
Z ox m(z)u(r)? < CpD(u)

for all uw € L(X) such that u(x) = 0 on A,.

By special choices of N, Ay and m, we obtain Wirtinger’s inequality and
Hardy’s inequality in [2] and [3]. We shall show that 1/C,, is equal to the
smallest eigenvalue of an eigenvalue problem. We shall also give an esimation of
this value by using a discrete Kuramochi potential studied in [4] and [5].

2. MINIMUM EIGENVALUE

Let us put
L(X;A) :={ue L(X);u=0on Ay}.
For simplicity, let us put

() = D, m(@)u()o(),

lullm = [((y )] "?,
Xm(u) = %

We shall consider the extremum problem (H,,):
Find A, = inf{xm(u);u € L(X;Ay)}
= inf{D(u);u € L(X; Ap), ||[u|m = 1}.
Proposition 2.1. There exists an optimal solution @ of problem (H,,), i.e.,

Am = D(), 4 € L(X; Ay) and |||, = 1.

Proof. Let {v;} be a sequence in L(X; Ag) such that x,,(vx) — A\ as k — oo.
Put ur = vg/||vk|lm. Then ||ug|l,» = 1 and

Xom(ur) = D(ur) = D(vr)/|vgllz, = Xom (vk)-

Since {ug(z)} is bounded for each x € X, we may assume that {u;} converges
pointwise to a function @ € L(X; Ag). We have ||i||,, = 1 and

Jim D(ux) = D(a),
so that x,(a) = A\,. O
Denote by S()\,;,) be the set of all optimal solutions of problem (H,,), i.e.,
SO = {0 € LOX; Ag)y xm() = A}

Consider the following eigenvalue problem of finding a number i and a nonzero
function u € L(X; Ap) which satisfy

(Eig) Au(z) = —pm(z)u(x) on X \ Ap.

Denote by F,,(A) the set of all u satisfying (Fig) and by EV,,(u) the set of
nonzero functions u satisfying (Eig) with u € E,,(A).
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For every u € EV,,(u), we have
D(u) = _erx [Au(z)|u(x)
= u Y mu(@)’ = ]

Since D(u) is positive definite on the set L(X; Ag), we see that E,,(A) consists
of positive real numbers.
By the above observation, we have

Proposition 2.2. \,, = min{y; u € E,,(A)}.
Lemma 2.1. S(\,,) = EV,,(\n).

Proof. By the above observation, it suffices to show S(\,;,) C EV;,(Ay). Let
u € S(Am). Denote by €, € L(X) the characteristic function of the set {z}. For
any real number ¢ and z € X \ Ap, we have

Am = Xm () < Xm(u + tes),

or
Allu + teg|?, < D(u + tey).
Noting the relation
D(u + te,) = D(u) + 2tD(a,&,) + t*D(e,),

lu+ tenl2, = llul + 26((, £2))m + £ l%

we obtain

D(u, &) = An((U; €2) )m-
Since D(u,e,) = —Au(z) and ((u,£4))m = m(z)u(z), we conclude that u €
EVi (). O

Lemma 2.2. Assume that u € S(\,). Then |u] € S(\,) and u(xy)u(zs) > 0
for every x1,x9 € X \ Ag with p(xy,z5) = 1.

Proof. Let v = |u|. Then v € L(X; Ag) and D(v) < D(u) holds (cf.[9]). Since
||| = [|©||m, we have
Am < Xm(v) < Xm(U) = A\,

and hence v € S(\,,). Suppose that there exist z7,2o € X \ Ay such that
p(x1,x9) = 1 and u(zy)u(zz) < 0. Let ¥ € Y be an arc whose endpoints are x;
and z9. Then

do(y)l = () ole) —
< () Hulz) — u(z)| = |du(y)],
so that D(v) < D(u). Thus A\, = xm(v) < xm(u) = As,. This is a contradiction.
[

Corollary 2.1. If u € S(\y), then either u = |u| or u = —|u|.
Lemma 2.3. Ifu € S(\,,) is non-negative, then u(x) >0 on X \ Ay.
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Proof. Let u € S(\,,) be nonnegative. By Lemma 2.1,
Au(z) = =Apm(z)u(z) <0 on X \ A,.

Namely u is superharmonic on X \ Ay. By the minimum principle (cf. [9]), we

have u(z) > 0 on X \ Ay. O
Corollary 2.2. If u € S(\,,), then either Au(z) < 0 on X \ Ao or Au(z) >0
on X \ Ayp.

Lemma 2.4. The dimension of EV,,(A\y) is one. Namely, if uy,us € EVy(An),
then uy and us are proportional.

Proof. Assume that there exist ui,uy € EV,, () such that they are not propor-
tional. Choose numbers « and [ such that |a|+|3| > 0 and auy (z1)+Fus(xy) =0
for some 1 € X \ Ag. Let u = au; + fuy. Then u # 0, since u; and uy are not
proportional. We have

Au(z) = alAui(x)+ BAuy(z)
= —Aam(z)ui(z) — Apym(z)uz(x)
= —Apm(z)u(z).
Namely v € EV,,,(Am) = S(Am). We have
Au(zy) = Apm(x)u(zy) = 0.
This contadicts Corollary 2.2. O]

Summing up these results, we obtain

Theorem 2.1. There exists a unique t € L(X; Ag) such that
(1) A= D(a) and ||t = 1;

(2) a(x) >0 on X\ Ay;

(3) Au(z) = —Npm(z)u(z) on X\ Ay.

3. ESTIMATION OF \,,

Let us put
D(N; Ap) :={u € L(X; Ap); D(u) < oo}.

Since N is a finite network, we see that D(N;Ag) = L(X;Ay). Notice that
D(N; Ap) is a Hilbert space with the inner product D(u,v) (cf. [9]).

The Kuramochi function g, of N with pole at x € X \ Ag is defined by the
reproducing property:

u(x) = D(u, g,) for allu € D(N; Ap)
(cf. [4]). For each nonempty subset B of X \ Ay, let us put
d(Ap, B) :==inf{D(u);u € D(N; Ap), u=1on B}.
We have
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Lemma 3.1. g, has the following properties:
(1) §2(2) =0 on Ao;

(2) 0<ge <o) on X;

(3) Ag.(z) = —e.(2) on X\ Ap.

(4)  d(Ao,{z}) = 1/gu(x).

Now we shall estimate the value of \,,. Our idea is to use the discrete Ku-
ramochi function studied in [4] and [5]. A similar idea can be founded in [8] to
estimate Lyapunov’s inequality.

The Kuramochi potential Gm(z) of m is defined by

Gm(z) := ZZEX Gu(2)m(2).
Lemma 3.2. Let @ be as in Theorem 2.1. Then
i(2) = A 3 m(2)[(2)]d ().

Proof. By the reproducing property of the Kuramochi function and Lemma 3.1,
we have

i) = D(@.g,)
= =3 R (:)
= MY ),

O
Theorem 3.1. The following estimation holds:
. 1 .
min{Gm(z);z € X \ Ao} < I < max{Gm(x);x € X \ Ao}
Proof. Let @ be as in Theorem 2.1. There exists b € X \ Ag such that a(b) =
max{u(z);z € X}. Then we have by Lemma 3.2
i) = MY mE )

< Awi(b) ) gu(2)m()

= \ni(b)Gm(b)

< Apii(b) max{Gm(z);z € X \ Ap}.
We can prove the right hand side inequality similarly. O

Theorem 3.2. Let m(X) := Z m(x). Then the following estimation holds:

zeX

min{d(Ap, {z});z € X \ Ao} < m(X)\,, <max{d(Ap, {z});z € X\ Ap}.
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Proof. Let @ be as in Theorem 2.1. There exists b € X \ Ay such that @(b) =
max{u(x);z € X}. Then we have by Lemma 3.2

ab) = A, o (2)]ge(2)
< Anu(b) max{gl,( );x € X\ Aopm(X)
= A\pu(b) max{1/d(Ag, {z});x € X \ Ao}

4. CLASSICAL HARDY’S INEQUALITY

In this section, we consider the following special finite network N = {X,Y, K, r}
defined by:

X:{anxh'” ,l’n},Y: {yhy%"' 7yn}
K(zjy) =1, K(x;_1,y;) = —1fori=1,2,--+,n

and K(z,y) = 0 for any other pair.
Notice that the graph {X,Y, K} is a subgraph of the one-dimesional lattice
domain Z. For simplicity, we set

ug = u(xg), e = 1Y), Wy = rk_l(uk — Up_1).

Then Au(xy) = wry —wyg for 1 <k <n—1, Au(zg) = wy; and Au(z,) = —w,.

Furthermore
n
-1 2 2
= g re (U — ug—1)” = g W
k=1 k=1

We shall prove

Theorem 4.1. Let Ay := {zo} and put Ry = er. Then

Z k(=) < 4D(u)

k=1 k
for every u € L(X; Ap).
Proof. Let us put vy := u, — u_1 and oy, := uy/Rg. Then
rra — 200 = rpag — 2ag(ap Ry, — agp_1Ry—1)
(Tk — QRk)ai + 2Rk,1akak,1
(T’k — 2Rk)04i -+ Rk_l(ozi + 04271)
—Rkai + Rk_lai_l.

IA

Since ug = 0, we have

n n

Z(rkai —2040) < (—Rkaz + R0 ) = —Rnoz?z <0.
k=1 k=1
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Therefore we have

n n
E rkai < 2 E QU
k=1 k=1
n n

< 2D meai] VD,

k=1 k=1

so that

Zrkai < 427’;11),% =4D(u).
k=1 k=1

Corollary 4.1. Let Ay = {xo} and my = m(zy) == % Then A\, > 1/4.

k
Corollary 4.2. Assume that Ag = {xo} and ri, =1 for all k. Then

n

) <A e — )’

for all uy (k=0,1,--- ,n) with ug = 0.

Notice that p(zo, zx) = Ri and p(zo, zx) = k in Corollary 4.2, this inequality
can be found in [2], page 239. We may expect that Corollary 4.2 would also
holds in the general case. However it is not true as shown by Table 4 in the next
section.

Hereafter in this section we always assume that Ay = {zo} and m(zy) =
T/ Rz. In order to obtain the value A,,, we calculate the minimum eigenvalue of
(Eig) numerically:

—2uy +uy = pmiug
—2up + Up1 Fupr = pmyu, for2<k<n-—1
—Up + Up—1 = HUMpUy,

In order to study A, as a function of the size n of N, we denote it by A\(n) :=
Am(n). Some numerical experiments are given in the next section.
In the present case, the Kuramochi function is given by

o () = R; for 0<j<k
Yar\Tj) = Ry for k<j<n

We estimate ), by using the Kuramochi potential Gm:

k
~ T r.
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It is easily seen that

pi(n) = max{Gm(z);z € X\ Ay} = Z ;—Z

pe(n) = min{Gm(z);z € X \ Ay} = Z ;—%

By Theorem 3.1, we have

1 1
—— < \(n) <
p(n) e (12)

Some numerical experiments for these quantities are also given in the next
section.

5. NUMERICAL EXPERIMENTS

Let G = {X,Y, K} be the same graph as in Section 4. The graph can be
drawn as follows:

We take Ay = {xo} and m(xy) := /R except in Table 4.
Table 1: The case where r, = 1 for all k.
n A(n) — 1/p*(n)  1/p.(n)
10 0.502934 0.341417 0.645258

100 0.376383 0.192776 0.611627
1000 0.318182 0.133592 0.608297

Table 2: The case where 1, = 1/k for all k.

n 1/p*(n)  1/p.(n)
30 0.439971 0.625684
100 0.394713  0.604038
10,000 0.344817 0.583205

Calculus of the minimum eigenvalue:

n A(n) Software
30 0.553865 Mathematica
100 0.518052 Mathematica
10,000  0.4564519 Matlab

100,000 0.4412748 Matlab
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Table 3: The case where 1, = 2'* for all k.

n o 1/p*(n)  1/p.«(n) Software
15 0.622407 0.729114 Mathematica
20 0.622396 0.728854 Mathematica
28 0.622396 0.728854 Mathematica
29 0.622396 0.728854 Mathematica

Calculus by Mathematica shows that

1/u*(n) =0.622396 for n >19
1/p(n) = 0.728854  for n > 19

Calculus of the minimum eigenvalue:

n A(n) Software
5 0.708196 Mathematica
15 0.697629 Mathematica
17 0.697622 Mathematica
18 0.697625 Mathematica increases
20 0.69765 Mathematica increases
28 0.666465 Mathematica decreases
29 0 Mathematica absurd
29 0.697618 Matlab

Calculus by Mathematica shows that A(n) becomes strange if n > 18.

Finally we change m(x) slightly and estimate A,,(n) in this case.

1
Table 4: We choose m(xy,) = = and r, = 2'7%. Then we obtain:
k

no Aal)  Y)  Lp(n)
30 0.0663717 0.0632777 0.116446
100 1.689557 0.0196387 0.0383323

Calculus by Mathematica shows that A,,(n) becomes strange if n > 51.
We remark that

pi(n) = Gm(zy) = kz:; R_i — 00
as n — 00, so that \,,,(n) — 0 as n — oo.
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