Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science **31**, pp. 57–72

EXTREMUM PROBLEMS ON A HILBERT NETWORK

Maretsugu Yamasaki

(Received: December 10, 1997)

ABSTRACT. As a generalization of a usual infinite network, a Hilbert network is defined as a pair of a graph and a resistance taking values in a Hilbert space. With the sets of nodes and arcs of the graph, we associate variables belonging to a Hilbert space. In this situation, we study several extremum problems related to Hilbert-valued functions on the set of nodes or arcs of the graph and their inverse relations.

1. INTRODUCTION WITH PRELIMINARIES

Let $G = \{X, Y, K\}$ be a locally finite infinite graph which is connected and has no self-loof as in [4]. Here X is a countable set of nodes, Y is a countable set of arcs and K is the node-arc incidence matrix.

Let \mathscr{H} be a real Hilbert space with an inner product $((\cdot, \cdot))$ and the norm $\|\cdot\|$. Denote by $L(X; \mathscr{H})$ the set of all functions u on X such that $u(x) \in \mathscr{H}$ for each $x \in X$ and by $L_0(X; \mathscr{H})$ the set of all $u \in L(X; \mathscr{H})$ such that the support $\{x \in X; u(x) \neq 0\}$ is a finite set. The meaning of the notation $L(Y; \mathscr{H})$ and $L_0(Y; \mathscr{H})$ is similar. Let $\mathscr{L}(\mathscr{H})$ be the set of all bounded, linear, positive and invertible linear operators from \mathscr{H} to \mathscr{H} . Assume that $r \in L(Y; \mathscr{L}(\mathscr{H}))$. This is a generalization of the resistance in the usual network theory as in [3] and [4]. We call the pair $N = \{G, r\}$ of the graph G and this generalized resistance r a Hilbert network as in [1], [6] and [7].

For each $y \in Y$, there exists $\rho(y) > 0$ by our assumption (cf. [5]) such that

$$((r(y)h,h)) \ge \rho(y) ||h||^2$$
 for all $h \in \mathscr{H}$.

Here r(y)h means the image of h under r(y), i.e., r(y)(h). In this paper, we use this convention unless no confusion occurs from the context. Denote by $r(y)^{-1}$ the inverse operator of r(y). Notice that there exists $\rho^*(y) > 0$ such that

$$((r(y)^{-1}h,h)) \ge \rho^*(y) ||h||^2$$
 for all $h \in \mathscr{H}$.

For each $y \in Y$, there exists a unique square root $r(y)^{1/2} \in \mathscr{L}(\mathscr{H})$ of r(y) by [2] i.e.,

$$[r(y)^{1/2}]^2 = r(y).$$

¹⁹⁹¹ Mathematics Subject Classification. 90C35, 90C50, 31C20.

Key words and phrases. Hilbert network, extremum problem, flows.

Before introducing extremum problems on the Hilbert network N, we need several preparations.

Definition 1.1. Let e be a fixed element of \mathscr{H} such that ||e|| = 1.

Definition 1.2. For $u \in L(X; \mathscr{H})$, the potential drop δu of u and the discrete derivative du of u are defined by

$$\begin{split} \delta u(y) &:= & \sum_{x \in X} K(x,y) u(x), \\ d u(y) &:= & -r(y)^{-1} (\delta u(y)) = -r(y)^{-1} \delta u(y). \end{split}$$

The Dirichlet sum of u is defined by

$$D(u) := \sum_{y \in Y} ((r(y)du(y), du(y))) = \sum_{y \in Y} ((r(y)^{-1}\delta u(y), \delta u(y))).$$

Definition 1.3. For $w \in L(Y; \mathscr{H})$, the divergence $\partial w(x)$ of w and the energy H(w) of w are defined by

$$\begin{array}{lll} \partial w(x) &:=& \sum_{y \in Y} K(x,y) w(y), \\ H(w) &:=& \sum_{y \in Y} ((r(y)w(y),w(y))). \end{array}$$

Notice that D(u) = H(du). Let us put

$$D(N; \mathscr{H}) := \{ u \in L(X; \mathscr{H}); D(u) < \infty \}, L_H(Y; \mathscr{H}) := \{ w \in L(Y; \mathscr{H}); H(w) < \infty \}$$

For every $w_1, w_2 \in L_H(Y; \mathscr{H})$, we define the inner product $H(w_1, w_2)$ by

$$H(w_1, w_2) := \sum_{y \in Y} ((r(y)w_1(y), w_2(y))).$$

For every $u_1, u_2 \in D(N; \mathscr{H})$, we define the mutual Dirichlet sum $D(u_1, u_2)$ by

$$D(u_1, u_2) := H(du_1, du_2) = \sum_{y \in Y} ((r(y)^{-1} \delta u_1(y), \delta u_2(y))).$$

Lemma 1.1. Let $h \in \mathscr{H}$. For every $y \in Y$, the following relations hold: (1) $|((r(y)w(y),h))|^2 \leq ((r(y)w(y),w(y)))((r(y)h,h)).$ (2) $1 \leq ((r(y)^{-1}h,h))((r(y)h,h)).$

Proof. By the Schwarz inequality, we have

$$\begin{aligned} |((r(y)w(y),h))|^2 &= |((r(y)^{1/2}w(y),r(y)^{1/2}h))|^2 \\ &\leq ||r(y)^{1/2}w(y)||^2 ||r(y)^{1/2}h||^2 \\ &= ((r(y)w(y),w(y)))((r(y)h,h)). \end{aligned}$$

(2) follows from (1) by taking $w(y) := r(y)^{-1}h$. \Box

Lemma 1.2. $|H(w_1, w_2)| \le H(w_1)^{1/2} H(w_2)^{1/2}$.

Proof. From the Schwarz inequality, it follows that

$$\begin{aligned} |H(w_1, w_2)| &\leq \sum_{y \in Y} |((r(y)w_1(y), w_2(y)))| \\ &= \sum_{y \in Y} |((r(y)^{1/2}w_1(y), r(y)^{1/2}w_2(y)))| \\ &\leq \sum_{y \in Y} ||r(y)^{1/2}w_1(y)|| ||r(y)^{1/2}w_2(y)|| \\ &\leq [\sum_{y \in Y} ||r(y)^{1/2}w_1(y)||^2]^{1/2} [\sum_{y \in Y} ||r(y)^{1/2}w_2(y)||^2]^{1/2} \\ &= H(w_1)^{1/2} H(w_2)^{1/2}. \quad \Box \end{aligned}$$

Notice that $L_H(Y; \mathscr{H})$ is a Hilbert space with this inner product.

Lemma 1.3. If
$$w \in L_0(Y; \mathscr{H})$$
, then $\sum_{y \in Y} r(y)w(y) \in \mathscr{H}$ and
 $\sum_{y \in Y} ((r(y)w(y), h)) = ((\sum_{y \in Y} r(y)w(y), h))$

for every $h \in \mathscr{H}$.

Proof. Since $r(y)w(y) \in \mathscr{H}$ for every $y \in Y$ and $w \in L_0(Y; \mathscr{H})$, our assertion is clear. \Box

For $a \in X$, let us put

$$D(N; \mathscr{H}; a) := \{ u \in D(N; \mathscr{H}); u(a) = 0 \}.$$

Lemma 1.4. For any $x \in X$, there exists a constant M_x which such that

$$||u(x)|| \le M_x D(u)^{1/2}$$

for all $u \in D(N; \mathscr{H}; a)$.

Proof. We may assume that $x \neq a$. There exists a path P from a to x. Let $C_X(P)$ and $C_Y(P)$ be the sets of nodes and arcs on P respectively (cf. [4]), i.e.,

$$C_X(P) := \{x_0, x_1, \cdots, x_n\} \ (x_0 = a, x_n = x),$$
$$C_Y(P) := \{y_1, y_2, \cdots, y_n\},$$
$$\{x \in X; K(x, y_i) \neq 0\} = \{x_{i-1}, x_i\} \ (i = 1, 2, \cdots, n)$$

Let $u \in D(N; \mathscr{H}; a)$. Then we have

$$D(u) \geq \sum_{y \in C_Y(P)} ((r(y)^{-1} \delta u(y), \delta u(y)))$$

= $\sum_{i=1}^{n} ((r(y_i)^{-1} \delta u(y_i), \delta u(y_i)))$
 $\geq \sum_{i=1}^{n} \rho^*(y_i) ||u(x_i) - u(x_{i-1})||^2$
 $\geq \sum_{i=1}^{n} \rho^*(y_i) [||u(x_i)|| - ||u(x_{i-1})||]^2,$

so that

$$||u(x_i)|| - ||u(x_{i-1})|| \le D(u)^{1/2} [\rho^*(y_i)]^{-1/2}$$

, for $i = 1, 2, \cdots$. Since u(a) = 0, we have

$$||u(x)|| = \sum_{i=1}^{n} [||u(x_i)|| - ||u(x_{i-1})||] \le M_x D(u)^{1/2}$$

with

$$M_x := \sum_{i=1}^n [\rho^*(y_i)]^{-1/2}.$$

This completes the proof. \Box

We see that $D(u)^{1/2}$ is a norm on $D(N; \mathscr{H}; a)$.

Proposition 1.1. $D(N; \mathscr{H}; a)$ is a Hilbert space with respect to the inner product $D(u_1, u_2)$.

Proof. Let $\{u_n\}$ be a Cauchy sequence in $D(N; \mathscr{H}; a)$, i.e., $D(u_n - u_m) \to 0$ as $n, m \to \infty$. Then $\{D(u_n)\}$ is bounded. It follows from Lemma 1.4 that $\{u_n(x)\}$ is a Cauchy sequence in \mathscr{H} for each $x \in X$. Therefore there exists $\tilde{u}(x) \in \mathscr{H}$ such that $||u_n(x) - \tilde{u}(x)|| \to 0$ as $n \to \infty$ for each $x \in X$. Thus $\tilde{u}(a) = 0$ and $||du_n(y) - d\tilde{u}(y)|| \to 0$ as $n \to \infty$ for each $y \in Y$. Since $\{D(u_n)\}$ is bounded, we see that $\tilde{u} \in D(N; \mathscr{H})$ by Fatou's lemma. For any $\epsilon > 0$, there exists n_0 such that $D(u_n - u_m) < \epsilon^2$ for all $n, m \ge n_0$. For any finite subset Y' of Y,

$$\sum_{y \in Y'} ((r(y)d(u_n - u_m)(y), d(u_n - u_m)(y))) \le D(u_n - u_m).$$

Letting $m \to \infty$, we have

$$\sum_{y \in Y'} ((r(y)d(u_n - \tilde{u})(y), d(u_n - \tilde{u})(y))) \le \epsilon^2$$

for all $n \ge n_0$, so that $D(u_n - \tilde{u}) \le \epsilon^2$. Hence, $D(u_n - \tilde{u}) \to 0$ as $n \to \infty$. Denote by $D_0(N; \mathscr{H}; a)$ the closure of the set

 $L_0(X; \mathscr{H}; a) := \{ u \in L_0(X; \mathscr{H}); u(a) = 0 \}$

in the Hilbert space $D(N; \mathscr{H}; a)$.

2. \mathscr{H} -FLOWS

Definition 2.1. Let a and b be distinct two nodes. We say that $w \in L(Y; \mathscr{H})$ is an \mathscr{H} -flow from a to b if the following conditions are fulfilled: (F.1) $\partial w(x) = 0$ for all $x \in X \setminus \{a, b\}$; (F.2) $\partial w(a) + \partial w(b) = 0$.

Denote by $F(a, b; \mathcal{H})$ the set of all \mathcal{H} -flows from a to b.

Definition 2.2. For each $w \in F(a, b; \mathcal{H})$, we introduce the following two quantities:

$$I_e(w) := ((\partial w(b), e)) = -((\partial w(a), e)),$$

$$I(w) := \|\partial w(a)\| = \|\partial w(b)\|.$$

Let us put $F_0(a, b; \mathscr{H}) := F(a, b; \mathscr{H}) \cap L_0(Y; \mathscr{H})$ and denote by $F_H(a, b; \mathscr{H})$ the closure of $F_0(a, b; \mathscr{H})$ in $L_H(Y; \mathscr{H})$.

60

Lemma 2.1. Assume that N is a finite network. If $w \in L(Y; \mathscr{H})$ satisfies (F.1), then it does also (F.2).

Proof. Since N is a finite network and

$$\sum_{x \in X} K(x, y) = 0$$

for each $y \in Y$, we have by changing the order of summation

$$\partial \tilde{w}(a) + \partial \tilde{w}(b) = \sum_{x \in X} \partial \tilde{w}(x) = \sum_{y \in Y} \left[\sum_{x \in X} K(x, y) \right] \tilde{w}(y) = 0. \quad \Box$$

Similarly we have

Lemma 2.2. If $w \in L_0(Y; \mathscr{H})$ satisfies (F.1), then it does (F.2).

Corollary 2.1. (F.1) implies (F.2) for every $w \in F_H(a, b; \mathcal{H})$.

Lemma 2.3. Let $u \in L(X; \mathscr{H})$ and $w \in L_0(Y; \mathscr{H})$. Then

$$\sum_{y \in Y} ((w(y), \delta u(y))) \le H(w)^{1/2} D(u)^{1/2}.$$

Proof. We have by Lemma 1.2

$$\sum_{y \in Y} ((w(y), \delta u(y))) = H(w, du) \le H(w)^{1/2} H(du)^{1/2} \le H(w)^{1/2} D(u)^{1/2}.$$

Corollary 2.2. Let $u \in D(N; \mathscr{H})$ and $w \in F_H(a, b; \mathscr{H})$. Then

$$\sum_{y \in Y} ((w(y), \delta u(y))) \le H(w)^{1/2} D(u)^{1/2}.$$

Proof. There exists a sequence $\{w_n\}$ in $F_0(a, b; \mathscr{H})$ such that $H(w_n - w) \to 0$ as $n \to \infty$. We have by Lemma 2.3 $H(w_n, du)) \leq H(w_n)^{1/2} D(u)^{1/2}$. Since $du \in L_H(Y; \mathscr{H})$, we see that $H(w_n, du) \to H(w, du)$ and $H(w_n) \to H(w)$ as $n \to \infty$. \Box

Lemma 2.4. Let $u \in D(N; \mathscr{H})$ and $w \in F_H(a, b; \mathscr{H})$. Then

$$\sum\nolimits_{x \in X} ((u(x), \partial w(x))) = \sum\nolimits_{y \in Y} ((\delta u(y), w(y)))$$

Proof. There exists a sequence $\{w_n\}$ in $F_0(a, b; \mathscr{H})$ such that $H(w_n - w) \to 0$ as $n \to \infty$. Since the support of w_n is a finite set, we have

$$((u(a), \partial w_n(a))) + ((u(b), \partial w_n(b))) = \sum_{x \in X} ((u(x), \partial w_n(x)))$$

= $\sum_{y \in Y} ((\delta u(y), w_n(y))) = H(du, w_n).$

By letting $n \to \infty$, we obtain the desired inequality, since $du \in L_H(Y; \mathscr{H})$ and $\partial w(x) = 0$ for $x \in X \setminus \{a, b\}$. \Box

Denote by $C_0(N)$ the set of all finite cycles on N, i.e.,

$$C_0(N) := \{ \omega \in L_0(Y; \mathscr{H}); \partial \omega(x) = 0 \text{ on } X \}.$$

Lemma 2.5. Let $\tilde{w} \in F(a, b; \mathscr{H})$ such that $H(\tilde{w}) < \infty$. Suppose that $H(\tilde{w}, \omega) = 0$ for every $\omega \in C_0(N)$. Then there exists $\tilde{u} \in D(N; \mathscr{H}; a)$ such that $d\tilde{u} = -\tilde{w}$.

Proof. Let p_1, p_2 be path indices of paths from a to x (cf. [4]). First we shall prove

$$\sum_{y \in Y} p_1(y)r(y)\tilde{w}(y) = \sum_{y \in Y} p_2(y)r(y)\tilde{w}(y).$$

In fact, for any $h \in \mathscr{H}$, $\omega(y) := (p_1(y) - p_2(y))h$ belongs to $C_0(N)$, so that we have by our assumption

$$0 = H(\tilde{w}, (p_1 - p_2)h) = \sum_{y \in Y} ((r(y)[(p_1(y) - p_2(y))\tilde{w}(y)], h)).$$

Since $(p_1 - p_2)\tilde{w} \in L_0(Y; \mathscr{H})$, we see by Lemma 1.3.

$$\left(\left(\sum_{y\in Y} r(y)[(p_1(y) - p_2(y))\tilde{w}(y)], h\right)\right) = 0.$$

Since $h \in \mathscr{H}$ is arbitrary, our assertion follows. Define $\tilde{u} \in L(X; \mathscr{H})$ by $\tilde{u}(a) = 0$ and

$$\tilde{u}(x) := \sum_{y \in Y} p_x(y)\tilde{w}(y) \text{ for } x \neq a_y$$

where p_x is the path index of a path from a to x. This function is well-defined by the above observation. Let $y' \in Y$ and $\{x \in X; K(x, y') \neq 0\} = \{x_1, x_2\}$. Let p_{x_2} be the path index of a path P_{x_2} from a to x_2 which passes the arc y' after the node x_1 . Namely P_{x_2} consists of a path P_{x_1} from a to x_1 and the single arc y'. We have

$$\begin{split} \tilde{u}(x_2) &= \sum_{y \in Y} p_{x_2}(y) \tilde{w}(y) \\ &= \sum_{y \in Y} p_{x_1}(y) \tilde{w} + r(y') K(x_1, y') \tilde{w}(y') \\ &= \tilde{u}(x_1) + r(y') K(x_1, y') \tilde{w}(y'), \end{split}$$
so that $\tilde{u}(x_2) = \tilde{u}(x_1) + r(y') K(x_1, y') \tilde{w}(y')$, or $\delta \tilde{u}(y') = -r(y') \tilde{w}(y')$. \Box

3. INVERSE RELATION I

Now let us consider the following pair of extremum problems on the Hilbert network N which are related to \mathscr{H} -valued functions on X or Y:

$$d_e(a, b; \mathscr{H}) := \inf\{D(u); u \in L(X; \mathscr{H}), ((u(a), e)) = 0, ((u(b), e)) = 1\}, d^*(a, b; \mathscr{H}; e) := \inf\{H(w); w \in F_H(a, b; \mathscr{H}), \partial w(b) = e\}$$

First we have

First we have

Theorem 3.1. $1 \leq d_e(a, b; \mathscr{H})d^*(a, b; \mathscr{H}, e).$

Proof. Let u be a feasible solution for $d_e(a, b; \mathscr{H})$ and let w be a feasible solution for $d^*(a, b; \mathscr{H}; e)$. It suffices to show that $1 \leq H(w)^{1/2}D(u)^{1/2}$. There exists a sequence $\{w_n\}$ in $F_0(a, b; \mathscr{H})$ such that $H(w - w_n) \to 0$ as $n \to \infty$. We have by Lemma 2.3

$$1 = ((u(b), e)) = ((u(b), \partial w(b))) = \lim_{n \to \infty} ((u(b), \partial w_n(b)))$$

=
$$\lim_{n \to \infty} \sum_{x \in X} ((u(x), \partial w_n(x))) = \lim_{n \to \infty} \sum_{y \in Y} ((\delta u(y), w_n(y)))$$

$$\leq \lim_{n \to \infty} H(w_n)^{1/2} D(u)^{1/2} = H(w)^{1/2} D(u)^{1/2}. \quad \Box$$

To prove the converse inequality, we prepare

Lemma 3.1. There exists a unique optimal solution for $d^*(a, b; \mathcal{H}; e)$.

Proof. Let $\{w_n\}$ be a minimizing sequence for $d^*(a, b; \mathcal{H}; e)$, i.e., $\{w_n\} \subset F_H(a, b; \mathcal{H}), \ \partial w_n(b) = e$ and $H(w_n) \to d^*(a, b; \mathcal{H}; e)$ as $n \to \infty$. Since $(w_n + w_m)/2$ is a feasible solution for $d^*(a, b; \mathcal{H}; e)$, we have

$$d^{*}(a, b; \mathscr{H}; e) \leq H((w_{n} + w_{m})/2)$$

$$\leq H((w_{n} + w_{m})/2) + H((w_{n} - w_{m})/2)$$

$$= [H(w_{n}) + H(w_{m})]/2 \rightarrow d^{*}(a, b; \mathscr{H}; e)$$

as $m, n \to \infty$. Therefore $H(w_n - w_m) \to 0$ as $n, m \to \infty$. It follows that $\{w_n\}$ is a Cauchy sequence in the Hilbert space $L_H(Y; \mathscr{H})$. There exists $\tilde{w} \in L_H(Y; \mathscr{H})$ such that $H(w_n - \tilde{w}) \to 0$ as $n \to \infty$. Then $\tilde{w} \in F_H(a, b; \mathscr{H}), \partial \tilde{w}(b) = e$ and $d^*(a, b; \mathscr{H}; e) = H(\tilde{w})$. Namely \tilde{w} is an optimal solution for $d^*(a, b; \mathscr{H}; e)$. Since H(w) is a strictly convex function of $w \in L_H(Y; \mathscr{H})$, the uniqueness of the optimal solution follows. \Box

Lemma 3.2. Let \tilde{w} be the optimal solution for $d^*(a, b; \mathcal{H}; e)$. Then $H(\tilde{w}, \omega) = 0$ for every $\omega \in C_0(N)$.

Proof. For any $\omega \in C_0(N)$ and $t \in \mathbf{R}$, $\tilde{w} + t\omega$ is a feasible solution for $d^*(a,b;\mathcal{H};e)$. Thus

$$H(\tilde{w}) \le H(\tilde{w} + t\omega) = H(\tilde{w}) + 2tH(\tilde{w}, \omega) + t^2H(\omega).$$

By the standard variational argument, we obtain $H(\tilde{w}, \omega) = 0$. \Box

Lemma 3.3. Let $\tilde{w}(y)$ be the same as above. There exists $\tilde{u} \in D(N; \mathscr{H})$ such that $\tilde{u}(a) = 0$, $((\tilde{u}(b), e)) = d^*(a, b; \mathscr{H}; e)$ and $\delta \tilde{u} = -\tilde{w}$.

Proof. Let \tilde{u} be the function defined by \tilde{w} in Lemma 3.2. Then $\tilde{u}(a) = 0$ and $d\tilde{u} = -\tilde{w}$. There exists $\{w_n\} \subset F_0(a, b; \mathscr{H})$ such that $H(w_n - \tilde{w}) \to 0$ as $n \to \infty$. Let p_b a path index of a path from a to b. Since $w_n - p_b \partial w_n(b) \in C_0(N)$, we have $H(\tilde{w}, w_n - p_b \partial w_n(b)) = 0$. From $\partial w_n(b) \to \partial w(b) = e$, it follows that $H(\tilde{w}, \tilde{w} - p_b e) = 0$, so that

$$d^*(a,b;\mathscr{H};e) = H(\tilde{w}) = H(\tilde{w},p_b e) = ((\tilde{u}(b),e)). \quad \Box$$

Theorem 3.2. $d_e(a, b; \mathscr{H})d^*(a, b; \mathscr{H}; e) = 1.$

Proof. Let \tilde{w} be the optimal solution for $d^*(a, b; \mathcal{H}; e)$ and let \tilde{u} be the function defined in Lemma 3.3. Then $v := \tilde{u}/d^*(a, b; \mathcal{H}; e)$ is a feasible solution for $d_e(a, b; \mathcal{H})$ and

$$d_e(a,b;\mathscr{H}) \leq D(v) = D(\tilde{u})/d^*(a,b;\mathscr{H};e)^2$$

= $H(\tilde{w})/(d^*(a,b;\mathscr{H};e)^2 = 1/d^*(a,b;\mathscr{H};e)$

so that $d_e(a, b; \mathscr{H})d^*(a, b; \mathscr{H}; e) \leq 1$. Thus the equality holds by Theorem 3.1.

MARETSUGU YAMASAKI

4. INVERSE RELATION II

Let us consider further extremum problems on the Hilbert network N:

$$\begin{array}{rcl} d(a,b;\mathscr{H};e) &:= &\inf\{D(u); u \in L(X;\mathscr{H}), u(a) = 0, \ u(b) = e\},\\ d(a,b;\mathscr{H}) &:= &\inf\{D(u); u \in L(X;\mathscr{H}), u(a) = 0, \ \|u(b)\| = 1\},\\ d_e^*(a,b;\mathscr{H}) &:= &\inf\{H(w); w \in F_H(a,b;\mathscr{H}), \ I_e(w) = 1\},\\ d^*(a,b;\mathscr{H}) &:= &\inf\{H(w); w \in F_H(a,b;\mathscr{H}), \ I(w) = 1\}. \end{array}$$

Clearly

$$\begin{aligned} d_e(a,b;\mathscr{H}) &\leq d(a,b;\mathscr{H};e), \quad d(a,b;\mathscr{H}) \leq d(a,b;\mathscr{H};e), \\ d_e^*(a,b;\mathscr{H}) &\leq d^*(a,b;\mathscr{H};e), \quad d^*(a,b;\mathscr{H}) \leq d^*(a,b;\mathscr{H};e). \end{aligned}$$

We have

Theorem 4.1. $1 \leq d(a, b; \mathcal{H}; e)d_e^*(a, b; \mathcal{H}).$

Proof. It suffices to show that $1 \leq H(w)^{1/2}D(u)^{1/2}$ holds for any feasible solution u for $d(a, b; \mathscr{H}; e)$ and any feasible solution w for $d_e^*(a, b; \mathscr{H})$. By the corollary of Lemma 2.3 and Lemma 2.4, we have

$$\begin{split} 1 &= I_e(w) &= ((\partial w(b), e)) = \sum_{x \in X} ((\partial w(x), u(x))) \\ &= \sum_{y \in Y} ((w(y), \delta u(y))) \\ &\leq H(w)^{1/2} D(u)^{1/2}. \quad \Box \end{split}$$

To prove the converse inequality, we prepare

Lemma 4.1. There exists a unique optimal solution for $d(a, b; \mathcal{H}; e)$.

Proof. Let $\{u_n\}$ be a minimizing sequence for $d(a, b; \mathscr{H}; e)$, i.e., $\{u_n\} \subset D(N; \mathscr{H}; a)$, $u_n(b) = e$ and $D(u_n) \to d(a, b; \mathscr{H}; e)$ as $n \to \infty$. Since $(u_n + u_m)/2$ is a feasible solution for $d(a, b; \mathscr{H}; e)$, we have

$$d(a,b;\mathcal{H};e) \leq D((u_n+u_m)/2)$$

$$\leq D((u_n+u_m)/2) + D((u_n-u_m)/2)$$

$$= [D(u_n) + D(u_m)]/2 \rightarrow d(a,b;\mathcal{H};e)$$

as $n \to \infty$. Therefore $D(u_n - u_m) \to 0$ as $n, m \to \infty$. It follows from Proposition 1.1 that there exists $\tilde{u} \in D(N; \mathscr{H}; a)$ such that $D(u_n - \tilde{u}) \to 0$ as $n \to \infty$. Clearly $\tilde{u}(b) = e$ and $\alpha = D(\tilde{u})$. Namely \tilde{u} is an optimal solution. The uniqueness of the optimal solution follows from the fact that D(u) is strict convex on $D(N; \mathscr{H}; a)$. \Box

Lemma 4.2. Assume that N is a finite network. Let \tilde{u} be the optimal solution for $d(a, b; \mathcal{H}; e)$ and put $\tilde{w}(y) := d\tilde{u}(y)$. Then $\tilde{w} \in F(a, b; \mathcal{H})$ and $I_e(\tilde{w}) = D(\tilde{u})$.

Proof. Let $f \in D(N; \mathscr{H})$ satisfy f(a) = f(b) = 0. Then, for any $t \in \mathbf{R}$, $\tilde{u} + tf$ is a feasible solution for $d(a, b; \mathscr{H}; e)$, so that

$$D(\tilde{u}) \le D(\tilde{u} + tf) = D(\tilde{u}) + 2tD(\tilde{u}, f) + t^2D(f).$$

By the standard variational argument, we have $D(\tilde{u}, f) = 0$. On the other hand, we have

$$\begin{split} D(\tilde{u},f) &= \sum_{y \in Y} ((\tilde{w}(y),\sum_{z \in X} K(z,y)f(z))) \\ &= \sum_{z \in X} \sum_{y \in Y} ((K(z,y)\tilde{w}(y),f(z))) \\ &= \sum_{z \in X} ((\partial \tilde{w}(z),f(z))). \end{split}$$

Denote by ε_x the characteristic function of $\{x\}$, i.e., $\varepsilon_x(x) = 1$ and $\varepsilon_x(z) = 0$ for $z \neq x$. Let $x \neq a, b$. For any $h \in \mathscr{H}$, we may take $\varepsilon_x h$ for f, which leads to

$$((\partial \tilde{w}(x), h)) = 0.$$

Therefore $\partial \tilde{w}(x) = 0$ for $x \neq a, b$. Namely \tilde{w} satisfies (F.1). Since N is a finite network, we have $\tilde{w} \in F(a, b; \mathscr{H})$ by Lemma 2.1. By taking $\tilde{u} - \varepsilon_b e$ for f, we obtain $D(\tilde{u}, \tilde{u} - \varepsilon_b e) = 0$, so that

$$D(\tilde{u}) = D(\tilde{u}, \varepsilon_b e) = ((\partial \tilde{w}(b), e)).$$

Therefore $I_e(\tilde{w}) = D(\tilde{u})$. \Box

Theorem 4.2. Assume that N is a finite network. Then the inverse relation $d(a, b; \mathcal{H}; e)d_e^*(a, b; \mathcal{H}) = 1$ holds.

Proof. Let \tilde{u} be the optimal solution for $d(a, b; \mathscr{H}; e)$ and let $\tilde{w} = d\tilde{u}$. We see by Lemma 4.2 that $\tilde{w}(y)/D(\tilde{u})$ is a feasible solution for $d_e^*(a, b; \mathscr{H})$, so that

$$\begin{aligned} d_e^*(a,b;\mathscr{H}) &\leq H(\tilde{w}(y)/D(\tilde{u})) \\ &= D(\tilde{u})/D(\tilde{u})^2 \\ &= 1/D(\tilde{u}) = 1/d(a,b;\mathscr{H};e). \end{aligned}$$

Thus $d(a, b; \mathscr{H}; e)d_e^*(a, b; \mathscr{H}) \leq 1.$ \Box

In order to establish the equality in Theorem 4.2 in the case where N is an infinite network, we consider an exhaustion $\{G_n\}(G_n := \langle X_n, y_n \rangle)$ of G (cf. [4]) with $a, b \in X_1$. A Hilbert subnetwork N_n of N is defined as the pair of the pair of G_n and the restriction of r onto Y_n .

On each finite subnetwork N_n , we define the Dirichlet mutual sum of $u_1, u_2 \in L(X_n; \mathscr{H})$ by

$$D_n(u_1, u_2) := \sum_{y \in Y_n} ((r(y)du_1(y), du_2(y)))$$

and put $D_n(u) = D_n(u, u)$. For $w \in L(Y_n; \mathscr{H})$, we define $H_n(w)$ and $\partial_n w$ by

$$H_n(w) := \sum_{y \in Y_n} ((r(y)w(y), w(y))),$$

$$\partial_n w(x) := \sum_{y \in Y_n} K(x, y)w(y).$$

For large n, we have $\partial_n w(a) = \partial w(a)$ and $\partial_n w(b) = \partial w(b)$. Let us consider the following extremum problems on N_n :

$$d_{n} := d(a, b; N_{n}; \mathscr{H}; e) := \inf\{D_{n}(u); u \in L(X_{n}; \mathscr{H}), u(a) = 0, u(a) = e\}, d_{n}^{*} := d_{e}^{*}(a, b; N_{n}; \mathscr{H}) := \inf\{H_{n}(w); w \in F_{n}(a, b; \mathscr{H}), ((\partial_{n}w(b), e)) = 1\},$$

where $F_n(a, b; \mathscr{H}) := \{ w \in L(Y_n; \mathscr{H}); \partial_n w(x) = 0 \text{ on } X_n \setminus \{a, b\} \}.$

Lemma 4.3. $\{d(a,b;N_n;\mathscr{H};e)\}$ converges to $d(a,b;\mathscr{H};e)$ as $n \to \infty$.

Proof. Let \tilde{u} and u_n be the optimal solutions of $d(a, b; \mathscr{H}; e)$ and d_n respectively. Then for every $f \in L(X_n; \mathscr{H})$ satisfying f(a) = f(b) = 0, we have $D_n(u_n, f) = 0$ as in the proof of Lemma 4.2. For n < m, we have

$$D_n(\tilde{u} - u_n, u_n) = 0$$
 and $D_n(u_m - u_n, u_n) = 0.$

Furthermore

$$D_n(u_n) \le D_n(\tilde{u}) \le D(\tilde{u}) < \infty.$$

By the relation

$$0 \le D_n(u_m - u_n) = D_n(u_m) - D_n(u_n) \le D_m(u_m) - D_n(u_n),$$

we see that the limit of $\{D_n(u_n)\}$ exists, and hence

$$\lim_{n \to \infty} D_n(u_m - u_n) = 0.$$

For k < n < m, we have

$$D_k(u_m - u_n) \le D_n(u_m - u_n) \to 0 \quad (n \to \infty).$$

Thus $\{u_n\}$ is a Cauchy sequence with respect to D_k , and the limit of $\{u_n(x)\}$ exists for all $x \in X_k$ both in the sense of D_k and in the sense of norm convergence in \mathscr{H} . Let v be the limit of $\{u_n\}$. Then v(a) = 0 and v(b) = e, so that $D(\tilde{u}) \leq D(v)$. Since $D_k(u_n) \leq D_n(u_n)$ if $k \leq n$, we have

$$D_k(v) = \lim_{n \to \infty} D_k(u_n) \le \lim_{n \to \infty} D_n(u_n) \le D(\tilde{u}).$$

Letting $k \to \infty$, we obtain $D(v) \leq D(\tilde{u})$, and hence $D(v) = D(\tilde{u})$. By the uniqueness of the optimal solution, we have $v = \tilde{u}$ and

$$\lim_{n \to \infty} D_n(u_n) = D(\tilde{u}). \quad \Box$$

Theorem 4.3. $d(a,b;\mathscr{H};e)d_e^*(a,b;\mathscr{H}) = 1.$

Proof. It is easily seen that for large n we have

$$d_n^* = \inf\{H(w); w \in F(a, b; \mathscr{H}), I_e(w) = 1, w_n = 0 \text{ on } Y \setminus Y_n\}.$$

Therefore we obtain $d_n^* \ge d_{n+1}^* \ge d_e^*(a, b; \mathscr{H})$, so that

$$d_e^*(a,b;\mathscr{H}) \le \lim_{n \to \infty} d_n^*.$$

Since $d_n \cdot d_n^* = 1$ by Theorem 4.2, we have by Lemma 4.3

$$d(a,b;\mathscr{H};e)d_e^*(a,b;\mathscr{H}) \leq \lim_{n \to \infty} d_n \cdot d_n^* = 1.$$

Our equality follows from Theorem 4.1. \Box

Corollary 4.1. $\{d_e^*(a,b;N_n;\mathscr{H})\}$ converges to $d_e^*(a,b;\mathscr{H})$ as $n \to \infty$.

66

5. Extremal length

Let a and b be two distinct nodes and let \mathbf{P}_a , b be the set of all paths from a to b. For a path P and a function w on Y, we set for simplicity

$$\sum_{P} w(y) := \sum_{y \in C_Y(P)} w(y)$$

The extremal length $EL(a, b; \mathscr{H})$ of N between a and b is defined by the inverse of the value of the extremum problem:

$$EL(a,b;\mathscr{H})^{-1} := \inf\{H(w); w \in EL(\mathbf{P}_{a,b};\mathscr{H})\},\$$

where $EL(\mathbf{P}_{a,b}; \mathscr{H})$ is the set of all $w \in L(Y; \mathscr{H})$ satisfying

$$\sum_{P} \|r(y)w(y)\| \ge 1 \quad \text{for all} \quad P \in \mathbf{P}_{a,b}.$$

The extremal length $EL_e(a, b; \mathcal{H})$ of N between a and b is defined by the inverse of the value of the extremum problem:

$$EL_e(a,b;\mathscr{H})^{-1} := \inf\{H(w); w \in EL_e(\mathbf{P}_{a,b};\mathscr{H})\},\$$

where $EL_e(\mathbf{P}_{a,b}; \mathscr{H})$ is the set of all $w \in L(Y; \mathscr{H})$ satisfying

$$\sum_{P} |((r(y)w(y), e))| \ge 1 \quad \text{for all} \quad P \in \mathbf{P}_{a,b}.$$

We have

$$EL(a, b; \mathscr{H}) \ge EL_e(a, b; \mathscr{H})$$

since $|((r(y)w(y), e))| \le ||r(y)w(y)|| ||e|| = ||r(y)w(y)||.$

Lemma 5.1. $EL_e(a, b; \mathscr{H})^{-1} \leq d_e(a, b; \mathscr{H}).$

Proof. Let u be any feasible solution for $d_e(a, b; \mathscr{H})$ and put w(y) := du(y). Then $w(y) \in \mathscr{H}$ for each $y \in Y$. Let $P \in \mathbf{P}_{a,b}$ with $C_X(P) := \{x_0, x_1, \dots, x_n\}$ $(x_0 = a, x_n = b), C_Y(P) := \{y_1, y_2, \dots, y_n\}$ and $\{x \in X; K(x, y_i) \neq 0\} = \{x_{i-1}, x_i\}$ for $(i = 1, 2, \dots, n)$ as in the proof of Lemma 1.4. Then we have

$$\sum_{P} |((r(y)w(y), e))| = \sum_{i=1}^{n} |((\delta u(y_{i}), e))|$$

$$\geq \sum_{i=1}^{n} |((u(x_{i}) - u(x_{i-1}), e))|$$

$$\geq ((u(b), e)) - ((u(a), e)) = 1$$

Therefore

$$EL_e(a,b;\mathscr{H})^{-1} \le H(w) = D(u),$$

and hence $EL_e(a, b; \mathscr{H})^{-1} \leq d_e(a, b; \mathscr{H})$. \Box

Lemma 5.2. Let w be a feasible solution for $EL_e(a, b; \mathcal{H})$. Then

$$d_e(a,b;\mathscr{H}) \leq \sum_{y \in Y} ((r(y)w(y),w(y)))((r(y)e,e))((r(y)^{-1}e,e)).$$

Proof. Put V(y) := |((r(y)w(y), e))|. Then $\sum_{P} V(y) \ge 1 \quad \text{for all} \quad P \in \mathbf{P}_{a,b}.$

By the duality between the max-potential problem and the min-work problem (cf. [4]), we can find $\beta \in L(X; \mathbf{R})$ such that $\beta(a) = 0$, $\beta(b) = 1$ and $|\delta\beta(y)| \leq V(y)$ on Y. Let $u(x) := \beta(x)e$. Then $u \in L(X; \mathscr{H})$, u(a) = 0 and u(b) = e, so that by Lemma 1.1

$$\begin{array}{lll} d_{e}(a,b;\mathscr{H}) &\leq & D(u) = \sum_{y \in Y} (r(y)^{-1} \delta u(y), \delta u(y)) \\ &= & \sum_{y \in Y} (\delta \beta(y))^{2} ((r(y)^{-1}e,e)) \\ &\leq & \sum_{y \in Y} V(y)^{2} ((r(y)^{-1}e,e)) \\ &\leq & \sum_{y \in Y} ((r(y)w(y),w(y))) ((r(y)e,e)) ((r(y)^{-1}e,e)) & \Box \end{array}$$

Theorem 5.1. Let $M(r) := \sup\{((r(y)e, e))((r(y)^{-1}e, e)); y \in Y\}$. Then $EL_e(a, b; \mathscr{H})^{-1} \leq d_e(a, b; \mathscr{H}) \leq M(r)EL_e(a, b; \mathscr{H})^{-1}$.

Corollary 5.1. Assume that $((r(y)e, e))((r(y)^{-1}e, e)) = 1$ for all $y \in Y$. Then $d_e(a, b; \mathscr{H}) = EL_e(a, b; \mathscr{H})^{-1}$.

Remark 1. Let *I* be the identity map of \mathscr{H} and let $\gamma \in L(Y; \mathbf{R})$ be positive. Then $r(y) = \gamma(y)I$ is positive and invertible. Clearly, we have $((r(y)e, e)) = \gamma(y)$ and $((r(y)^{-1}e, e)) = 1/\gamma(y)$, so that the condition in the above theorem holds in this case.

We shall prove

Theorem 5.2. Assume that the graph $G = \{X, Y, K\}$ is a tree. Then

$$d_e(a, b; \mathscr{H}) = EL_e(a, b; \mathscr{H})^{-1} = H(pe)^{-1} = \sum_P ((r(y)e, e)),$$

where p is the path index of the path P from a to b.

Proof. Since the graph is a tree, there exists a unique path P from a to b. Let p be the path index of P. Then

$$F_H(a, b; \mathscr{H}) = \{tph; h \in \mathscr{H}, t \in \mathbf{R}\}.$$

If w is a feasible solution for $d^*(a, b; \mathscr{H}; e)$, then w = pe and

$$\begin{array}{lll} d^*(a,b;\mathscr{H};e) &=& H(pe) = \sum_{y \in Y} |p(y)|((r(y)e,e)) \\ &=& \sum_P ((r(y)e,e)). \end{array}$$

Let w be a feasible solution for $EL_e(a, b; \mathscr{H})^{-1}$. Then we have by Lemma 1.2

$$\begin{split} 1 &\leq \sum_{P} \left| ((r(y)w(y), e)) \right| = \sum_{y \in Y} \left| ((r(y)w(y), p(y)e)) \right| \\ &\leq H(w)^{1/2} H(pe)^{1/2}, \end{split}$$

so that $H(pe)^{-1} \leq H(w)$. Therefore by Theorem 3.2

$$d_e(a,b;\mathscr{H}) = H(pe)^{-1} \le EL_e(a,b;\mathscr{H})^{-1}.$$

68

Our equality follows from Lemma 5.1. \Box

We show by an example that the equality $d_e(a, b; \mathscr{H}) = EL_e(a, b; \mathscr{H})^{-1}$ does not hold in general.

Example. Let $X = \{x_0, x_1, x_2\}$ and $Y = \{y_1, y_2, y_3\}$ and define K by

$$K(x_0, y_1) = K(x_0, y_2) = K(x_1, y_3) = -1,$$

$$K(x_1, y_2) = K(x_2, y_1) = K(x_2, y_3) = 1$$

and K(x, y) = 0 for any other pair. Then $G = \{X, Y, K\}$ is a finite graph. Take \mathscr{H} as \mathbf{R}^2 with the usual inner product and define r(y) by

$$r(y_i) := \left(\begin{array}{cc} 1 & 0\\ 0 & t_i \end{array}\right)$$

with $t_i > 0$ for i = 1, 2, 3. Then

$$r(y_i)^{-1} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1/t_i \end{array}\right).$$

Let $a = x_0$, $b = x_2$ in the above setting and let $e = (e_1, e_2)^T \in \mathbf{R}^2$. For $w \in L(Y; \mathbf{R}^2)$, set $w(y_i) = (\xi_i, \eta_i)^T$ for i = 1, 2, 3. Then

$$H(w) = \sum_{i=1}^{3} (\xi_i^2 + t_i \eta_i^2).$$

Let w be a feasible solution for $d^*(a,b;\mathbf{R}^2;e)$. Then $w(y_2) = w(y_3)$ or $\xi_2 = \xi_3, \ \eta_2 = \eta_3$ and

$$\xi_1 + \xi_2 = e_1, \quad \eta_1 + \eta_2 = e_2$$

Minimizing H(w) subject to this constraints, we obtain

$$d^*(a,b;\mathbf{R}^2;e) = \frac{2}{3}e_1^2 + \frac{t_1(t_2+t_3)}{t_1+t_2+t_3}e_2^2,$$

so that by Theorem 3.2

$$d_e(a,b;\mathbf{R}^2) = \frac{3(t_1+t_2+t_3)}{2(t_1+t_2+t_3)e_1^2 + 3t_1(t_2+t_3)e_2^2}.$$

On the other hand, the feasibility of $w \in L(Y; \mathbf{R}^2)$ for $EL_e(a, b; \mathbf{R}^2)$ implies

$$\begin{aligned} \xi_1 e_1 + t_1 \eta_1 e_2 &\geq 1, \\ (\xi_2 + \xi_3) e_1 + (t_2 \eta_2 + t_3 \eta_3) e_2 &\geq 1. \end{aligned}$$

Minimizing H(w) subject to this constraints, we obtain

$$EL_e(a,b;\mathbf{R}^2)^{-1} = \frac{3e_1^2 + (t_1 + t_2 + t_3)e_2^2}{(e_1^2 + t_1e_2^2)[2e_1^2 + (t_2 + t_3)e_2^2]}$$

We have

$$d_e(a,b;\mathbf{R}^2) - EL_e(a,b;\mathbf{R}^2)^{-1} = \frac{(t_2+t_3-2t_1)^2 e_1^2 e_2^2}{\alpha} \ge 0,$$

where

$$\alpha = (e_1^2 + t_1 e_2^2) [2e_1^2 + (t_2 + t_3)e_2^2] [2(t_1 + t_2 + t_3)e_1^2 + 3t_1(t_2 + t_3)e_2^2]$$

The equality holds in case $e_1 = 0$, or $e_2 = 0$ or $t_2 + t_3 = 2t_1$.

6. Extremal width

Let a and b be distinct two nodes and let $\mathbf{Q}_{a,b}$ be the set of all cuts between a and b (cf. [4]).

The extremal width $EW(a, b; \mathcal{H})$ of N between a and b is defined by the inverse of the value of the extremum problem:

$$EW(a,b;\mathscr{H})^{-1} := \inf\{H(w); w \in EW(\mathbf{Q}_{a,b};\mathscr{H})\},\$$

where $EW(\mathbf{Q}_{a,b}; \mathscr{H})$ is the set of all $w \in L(Y; \mathscr{H})$ satisfying

 $\sum_{y \in Q} \|w(y)\| \ge 1 \quad \text{for all} \quad Q \in \mathbf{Q}_{a,b}.$

The extremal width $EW_e(a, b; \mathcal{H})$ of N between a and b is defined by the inverse of the value of the extremum problem:

$$EW_e(a, b; \mathscr{H})^{-1} := \inf\{H(w); w \in EW_e(\mathbf{Q}_{a,b}; \mathscr{H})\},\$$

where $EW_e(\mathbf{Q}_{a,b}; \mathscr{H})$ is the set of all $w \in L(Y; \mathscr{H})$ satisfying

$$\sum_{y \in Q} |((w(y), e))| \ge 1 \quad \text{for all} \quad Q \in \mathbf{Q}_{a,b}.$$

We have

$$EW(a, b; \mathscr{H}) \ge EW_e(a, b; \mathscr{H}),$$

since $|((w(y), e))| \le ||w(y)|| ||e|| = ||w(y)||.$

Lemma 6.1. $EW_e(a, b; \mathscr{H})^{-1} \leq d_e^*(a, b; \mathscr{H}).$

Proof. Let $Q \in \mathbf{Q}_{a,b}$. Then there exist two disjoint subsets Q(a) and Q(b) of X such that

$$a \in Q(a), b \in Q(b), X = Q(a) \cup Q(b)$$
 and $Q = Q(a) \ominus Q(b).$

For a subset A of X, denote by $\varepsilon_A \in L(X; \mathbf{R})$ the characteristic function of A. Then $|\delta \varepsilon_{Q(b)}(y)| = 1$ for $y \in Q$ and $|\delta \varepsilon_{Q(b)}(y)| = 0$ for $y \notin Q$. Let w be a feasible solution for $d_e^*(a, b; \mathscr{H})$. There exists a sequence $\{w_n\} \subset F_0(a, b; \mathscr{H})$ such that $H(w - w_n) \to 0$ as $n \to \infty$. We have

$$\begin{split} I_e(w_n) &= ((\partial w_n(b), e)) = \sum_{x \in X} ((\partial w_n(x), \varepsilon_{Q(b)}(x)e)) \\ &= \sum_{y \in Y} ((w_n(y), \delta \varepsilon_Q(y)e)) \\ &\leq \sum_{y \in Q} |((w_n(y), e))|. \end{split}$$

Namely $w_n/I_e(w_n)$ is a feasible solution for $EW_e(a, b; \mathscr{H})$, so that

$$EW_e(a, b; \mathscr{H})^{-1} \le H(w_n/I_e(w_n)) = H(w_n)/(I_e(w_n))^2$$

Letting $n \to \infty$, we obtain $EW_e(a, b; \mathscr{H})^{-1} \leq H(w)$, so that $EW_e(a, b; \mathscr{H})^{-1} \leq d_e^*(a, b; \mathscr{H})$. \Box

Lemma 6.2. Let w be a feasible solution for $EW_e(a, b; \mathcal{H})$. Then

$$d_e^*(a,b;\mathscr{H}) \le \sum_{y \in Y} ((r(y)w(y),w(y)))((r(y)e,e)(r(y)^{-1}e,e)).$$

Proof. Put V(y) := |((w(y), e))|. Then

$$\sum_{y \in Q} V(y) \ge 1$$
 for all $Q \in \mathbf{Q}_{a,b}$.

By the duality between the max-flow problem and the min-cut problem (cf. [4]), we can find $\varphi \in L(Y; \mathbf{R})$ such that $|\varphi(y)| \leq V(y)$ on Y,

$$\partial \varphi(x) = 0$$
 for $x \in X \setminus \{a, b\}$ and $-\partial \varphi(a) = \partial \varphi(b) = 1$.

Let $w(y) := \varphi(y)e$. Then $w \in F(a, b; \mathscr{H})$ and $I_e(w) = 1$. Thus we have

$$\begin{array}{lll} d_{e}^{*}(a,b;\mathscr{H}) &\leq & H(w) = \sum_{y \in Y} ((r(y)\varphi(y)e,\varphi(y)e)) \\ &= & \sum_{y \in Y} [\varphi(y)]^{2} ((r(y)e,e)) \\ &\leq & \sum_{y \in Y} |((w(y),e))|^{2} ((r(y)e,e)) \\ &\leq & \sum_{y \in Y} ((r(y)w(y),w(y))) ((r(y)^{-1}e,e)) ((r(y)e,e)). \quad \Box \end{array}$$

Theorem 6.1. Let $M(r) := \sup\{((r(y)e, e))((r(y)^{-1}e, e)); y \in Y\}$. Then $EW_e(a, b; \mathscr{H})^{-1} < d_e^*(a, b; \mathscr{H}) < M(r)EW_e(a, b; \mathscr{H})^{-1}$.

Corollary 6.1. Assume that $((r(y)e, e))((r(y)^{-1}e, e)) = 1$ for all $y \in Y$. Then $d_e^*(a, b; \mathscr{H}) = EW_e(a, b; \mathscr{H})^{-1}$.

We show by an example that the equality $d_e^*(a, b; \mathscr{H}) = EW_e(a, b; \mathscr{H})^{-1}$ does not hold in general.

Example. Let $X = \{x_0, x_1, x_2\}$ and $Y = \{y_1, y_2\}$ and define K by

$$K(x_i, y_i) = 1, \ K(x_{i-1}, y_i) = -1 \quad (i = 1, 2)$$

and K(x, y) = 0 for any other pair. Then $G = \{X, Y, K\}$ is a finite graph. Notice that G is a tree. Take \mathscr{H} as \mathbb{R}^2 and define r(y) by

$$r(y_i) := \left(\begin{array}{cc} 1 & 0\\ 0 & t_i \end{array}\right)$$

where $t_i > 0$ for i = 1, 2. Then

$$r(y_i)^{-1} = \left(\begin{array}{cc} 1 & 0\\ 0 & 1/t_i \end{array}\right).$$

Let $a = x_0$, $b = x_2$ in the above setting and let $e = (e_1, e_2)^T \in \mathbf{R}^2$. For $w(y_i) = (\xi_i, \eta_i) \in L(Y; \mathbf{R}^2)$, we have

$$H(w) = \sum_{i=1}^{2} (\xi_i^2 + t_i \eta_i^2).$$

If w is a feasible solution for $d_e^*(a, b; \mathbf{R}^2)$, then $\xi_1 = \xi_2, \eta_1 = \eta_2$ and $I_e(w) = 1$ implies $\xi_1 e_1 + \eta_1 e_2 = 1$. Minimizing H(w) subject to this constraints, we obtain

$$d_e^*(a,b;\mathbf{R}^2) = \frac{1}{e_1^2/2 + e_2^2/(t_1+t_2)}$$

On the other hand, if w is feasible for $EW_e(a, b; \mathbf{R}^2)^{-1}$, then we have

 $\xi_1 e_1 + \eta_1 e_1 \ge 1, \quad \xi_2 e_1 + \eta_2 e_2 \ge 1.$

Minimizing H(w) subject to this constraints, we obtain

$$EW_e(a,b;\mathbf{R}^2)^{-1} = \frac{t_1}{t_1e_1^2 + e_2^2} + \frac{t_2}{t_2e_1^2 + e_2^2}$$

Therefore

$$d_e^*(a,b;\mathbf{R}^2) - EW_e(a,b;\mathbf{R}^2)^{-1} = \frac{(t_1 - t_2)^2 e_1^2 e_2^2}{[(t_1 + t_2)e_1^2 + 2e_2^2](t_1e_1^2 + e_2^2)(t_2e_1^2 + e_2^2)} \ge 0$$

and the equality holds if $t_1 = t_2$ or $e_1 = 0$ or $e_2 = 0$.

References

- [1] V. Dolezal, Nonlinear networks, Elsevier, 1977.
- [2] P. A. Fuhrmann, Linear Systems and Operations in Hilbert Space, McGraw-Hill, 1981.
- [3] P. M. Soardi, Potential Theory on infinite networks, LMN 1590, Springer, 1994.
- [4] M. Yamasaki, Extremum problems on an infinite network, Hiroshima Math. J. 5(1975), 223-250.
- [5] J. Weidmann, Linear operators in Hilbert spaces, GTM 68, Springer-Verlag, 1980.
- [6] A. H. Zemanian, Infinite networks of positive operators, Circuit Theory and Applications, 2(1974), 69-78.
- [7] A. H. Zemanian, Infinite electrical networks, Cambridge Uni. Press, 1991.

DEPARTMENT OF MATHEMATICS, SHIMANE UNIVERSITY, MATSUE 690-8504 JAPAN *E-mail address*: yamasaki@riko.shimane-u.ac.jp