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EXTREMUM PROBLEMS ON A HILBERT NETWORK
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Abstract. As a generalization of a usual infinite network, a Hilbert network
is defined as a pair of a graph and a resistance taking values in a Hilbert space.
With the sets of nodes and arcs of the graph, we associate variables belonging
to a Hilbert space. In this situation, we study several extremum problems
related to Hilbert-valued functions on the set of nodes or arcs of the graph
and their inverse relations.

1. Introduction with preliminaries

Let G = {X,Y,K} be a locally finite infinite graph which is connected and
has no self-loof as in [4]. Here X is a countable set of nodes, Y is a countable
set of arcs and K is the node-arc incidence matrix.

Let H be a real Hilbert space with an inner product (( ·, ·)) and the norm
‖ ·‖. Denote by L(X; H ) the set of all functions u on X such that u(x) ∈ H for
each x ∈ X and by L0(X; H ) the set of all u ∈ L(X; H ) such that the support
{x ∈ X; u(x) 6= 0} is a finite set. The meaning of the notation L(Y ; H ) and
L0(Y ; H ) is similar. Let L (H ) be the set of all bounded, linear, positive and
invertible linear operators from H to H . Assume that r ∈ L(Y ; L (H )). This
is a generalization of the resistance in the ususal network theory as in [3] and [4].
We call the pair N = {G, r} of the graph G and this generalized resistance r a
Hilbert network as in [1], [6] and [7].

For each y ∈ Y , there exists ρ(y) > 0 by our assumption (cf. [5]) such that

((r(y)h, h)) ≥ ρ(y)‖h‖2 for all h ∈ H .

Here r(y)h means the image of h under r(y), i.e., r(y)(h). In this paper, we use
this convention unless no confusion occurs from the context. Denote by r(y)−1

the inverse operator of r(y). Notice that there exists ρ∗(y) > 0 such that

((r(y)−1h, h)) ≥ ρ∗(y)‖h‖2 for all h ∈ H .

For each y ∈ Y , there exists a unique square root r(y)1/2 ∈ L (H ) of r(y) by [2]
i.e.,

[r(y)1/2]2 = r(y).
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Before introducing extremum problems on the Hilbert network N , we need
several preparations.

Definition 1.1. Let e be a fixed element of H such that ‖e‖ = 1.

Definition 1.2. For u ∈ L(X; H ), the potential drop δu of u and the discrete
derivative du of u are defined by

δu(y) :=
∑

x∈X
K(x, y)u(x),

du(y) := −r(y)−1(δu(y)) = −r(y)−1δu(y).

The Dirichlet sum of u is defined by

D(u) :=
∑

y∈Y
((r(y)du(y), du(y))) =

∑
y∈Y

((r(y)−1δu(y), δu(y))).

Definition 1.3. For w ∈ L(Y ; H ), the divergence ∂w(x) of w and the energy
H(w) of w are defined by

∂w(x) :=
∑

y∈Y
K(x, y)w(y),

H(w) :=
∑

y∈Y
((r(y)w(y), w(y))).

Notice that D(u) = H(du). Let us put

D(N ; H ) := {u ∈ L(X; H ); D(u) < ∞},
LH(Y ; H ) := {w ∈ L(Y ; H ); H(w) < ∞}.

For every w1, w2 ∈ LH(Y ; H ), we define the inner product H(w1, w2) by

H(w1, w2) :=
∑

y∈Y
((r(y)w1(y), w2(y))).

For every u1, u2 ∈ D(N ; H ), we define the mutual Dirichlet sum D(u1, u2) by

D(u1, u2) := H(du1, du2) =
∑

y∈Y
((r(y)−1δu1(y), δu2(y))).

Lemma 1.1. Let h ∈ H . For every y ∈ Y , the following relations hold:
(1) |((r(y)w(y), h))|2 ≤ ((r(y)w(y), w(y)))((r(y)h, h)).
(2) 1 ≤ ((r(y)−1h, h))((r(y)h, h)).

Proof. By the Schwarz inequality, we have

|((r(y)w(y), h))|2 = |((r(y)1/2w(y), r(y)1/2h))|2

≤ ‖r(y)1/2w(y)‖2‖r(y)1/2h‖2

= ((r(y)w(y), w(y)))((r(y)h, h)).

(2) follows from (1) by taking w(y) := r(y)−1h. 2

Lemma 1.2. |H(w1, w2)| ≤ H(w1)
1/2H(w2)

1/2.
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Proof. From the Schwarz inequality, it follows that

|H(w1, w2)| ≤
∑

y∈Y
|((r(y)w1(y), w2(y)))|

=
∑

y∈Y
|((r(y)1/2w1(y), r(y)1/2w2(y)))|

≤
∑

y∈Y
‖r(y)1/2w1(y)‖‖r(y)1/2w2(y)‖

≤ [
∑

y∈Y
‖r(y)1/2w1(y)‖2]1/2[

∑
y∈Y

‖r(y)1/2w2(y)‖2]1/2

= H(w1)
1/2H(w2)

1/2. 2

Notice that LH(Y ; H ) is a Hilbert space with this inner product.

Lemma 1.3. If w ∈ L0(Y ; H ), then
∑

y∈Y
r(y)w(y) ∈ H and∑

y∈Y
((r(y)w(y), h)) = ((

∑
y∈Y

r(y)w(y), h))

for every h ∈ H .

Proof. Since r(y)w(y) ∈ H for every y ∈ Y and w ∈ L0(Y ; H ), our assertion
is clear. 2

For a ∈ X, let us put

D(N ; H ; a) := {u ∈ D(N ; H ); u(a) = 0}.

Lemma 1.4. For any x ∈ X, there exists a constant Mx which such that

‖u(x)‖ ≤ MxD(u)1/2

for all u ∈ D(N ; H ; a).

Proof. We may assume that x 6= a. There exists a path P from a to x. Let
CX(P ) and CY (P ) be the sets of nodes and arcs on P respectively (cf. [4]), i.e.,

CX(P ) := {x0, x1, · · · , xn} (x0 = a, xn = x),

CY (P ) := {y1, y2, · · · , yn},
{x ∈ X; K(x, yi) 6= 0} = {xi−1, xi} (i = 1, 2, · · · , n).

Let u ∈ D(N ; H ; a). Then we have

D(u) ≥
∑

y∈CY (P )
((r(y)−1δu(y), δu(y)))

=
n∑

i=1

((r(yi)
−1δu(yi), δu(yi)))

≥
n∑

i=1

ρ∗(yi)‖u(xi) − u(xi−1)‖2

≥
n∑

i=1

ρ∗(yi)[‖u(xi)‖ − ‖u(xi−1)‖]2,

so that

‖u(xi)‖ − ‖u(xi−1)‖ ≤ D(u)1/2[ρ∗(yi)]
−1/2
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, for i = 1, 2, · · · . Since u(a) = 0, we have

‖u(x)‖ =
n∑

i=1

[‖u(xi)‖ − ‖u(xi−1)‖] ≤ MxD(u)1/2

with

Mx :=
n∑

i=1

[ρ∗(yi)]
−1/2.

This completes the proof. 2

We see that D(u)1/2 is a norm on D(N ; H ; a).

Proposition 1.1. D(N ; H ; a) is a Hilbert space with respect to the inner prod-
uct D(u1, u2).

Proof. Let {un} be a Cauchy sequence in D(N ; H ; a), i.e., D(un − um) → 0 as
n,m → ∞. Then {D(un)} is bounded. It follows from Lemma 1.4 that {un(x)}
is a Cauchy sequence in H for each x ∈ X. Therefore there exists ũ(x) ∈ H
such that ‖un(x) − ũ(x)‖ → 0 as n → ∞ for each x ∈ X. Thus ũ(a) = 0 and
‖dun(y) − dũ(y)‖ → 0 as n → ∞ for each y ∈ Y . Since {D(un)} is bounded, we
see that ũ ∈ D(N ; H ) by Fatou’s lemma. For any ε > 0, there exists n0 such
that D(un − um) < ε2 for all n,m ≥ n0. For any finite subset Y ′ of Y ,∑

y∈Y ′((r(y)d(un − um)(y), d(un − um)(y))) ≤ D(un − um).

Letting m → ∞, we have∑
y∈Y ′((r(y)d(un − ũ)(y), d(un − ũ)(y))) ≤ ε2

for all n ≥ n0, so that D(un − ũ) ≤ ε2. Hence, D(un − ũ) → 0 as n → ∞. 2

Denote by D0(N ; H ; a) the closure of the set

L0(X; H ; a) := {u ∈ L0(X; H ); u(a) = 0}
in the Hilbert space D(N ; H ; a).

2. H -flows

Definition 2.1. Let a and b be distinct two nodes. We say that w ∈ L(Y ; H )
is an H -flow from a to b if the following conditions are fulfilled:
(F.1) ∂w(x) = 0 for all x ∈ X \ {a, b};
(F.2) ∂w(a) + ∂w(b) = 0.

Denote by F (a, b; H ) the set of all H -flows from a to b.

Definition 2.2. For each w ∈ F (a, b; H ), we introduce the following two quan-
tities:

Ie(w) := ((∂w(b), e)) = −((∂w(a), e)),

I(w) := ‖∂w(a)‖ = ‖∂w(b)‖.

Let us put F0(a, b; H ) := F (a, b; H ) ∩ L0(Y ; H ) and denote by FH(a, b; H )
the closure of F0(a, b; H ) in LH(Y ; H ).
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Lemma 2.1. Assume that N is a finite network. If w ∈ L(Y ; H ) satisfies
(F.1), then it does also (F.2).

Proof. Since N is a finite network and∑
x∈X

K(x, y) = 0

for each y ∈ Y , we have by changing the order of summation

∂w̃(a) + ∂w̃(b) =
∑

x∈X
∂w̃(x) =

∑
y∈Y

[
∑

x∈X
K(x, y)]w̃(y) = 0. 2

Similarly we have

Lemma 2.2. If w ∈ L0(Y ; H ) satisfies (F.1), then it does (F.2).

Corollary 2.1. (F.1) implies (F.2) for every w ∈ FH(a, b; H ).

Lemma 2.3. Let u ∈ L(X; H ) and w ∈ L0(Y ; H ). Then∑
y∈Y

((w(y), δu(y))) ≤ H(w)1/2D(u)1/2.

Proof. We have by Lemma 1.2∑
y∈Y

((w(y), δu(y))) = H(w, du) ≤ H(w)1/2H(du)1/2 ≤ H(w)1/2D(u)1/2.

Corollary 2.2. Let u ∈ D(N ; H ) and w ∈ FH(a, b; H ). Then∑
y∈Y

((w(y), δu(y))) ≤ H(w)1/2D(u)1/2.

Proof. There exists a sequence {wn} in F0(a, b; H ) such that H(wn − w) → 0
as n → ∞. We have by Lemma 2.3 H(wn, du)) ≤ H(wn)1/2D(u)1/2. Since
du ∈ LH(Y ; H ), we see that H(wn, du) → H(w, du) and H(wn) → H(w) as
n → ∞. 2

Lemma 2.4. Let u ∈ D(N ; H ) and w ∈ FH(a, b; H ). Then∑
x∈X

((u(x), ∂w(x))) =
∑

y∈Y
((δu(y), w(y))).

Proof. There exists a sequence {wn} in F0(a, b; H ) such that H(wn − w) → 0
as n → ∞. Since the support of wn is a finite set, we have

((u(a), ∂wn(a))) + ((u(b), ∂wn(b))) =
∑

x∈X
((u(x), ∂wn(x)))

=
∑

y∈Y
((δu(y), wn(y))) = H(du, wn).

By letting n → ∞, we obtain the desired inequality, since du ∈ LH(Y ; H ) and
∂w(x) = 0 for x ∈ X \ {a, b}. 2

Denote by C0(N) the set of all finite cycles on N , i.e.,

C0(N) := {ω ∈ L0(Y ; H ); ∂ω(x) = 0 on X}.

Lemma 2.5. Let w̃ ∈ F (a, b; H ) such that H(w̃) < ∞. Suppose that H(w̃, ω) =
0 for every ω ∈ C0(N). Then there exists ũ ∈ D(N ; H ; a) such that dũ = −w̃.
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Proof. Let p1, p2 be path indices of paths from a to x (cf. [4]). First we shall
prove ∑

y∈Y
p1(y)r(y)w̃(y) =

∑
y∈Y

p2(y)r(y)w̃(y).

In fact, for any h ∈ H , ω(y) := (p1(y) − p2(y))h belongs to C0(N), so that we
have by our assumption

0 = H(w̃, (p1 − p2)h) =
∑

y∈Y
((r(y)[(p1(y) − p2(y))w̃(y)], h)).

Since (p1 − p2)w̃ ∈ L0(Y ; H ), we see by Lemma 1.3.

((
∑

y∈Y
r(y)[(p1(y) − p2(y))w̃(y)], h)) = 0.

Since h ∈ H is arbitrary, our assertion follows. Define ũ ∈ L(X; H ) by ũ(a) = 0
and

ũ(x) :=
∑

y∈Y
px(y)w̃(y) for x 6= a,

where px is the path index of a path from a to x. This function is well-defined
by the above observation. Let y′ ∈ Y and {x ∈ X; K(x, y′) 6= 0} = {x1, x2}. Let
px2 be the path index of a path Px2 from a to x2 which passes the arc y′ after
the node x1. Namely Px2 consists of a path Px1 from a to x1 and the single arc
y′. We have

ũ(x2) =
∑

y∈Y
px2(y)w̃(y)

=
∑

y∈Y
px1(y)w̃ + r(y′)K(x1, y

′)w̃(y′)

= ũ(x1) + r(y′)K(x1, y
′)w̃(y′),

so that ũ(x2) = ũ(x1) + r(y′)K(x1, y
′)w̃(y′), or δũ(y′) = −r(y′)w̃(y′). 2

3. Inverse relation I

Now let us consider the following pair of extremum problems on the Hilbert
network N which are related to H -valued functions on X or Y :

de(a, b; H ) := inf{D(u); u ∈ L(X; H ), ((u(a), e)) = 0, ((u(b), e)) = 1},
d∗(a, b; H ; e) := inf{H(w); w ∈ FH(a, b; H ), ∂w(b) = e}
First we have

Theorem 3.1. 1 ≤ de(a, b; H )d∗(a, b; H , e).

Proof. Let u be a feasible solution for de(a, b; H ) and let w be a feasible solution
for d∗(a, b; H ; e). It suffices to show that 1 ≤ H(w)1/2D(u)1/2. There exists a
sequence {wn} in F0(a, b; H ) such that H(w −wn) → 0 as n → ∞. We have by
Lemma 2.3

1 = ((u(b), e)) = ((u(b), ∂w(b))) = lim
n→∞

((u(b), ∂wn(b)))

= lim
n→∞

∑
x∈X

((u(x), ∂wn(x))) = lim
n→∞

∑
y∈Y

((δu(y), wn(y)))

≤ lim
n→∞

H(wn)1/2D(u)1/2 = H(w)1/2D(u)1/2. 2

To prove the converse inequality, we prepare
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Lemma 3.1. There exists a unique optimal solution for d∗(a, b; H ; e).

Proof. Let {wn} be a minimizing sequence for d∗(a, b; H ; e), i.e., {wn} ⊂
FH(a, b; H ), ∂wn(b) = e and H(wn) → d∗(a, b; H ; e) as n → ∞. Since (wn +
wm)/2 is a feasible solution for d∗(a, b; H ; e), we have

d∗(a, b; H ; e) ≤ H((wn + wm)/2)

≤ H((wn + wm)/2) + H((wn − wm)/2)

= [H(wn) + H(wm)]/2 → d∗(a, b; H ; e)

as m,n → ∞. Therefore H(wn −wm) → 0 as n,m → ∞. It follows that {wn} is
a Cauchy sequence in the Hilbert space LH(Y ; H ). There exists w̃ ∈ LH(Y ; H )
such that H(wn − w̃) → 0 as n → ∞. Then w̃ ∈ FH(a, b; H ), ∂w̃(b) = e and
d∗(a, b; H ; e) = H(w̃). Namely w̃ is an optimal solution for d∗(a, b; H ; e). Since
H(w) is a strictly convex function of w ∈ LH(Y ; H ), the uniqueness of the
optimal solution follows. 2

Lemma 3.2. Let w̃ be the optimal solution for d∗(a, b; H ; e). Then H(w̃, ω) = 0
for every ω ∈ C0(N).

Proof. For any ω ∈ C0(N) and t ∈ R, w̃ + tω is a feasible solution for
d∗(a, b; H ; e). Thus

H(w̃) ≤ H(w̃ + tω) = H(w̃) + 2tH(w̃, ω) + t2H(ω).

By the standard variational argument, we obtain H(w̃, ω) = 0. 2

Lemma 3.3. Let w̃(y) be the same as above. There exists ũ ∈ D(N ; H ) such
that ũ(a) = 0, ((ũ(b), e)) = d∗(a, b; H ; e) and δũ = −w̃.

Proof. Let ũ be the function defined by w̃ in Lemma 3.2. Then ũ(a) = 0 and
dũ = −w̃. There exists {wn} ⊂ F0(a, b; H ) such that H(wn− w̃) → 0 as n → ∞.
Let pb a path index of a path from a to b. Since wn − pb∂wn(b) ∈ C0(N), we
have H(w̃, wn − pb∂wn(b)) = 0. From ∂wn(b) → ∂w(b) = e, it follows that
H(w̃, w̃ − pbe) = 0, so that

d∗(a, b; H ; e) = H(w̃) = H(w̃, pbe) = ((ũ(b), e)). 2

Theorem 3.2. de(a, b; H )d∗(a, b; H ; e) = 1.

Proof. Let w̃ be the optimal solution for d∗(a, b; H ; e) and let ũ be the function
defined in Lemma 3.3. Then v := ũ/d∗(a, b; H ; e) is a feasible solution for
de(a, b; H ) and

de(a, b; H ) ≤ D(v) = D(ũ)/d∗(a, b; H ; e)2

= H(w̃)/(d∗(a, b; H ; e)2 = 1/d∗(a, b; H ; e),

so that de(a, b; H )d∗(a, b; H ; e) ≤ 1. Thus the equality holds by Theorem 3.1.
2
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4. Inverse relation II

Let us consider further extremum problems on the Hilbert network N :

d(a, b; H ; e) := inf{D(u); u ∈ L(X; H ), u(a) = 0, u(b) = e},
d(a, b; H ) := inf{D(u); u ∈ L(X; H ), u(a) = 0, ‖u(b)‖ = 1},

d∗
e(a, b; H ) := inf{H(w); w ∈ FH(a, b; H ), Ie(w) = 1},

d∗(a, b; H ) := inf{H(w); w ∈ FH(a, b; H ), I(w) = 1}.
Clearly

de(a, b; H ) ≤ d(a, b; H ; e), d(a, b; H ) ≤ d(a, b; H ; e),

d∗
e(a, b; H ) ≤ d∗(a, b; H ; e), d∗(a, b; H ) ≤ d∗(a, b; H ; e).

We have

Theorem 4.1. 1 ≤ d(a, b; H ; e)d∗
e(a, b; H ).

Proof. It suffices to show that 1 ≤ H(w)1/2D(u)1/2 holds for any feasible solution
u for d(a, b; H ; e) and any feasible solution w for d∗

e(a, b; H ). By the corollary
of Lemma 2.3 and Lemma 2.4, we have

1 = Ie(w) = ((∂w(b), e)) =
∑

x∈X
((∂w(x), u(x)))

=
∑

y∈Y
((w(y), δu(y)))

≤ H(w)1/2D(u)1/2. 2

To prove the converse inequality, we prepare

Lemma 4.1. There exists a unique optimal solution for d(a, b; H ; e).

Proof. Let {un} be a minimizing sequence for d(a, b; H ; e), i.e., {un} ⊂ D(N ; H ; a),
un(b) = e and D(un) → d(a, b; H ; e) as n → ∞. Since (un + um)/2 is a feasible
solution for d(a, b; H ; e), we have

d(a, b; H ; e) ≤ D((un + um)/2)

≤ D((un + um)/2) + D((un − um)/2)

= [D(un) + D(um)]/2 → d(a, b; H ; e)

as n → ∞. Therefore D(un−um) → 0 as n,m → ∞. It follows from Proposition
1.1 that there exists ũ ∈ D(N ; H ; a) such thatD(un−ũ) → 0 as n → ∞. Clearly
ũ(b) = e and α = D(ũ). Namely ũ is an optimal solution. The uniqueness of the
optimal solution follows from the fact that D(u) is strict convex on D(N ; H ; a).
2

Lemma 4.2. Assume that N is a finite network. Let ũ be the optimal solution
for d(a, b; H ; e) and put w̃(y) := dũ(y). Then w̃ ∈ F (a, b; H ) and Ie(w̃) = D(ũ).

Proof. Let f ∈ D(N ; H ) satisfy f(a) = f(b) = 0. Then, for any t ∈ R, ũ + tf
is a feasible solution for d(a, b; H ; e), so that

D(ũ) ≤ D(ũ + tf) = D(ũ) + 2tD(ũ, f) + t2D(f).
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By the standard variational argument, we have D(ũ, f) = 0. On the other hand,
we have

D(ũ, f) =
∑

y∈Y
((w̃(y),

∑
z∈X

K(z, y)f(z)))

=
∑

z∈X

∑
y∈Y

((K(z, y)w̃(y), f(z)))

=
∑

z∈X
((∂w̃(z), f(z))).

Denote by εx the characteristic function of {x}, i.e., εx(x) = 1 and εx(z) = 0 for
z 6= x. Let x 6= a, b. For any h ∈ H , we may take εxh for f , which leads to

((∂w̃(x), h)) = 0.

Therefore ∂w̃(x) = 0 for x 6= a, b. Namely w̃ satisfies (F.1). Since N is a finite
network, we have w̃ ∈ F (a, b; H ) by Lemma 2.1. By taking ũ − εbe for f , we
obtain D(ũ, ũ − εbe) = 0, so that

D(ũ) = D(ũ, εbe) = ((∂w̃(b), e)).

Therefore Ie(w̃) = D(ũ). 2

Theorem 4.2. Assume that N is a finite network. Then the inverse relation
d(a, b; H ; e)d∗

e(a, b; H ) = 1 holds.

Proof. Let ũ be the optimal solution for d(a, b; H ; e) and let w̃ = dũ. We see
by Lemma 4.2 that w̃(y)/D(ũ) is a feasible solution for d∗

e(a, b; H ), so that

d∗
e(a, b; H ) ≤ H(w̃(y)/D(ũ))

= D(ũ)/D(ũ)2

= 1/D(ũ) = 1/d(a, b; H ; e).

Thus d(a, b; H ; e)d∗
e(a, b; H ) ≤ 1. 2

In order to establish the equality in Theorem 4.2 in the case where N is an
infinite network, we consider an exhaustion {Gn}(Gn :=< Xn, yn >) of G (cf.
[4]) with a, b ∈ X1. A Hilbert subnetwork Nn of N is defined as the pair of the
pair of Gn and the restriction of r onto Yn.

On each finite subnetwork Nn, we define the Dirichlet mutual sum of u1, u2 ∈
L(Xn; H ) by

Dn(u1, u2) :=
∑

y∈Yn
((r(y)du1(y), du2(y)))

and put Dn(u) = Dn(u, u). For w ∈ L(Yn; H ), we define Hn(w) and ∂nw by

Hn(w) :=
∑

y∈Yn
((r(y)w(y), w(y))),

∂nw(x) :=
∑

y∈Yn
K(x, y)w(y).

For large n, we have ∂nw(a) = ∂w(a) and ∂nw(b) = ∂w(b). Let us consider the
following extremum problems on Nn:

dn := d(a, b; Nn; H ; e) := inf{Dn(u); u ∈ L(Xn; H ), u(a) = 0, u(a) = e},
d∗

n := d∗
e(a, b; Nn; H ) := inf{Hn(w); w ∈ Fn(a, b; H ), ((∂nw(b), e)) = 1},

where Fn(a, b; H ) := {w ∈ L(Yn; H ); ∂nw(x) = 0 on Xn \ {a, b}}.
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Lemma 4.3. {d(a, b; Nn; H ; e)} converges to d(a, b; H ; e) as n → ∞.

Proof. Let ũ and un be the optimal solutions of d(a, b; H ; e) and dn respectively.
Then for every f ∈ L(Xn; H ) satisfying f(a) = f(b) = 0, we have Dn(un, f) = 0
as in the proof of Lemma 4.2. For n < m, we have

Dn(ũ − un, un) = 0 and Dn(um − un, un) = 0.

Furthermore

Dn(un) ≤ Dn(ũ) ≤ D(ũ) < ∞.

By the relation

0 ≤ Dn(um − un) = Dn(um) − Dn(un) ≤ Dm(um) − Dn(un),

we see that the limit of {Dn(un)} exists, and hence

lim
n→∞

Dn(um − un) = 0.

For k < n < m, we have

Dk(um − un) ≤ Dn(um − un) → 0 (n → ∞).

Thus {un} is a Cauchy sequence with respect to Dk, and the limit of {un(x)}
exists for all x ∈ Xk both in the sense of Dk and in the sense of norm convergence
in H . Let v be the limit of {un}. Then v(a) = 0 and v(b) = e, so that
D(ũ) ≤ D(v). Since Dk(un) ≤ Dn(un) if k ≤ n, we have

Dk(v) = limn→∞ Dk(un) ≤ limn→∞ Dn(un) ≤ D(ũ).

Letting k → ∞, we obtain D(v) ≤ D(ũ), and hence D(v) = D(ũ). By the
uniqueness of the optimal solution, we have v = ũ and

lim
n→∞

Dn(un) = D(ũ). 2

Theorem 4.3. d(a, b; H ; e)d∗
e(a, b; H ) = 1.

Proof. It is easily seen that for large n we have

d∗
n = inf{H(w); w ∈ F (a, b; H ), Ie(w) = 1, wn = 0 on Y \ Yn}.

Therefore we obtain d∗
n ≥ d∗

n+1 ≥ d∗
e(a, b; H ), so that

d∗
e(a, b; H ) ≤ lim

n→∞
d∗

n.

Since dn · d∗
n = 1 by Theorem 4.2, we have by Lemma 4.3

d(a, b; H ; e)d∗
e(a, b; H ) ≤ lim

n→∞
dn · d∗

n = 1.

Our equality follows from Theorem 4.1. 2

Corollary 4.1. {d∗
e(a, b; Nn; H )} converges to d∗

e(a, b; H ) as n → ∞.
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5. Extremal length

Let a and b be two distinct nodes and let Pa, b be the set of all paths from a
to b. For a path P and a function w on Y , we set for simplicity∑

P
w(y) :=

∑
y∈CY (P )

w(y)

The extremal length EL(a, b; H ) of N between a and b is defined by the
inverse of the value of the extremum problem:

EL(a, b; H )−1 := inf{H(w); w ∈ EL(Pa,b; H )},

where EL(Pa,b; H ) is the set of all w ∈ L(Y ; H ) satisfying∑
P
‖r(y)w(y)‖ ≥ 1 for all P ∈ Pa,b.

The extremal length ELe(a, b; H ) of N between a and b is defined by the inverse
of the value of the extremum problem:

ELe(a, b; H )−1 := inf{H(w); w ∈ ELe(Pa,b; H )},

where ELe(Pa,b; H ) is the set of all w ∈ L(Y ; H ) satisfying∑
P
|((r(y)w(y), e))| ≥ 1 for all P ∈ Pa,b.

We have

EL(a, b; H ) ≥ ELe(a, b; H ),

since |((r(y)w(y), e))| ≤ ‖r(y)w(y)‖‖e‖ = ‖r(y)w(y)‖.

Lemma 5.1. ELe(a, b; H )−1 ≤ de(a, b; H ).

Proof. Let u be any feasible solution for de(a, b; H ) and put w(y) := du(y).
Then w(y) ∈ H for each y ∈ Y . Let P ∈ Pa,b with CX(P ) := {x0, x1, · · · , xn} (x0 =
a, xn = b), CY (P ) := {y1, y2, · · · , yn} and {x ∈ X; K(x, yi) 6= 0} = {xi−1, xi} for
(i = 1, 2, · · · , n) as in the proof of Lemma 1.4. Then we have

∑
P
|((r(y)w(y), e))| =

n∑
i=1

|((δu(yi), e))|

≥
n∑

i=1

|((u(xi) − u(xi−1), e))|

≥ ((u(b), e)) − ((u(a), e)) = 1.

Therefore

ELe(a, b; H )−1 ≤ H(w) = D(u),

and hence ELe(a, b; H )−1 ≤ de(a, b; H ). 2

Lemma 5.2. Let w be a feasible solution for ELe(a, b; H ). Then

de(a, b; H ) ≤
∑

y∈Y
((r(y)w(y), w(y)))((r(y)e, e))((r(y)−1e, e)).
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Proof. Put V (y) := |((r(y)w(y), e))|. Then∑
P

V (y) ≥ 1 for all P ∈ Pa,b.

By the duality between the max-potential problem and the min-work problem (cf.
[4]), we can find β ∈ L(X;R) such that β(a) = 0, β(b) = 1 and |δβ(y)| ≤ V (y)
on Y . Let u(x) := β(x)e. Then u ∈ L(X; H ), u(a) = 0 and u(b) = e, so that
by Lemma 1.1

de(a, b; H ) ≤ D(u) =
∑

y∈Y
(r(y)−1δu(y), δu(y))

=
∑

y∈Y
(δβ(y))2((r(y)−1e, e))

≤
∑

y∈Y
V (y)2((r(y)−1e, e))

≤
∑

y∈Y
((r(y)w(y), w(y)))((r(y)e, e))((r(y)−1e, e)) 2

Theorem 5.1. Let M(r) := sup{((r(y)e, e))((r(y)−1e, e)); y ∈ Y }. Then

ELe(a, b; H )−1 ≤ de(a, b; H ) ≤ M(r)ELe(a, b; H )−1.

Corollary 5.1. Assume that ((r(y)e, e))((r(y)−1e, e)) = 1 for all y ∈ Y . Then
de(a, b; H ) = ELe(a, b; H )−1.

Remark 1. Let I be the identity map of H and let γ ∈ L(Y ;R) be positive.
Then r(y) = γ(y)I is positive and invertible. Clearly, we have ((r(y)e, e)) = γ(y)
and ((r(y)−1e, e)) = 1/γ(y), so that the condition in the above theorem holds in
this case.

We shall prove

Theorem 5.2. Assume that the graph G = {X,Y,K} is a tree. Then

de(a, b; H ) = ELe(a, b; H )−1 = H(pe)−1 =
∑

P
((r(y)e, e)),

where p is the path index of the path P from a to b.

Proof. Since the graph is a tree, there exists a unique path P from a to b. Let
p be the path index of P . Then

FH(a, b; H ) = {tph; h ∈ H , t ∈ R}.
If w is a feasible solution for d∗(a, b; H ; e), then w = pe and

d∗(a, b; H ; e) = H(pe) =
∑

y∈Y
|p(y)|((r(y)e, e))

=
∑

P
((r(y)e, e)).

Let w be a feasible solution for ELe(a, b; H )−1. Then we have by Lemma 1.2

1 ≤
∑

P
|((r(y)w(y), e))| =

∑
y∈Y

|((r(y)w(y), p(y)e))|

≤ H(w)1/2H(pe)1/2,

so that H(pe)−1 ≤ H(w). Therefore by Theorem 3.2

de(a, b; H ) = H(pe)−1 ≤ ELe(a, b; H )−1.
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Our equality follows from Lemma 5.1. 2

We show by an example that the equality de(a, b; H ) = ELe(a, b; H )−1 does
not hold in general.

Example. Let X = {x0, x1, x2} and Y = {y1, y2, y3} and define K by

K(x0, y1) = K(x0, y2) = K(x1, y3) = −1,

K(x1, y2) = K(x2, y1) = K(x2, y3) = 1

and K(x, y) = 0 for any other pair. Then G = {X,Y,K} is a finite graph. Take
H as R2 with the usual inner product and define r(y) by

r(yi) :=

(
1 0
0 ti

)
with ti > 0 for i = 1, 2, 3. Then

r(yi)
−1 =

(
1 0
0 1/ti

)
.

Let a = x0, b = x2 in the above setting and let e = (e1, e2)
T ∈ R2. For

w ∈ L(Y ;R2), set w(yi) = (ξi, ηi)
T for i = 1, 2, 3. Then

H(w) =
3∑

i=1

(ξ2
i + tiη

2
i ).

Let w be a feasible solution for d∗(a, b;R2; e). Then w(y2) = w(y3) or ξ2 =
ξ3, η2 = η3 and

ξ1 + ξ2 = e1, η1 + η2 = e2.

Minimizing H(w) subject to this constraints, we obtain

d∗(a, b;R2; e) =
2

3
e2
1 +

t1(t2 + t3)

t1 + t2 + t3
e2
2,

so that by Theorem 3.2

de(a, b;R2) =
3(t1 + t2 + t3)

2(t1 + t2 + t3)e2
1 + 3t1(t2 + t3)e2

2

.

On the other hand, the feasibility of w ∈ L(Y ;R2) for ELe(a, b;R2) implies

ξ1e1 + t1η1e2 ≥ 1,

(ξ2 + ξ3)e1 + (t2η2 + t3η3)e2 ≥ 1.

Minimizing H(w) subject to this constraints, we obtain

ELe(a, b;R2)−1 =
3e2

1 + (t1 + t2 + t3)e
2
2

(e2
1 + t1e2

2)[2e
2
1 + (t2 + t3)e2

2]
.

We have

de(a, b;R2) − ELe(a, b;R2)−1 =
(t2 + t3 − 2t1)

2e2
1e

2
2

α
≥ 0,
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where

α = (e2
1 + t1e

2
2)[2e

2
1 + (t2 + t3)e

2
2][2(t1 + t2 + t3)e

2
1 + 3t1(t2 + t3)e

2
2].

The equality holds in case e1 = 0, or e2 = 0 or t2 + t3 = 2t1.

6. Extremal width

Let a and b be distinct two nodes and let Qa,b be the set of all cuts between
a and b (cf. [4]).

The extremal width EW (a, b; H ) of N between a and b is defined by the
inverse of the value of the extremum problem:

EW (a, b; H )−1 := inf{H(w); w ∈ EW (Qa,b; H )},
where EW (Qa,b; H ) is the set of all w ∈ L(Y ; H ) satisfying∑

y∈Q
‖w(y)‖ ≥ 1 for all Q ∈ Qa,b.

The extremal width EWe(a, b; H ) of N between a and b is defined by the inverse
of the value of the extremum problem:

EWe(a, b; H )−1 := inf{H(w); w ∈ EWe(Qa,b; H )},
where EWe(Qa,b; H ) is the set of all w ∈ L(Y ; H ) satisfying∑

y∈Q
|((w(y), e))| ≥ 1 for all Q ∈ Qa,b.

We have
EW (a, b; H ) ≥ EWe(a, b; H ),

since |((w(y), e))| ≤ ‖w(y)‖‖e‖ = ‖w(y)‖.

Lemma 6.1. EWe(a, b; H )−1 ≤ d∗
e(a, b; H ).

Proof. Let Q ∈ Qa,b. Then there exist two disjoint subsets Q(a) and Q(b) of X
such that

a ∈ Q(a), b ∈ Q(b), X = Q(a) ∪ Q(b) and Q = Q(a) ª Q(b).

For a subset A of X, denote by εA ∈ L(X;R) the characteristic function of A.
Then |δεQ(b)(y)| = 1 for y ∈ Q and |δεQ(b)(y)| = 0 for y /∈ Q. Let w be a feasible
solution for d∗

e(a, b; H ). There exists a sequence {wn} ⊂ F0(a, b; H ) such that
H(w − wn) → 0 as n → ∞. We have

Ie(wn) = ((∂wn(b), e)) =
∑

x∈X
((∂wn(x), εQ(b)(x)e))

=
∑

y∈Y
((wn(y), δεQ(y)e))

≤
∑

y∈Q
|((wn(y), e))|.

Namely wn/Ie(wn) is a feasible solution for EWe(a, b; H ), so that

EWe(a, b; H )−1 ≤ H(wn/Ie(wn)) = H(wn)/(Ie(wn))2.

Letting n → ∞, we obtain EWe(a, b; H )−1 ≤ H(w), so that EWe(a, b; H )−1 ≤
d∗

e(a, b; H ). 2
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Lemma 6.2. Let w be a feasible solution for EWe(a, b; H ). Then

d∗
e(a, b; H ) ≤

∑
y∈Y

((r(y)w(y), w(y)))((r(y)e, e)(r(y)−1e, e)).

Proof. Put V (y) := |((w(y), e))|. Then∑
y∈Q

V (y) ≥ 1 for all Q ∈ Qa,b.

By the duality between the max-flow problem and the min-cut problem (cf. [4]),
we can find ϕ ∈ L(Y ;R) such that |ϕ(y)| ≤ V (y) on Y ,

∂ϕ(x) = 0 for x ∈ X \ {a, b} and − ∂ϕ(a) = ∂ϕ(b) = 1.

Let w(y) := ϕ(y)e. Then w ∈ F (a, b; H ) and Ie(w) = 1. Thus we have

d∗
e(a, b; H ) ≤ H(w) =

∑
y∈Y

((r(y)ϕ(y)e, ϕ(y)e))

=
∑

y∈Y
[ϕ(y)]2((r(y)e, e))

≤
∑

y∈Y
|((w(y), e))|2((r(y)e, e))

≤
∑

y∈Y
((r(y)w(y), w(y)))((r(y)−1e, e))((r(y)e, e)). 2

Theorem 6.1. Let M(r) := sup{((r(y)e, e))((r(y)−1e, e)); y ∈ Y }. Then

EWe(a, b; H )−1 ≤ d∗
e(a, b; H ) ≤ M(r)EWe(a, b; H )−1.

Corollary 6.1. Assume that ((r(y)e, e))((r(y)−1e, e)) = 1 for all y ∈ Y . Then
d∗

e(a, b; H ) = EWe(a, b; H )−1.

We show by an example that the equality d∗
e(a, b; H ) = EWe(a, b; H )−1 does

not hold in general.
Example. Let X = {x0, x1, x2} and Y = {y1, y2} and define K by

K(xi, yi) = 1, K(xi−1, yi) = −1 (i = 1, 2)

and K(x, y) = 0 for any other pair. Then G = {X,Y,K} is a finite graph. Notice
that G is a tree. Take H as R2 and define r(y) by

r(yi) :=

(
1 0
0 ti

)

where ti > 0 for i = 1, 2. Then

r(yi)
−1 =

(
1 0
0 1/ti

)
.

Let a = x0, b = x2 in the above setting and let e = (e1, e2)
T ∈ R2. For

w(yi) = (ξi, ηi) ∈ L(Y ;R2), we have

H(w) =
2∑

i=1

(ξ2
i + tiη

2
i ).
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If w is a feasible solution for d∗
e(a, b;R2), then ξ1 = ξ2, η1 = η2 and Ie(w) = 1

implies ξ1e1 + η1e2 = 1. Minimizing H(w) subject to this constraints, we obtain

d∗
e(a, b;R2) =

1

e2
1/2 + e2

2/(t1 + t2)
.

On the other hand, if w is feasible for EWe(a, b;R2)−1, then we have

ξ1e1 + η1e1 ≥ 1, ξ2e1 + η2e2 ≥ 1.

Minimizing H(w) subject to this constraints, we obtain

EWe(a, b;R2)−1 =
t1

t1e2
1 + e2

2

+
t2

t2e2
1 + e2

2

.

Therefore

d∗
e(a, b;R2) − EWe(a, b;R2)−1 =

(t1 − t2)
2e2

1e
2
2

[(t1 + t2)e2
1 + 2e2

2](t1e
2
1 + e2

2)(t2e
2
1 + e2

2)
≥ 0

and the equality holds if t1 = t2 or e1 = 0 or e2 = 0.
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