EXTREMUM PROBLEMS ON A HILBERT NETWORK

MARETSUGU YAMASAKI

(Received: December 10, 1997)

Abstract. As a generalization of a usual infinite network, a Hilbert network is defined as a pair of a graph and a resistance taking values in a Hilbert space. With the sets of nodes and arcs of the graph, we associate variables belonging to a Hilbert space. In this situation, we study several extremum problems related to Hilbert-valued functions on the set of nodes or arcs of the graph and their inverse relations.

1. Introduction with preliminaries

Let $G = \{X, Y, K\}$ be a locally finite infinite graph which is connected and has no self-loop as in [4]. Here X is a countable set of nodes, Y is a countable set of arcs and K is the node-arc incidence matrix.

Let H be a real Hilbert space with an inner product (\cdot, \cdot) and the norm $\|\cdot\|$. Denote by $L(X; H)$ the set of all functions u on X such that $u(x) \in H$ for each $x \in X$ and by $L_0(X; H)$ the set of all $u \in L(X; H)$ such that the support $\{x \in X; u(x) \neq 0\}$ is a finite set. The meaning of the notation $L(Y; H)$ and $L_0(Y; H)$ is similar. Let $\mathcal{L}(H)$ be the set of all bounded, linear, positive and invertible linear operators from H to H. Assume that $r \in L(Y; \mathcal{L}(H))$. This is a generalization of the resistance in the usual network theory as in [3] and [4]. We call the pair $N = \{G, r\}$ of the graph G and this generalized resistance r a Hilbert network as in [1], [6] and [7].

For each $y \in Y$, there exists $\rho(y) > 0$ by our assumption (cf. [5]) such that

$$(r(y)h, h) \geq \rho(y)\|h\|^2 \quad \text{for all} \quad h \in H.$$

Here $r(y)h$ means the image of h under $r(y)$, i.e., $r(y)(h)$. In this paper, we use this convention unless no confusion occurs from the context. Denote by $r(y)^{-1}$ the inverse operator of $r(y)$. Notice that there exists $\rho^*(y) > 0$ such that

$$(r(y)^{-1}h, h) \geq \rho^*(y)\|h\|^2 \quad \text{for all} \quad h \in H.$$

For each $y \in Y$, there exists a unique square root $r(y)^{1/2} \in \mathcal{L}(H)$ of $r(y)$ by [2] i.e.,

$$[r(y)^{1/2}]^2 = r(y).$$

1991 Mathematics Subject Classification. 90C35, 90C50, 31C20.

Key words and phrases. Hilbert network, extremum problem, flows.
Before introducing extremum problems on the Hilbert network N, we need several preparations.

Definition 1.1. Let e be a fixed element of \mathcal{H} such that $\|e\| = 1$.

Definition 1.2. For $u \in L(X; \mathcal{H})$, the potential drop δu of u and the discrete derivative du of u are defined by

$$\delta u(y) := \sum_{x \in X} K(x, y)u(x),$$

$$du(y) := -r(y)^{-1}(\delta u(y)) = -r(y)^{-1}\delta u(y).$$

The Dirichlet sum of u is defined by

$$D(u) := \sum_{y \in Y} ((r(y)du(y), du(y))) = \sum_{y \in Y} ((r(y)^{-1}\delta u(y), \delta u(y))).$$

Definition 1.3. For $w \in L(Y; \mathcal{H})$, the divergence $\partial w(x)$ of w and the energy $H(w)$ of w are defined by

$$\partial w(x) := \sum_{y \in Y} K(x, y)w(y),$$

$$H(w) := \sum_{y \in Y} ((r(y)w(y), w(y))).$$

Notice that $D(u) = H(du)$. Let us put

$$D(N; \mathcal{H}) := \{ u \in L(X; \mathcal{H}) ; D(u) < \infty \},$$

$$L_H(Y; \mathcal{H}) := \{ w \in L(Y; \mathcal{H}) ; H(w) < \infty \}.$$

For every $w_1, w_2 \in L_H(Y; \mathcal{H})$, we define the inner product $H(w_1, w_2)$ by

$$H(w_1, w_2) := \sum_{y \in Y} ((r(y)w_1(y), w_2(y))).$$

For every $u_1, u_2 \in D(N; \mathcal{H})$, we define the mutual Dirichlet sum $D(u_1, u_2)$ by

$$D(u_1, u_2) := H(du_1, du_2) = \sum_{y \in Y} ((r(y)^{-1}\delta u_1(y), \delta u_2(y))).$$

Lemma 1.1. Let $h \in \mathcal{H}$. For every $y \in Y$, the following relations hold:

1. $|((r(y)w(y), h))|^2 \leq ((r(y)w(y), w(y)))((r(y)h, h))$.
2. $1 \leq ((r(y)^{-1}h, h))((r(y)h, h))$.

Proof. By the Schwarz inequality, we have

$$|((r(y)w(y), h))|^2 = |((r(y)^{1/2}w(y), r(y)^{1/2}h))|^2 \leq \|r(y)^{1/2}w(y)\|^2 \|r(y)^{1/2}h\|^2 = ((r(y)w(y), w(y)))((r(y)h, h)).$$

(2) follows from (1) by taking $w(y) := r(y)^{-1}h$. \qed

Lemma 1.2. $|H(w_1, w_2)| \leq H(w_1)^{1/2}H(w_2)^{1/2}$.

Proof. From the Schwarz inequality, it follows that
\[|H(w_1, w_2)| \leq \sum_{y \in Y} |(r(y)w_1(y), w_2(y))| \]
\[= \sum_{y \in Y} |(r(y)^{1/2}w_1(y), r(y)^{1/2}w_2(y))| \]
\[\leq \sum_{y \in Y} \|r(y)^{1/2}w_1(y)\| \|r(y)^{1/2}w_2(y)\| \]
\[\leq \left(\sum_{y \in Y} \|r(y)^{1/2}w_1(y)\|^2 \right)^{1/2} \left(\sum_{y \in Y} \|r(y)^{1/2}w_2(y)\|^2 \right)^{1/2} \]
\[= H(w_1)^{1/2}H(w_2)^{1/2}. \]

Notice that \(L_H(Y; \mathcal{H}) \) is a Hilbert space with this inner product.

Lemma 1.3. If \(w \in L_0(Y; \mathcal{H}) \), then \(\sum_{y \in Y} r(y)w(y) \in \mathcal{H} \) and
\[\sum_{y \in Y} (r(y)w(y), h) = (\sum_{y \in Y} r(y)w(y), h) \]
for every \(h \in \mathcal{H} \).

Proof. Since \(r(y)w(y) \in \mathcal{H} \) for every \(y \in Y \) and \(w \in L_0(Y; \mathcal{H}) \), our assertion is clear. \(\Box \)

For \(a \in X \), let us put
\[D(N; \mathcal{H}; a) := \{ u \in D(N; \mathcal{H}); u(a) = 0 \} \].

Lemma 1.4. For any \(x \in X \), there exists a constant \(M_x \) which such that
\[\|u(x)\| \leq M_x D(u)^{1/2} \]
for all \(u \in D(N; \mathcal{H}; a) \).

Proof. We may assume that \(x \neq a \). There exists a path \(P \) from \(a \) to \(x \). Let \(C_X(P) \) and \(C_Y(P) \) be the sets of nodes and arcs on \(P \) respectively (cf. [4]), i.e.,
\[C_X(P) := \{ x_0, x_1, \cdots, x_n \} \ (x_0 = a, x_n = x) \],
\[C_Y(P) := \{ y_1, y_2, \cdots, y_n \} \],
\[\{ x \in X; K(x, y_i) \neq 0 \} = \{ x_i-1, x_i \} \ (i = 1, 2, \cdots, n) \].

Let \(u \in D(N; \mathcal{H}; a) \). Then we have
\[D(u) \geq \sum_{y \in C_Y(P)} (r(y)^{-1}\delta u(y), \delta u(y)) \]
\[= \sum_{i=1}^n (r(y_i)^{-1}\delta u(y_i), \delta u(y_i)) \]
\[\geq \sum_{i=1}^n \rho^*(y_i) \|u(x_i) - u(x_{i-1})\|^2 \]
\[\geq \sum_{i=1}^n \rho^*(y_i) \|u(x_i)\| - \|u(x_{i-1})\| \]
so that
\[\|u(x_i)\| - \|u(x_{i-1})\| \leq D(u)^{1/2}[\rho^*(y_i)]^{-1/2} \]
the closure of quantities:

For each Definition 2.2. $(F.2)$ ∂w is an $(F.1)$ ∂w

Let Definition 2.1. in the Hilbert space for all n, m

See that \tilde{k} such that k is a Cauchy sequence in

Proof. Let $D(u, m) => 0$ as $n, m \to \infty$. Then $\{D(u_n)\}$ is bounded. It follows from Lemma 1.4 that $\{u_n(x)\}$ is a Cauchy sequence in H for each $x \in X$. Therefore there exists $\tilde{u}(x) \in H$ such that $\|u_n(x) - \tilde{u}(x)\| \to 0$ as $n \to \infty$ for each $x \in X$. Thus $\tilde{u}(a) = 0$ and $\|du_n(y) - d\tilde{u}(y)\| \to 0$ as $n \to \infty$ for each $y \in Y$. Since $\{D(u_n)\}$ is bounded, we see that $\tilde{u} \in D(N; H)$ by Fatou's lemma. For any $\epsilon > 0$, there exists n_0 such that $D(u_n - u_m) < \epsilon^2$ for all $n, m \geq n_0$. For any finite subset Y' of Y,

$$\sum_{y \in Y'} ((r(y)d(u_n - u_m)(y), d(u_n - u_m)(y))) \leq D(u_n - u_m).$$

Letting $m \to \infty$, we have

$$\sum_{y \in Y'} ((r(y)d(u_n - \tilde{u})(y), d(u_n - \tilde{u})(y))) \leq \epsilon^2$$

for all $n \geq n_0$, so that $D(u_n - \tilde{u}) \leq \epsilon^2$. Hence, $D(u_n - \tilde{u}) \to 0$ as $n \to \infty$. \hfill \Box

Denote by $D_0(N; H; a)$ the closure of the set

$$L_0(X; H; a) := \{u \in L_0(X; H); u(a) = 0\}$$

in the Hilbert space $D(N; H; a)$.

2. H-flows

Definition 2.1. Let a and b be distinct two nodes. We say that $w \in L(Y; H)$ is an H-flow from a to b if the following conditions are fulfilled:

$(F.1)$ $\partial w(x) = 0$ for all $x \in X \setminus \{a, b\}$;

$(F.2)$ $\partial w(a) + \partial w(b) = 0$.

Denote by $F(a, b; H)$ the set of all H-flows from a to b.

Definition 2.2. For each $w \in F(a, b; H)$, we introduce the following two quantities:

$$I_e(w) := ((\partial w(b), e)) = -((\partial w(a), e)),$$

$$I(w) := \|\partial w(a)\| = \|\partial w(b)\|.$$

Let us put $F_0(a, b; H) := F(a, b; H) \cap L_0(Y; H)$ and denote by $F_H(a, b; H)$ the closure of $F_0(a, b; H)$ in $L_H(Y; H)$.

60 MARETSUGU YAMASAKI
Lemma 2.1. Assume that N is a finite network. If $w \in L(Y; \mathcal{H})$ satisfies (F.1), then it does also (F.2).

Proof. Since N is a finite network and
\[
\sum_{x \in X} K(x, y) = 0
\]
for each $y \in Y$, we have by changing the order of summation
\[
\partial \tilde{w}(a) + \partial \tilde{w}(b) = \sum_{x \in X} \partial \tilde{w}(x) = \sum_{y \in Y} \left[\sum_{x \in X} K(x, y) \right] \tilde{w}(y) = 0. \square
\]

Similarly we have

Lemma 2.2. If $w \in L_0(Y; \mathcal{H})$ satisfies (F.1), then it does (F.2).

Corollary 2.1. (F.1) implies (F.2) for every $w \in F_H(a, b; \mathcal{H})$.

Lemma 2.3. Let $u \in L(X; \mathcal{H})$ and $w \in L_0(Y; \mathcal{H})$. Then
\[
\sum_{y \in Y} ((w(y), \delta u(y))) \leq H(w)^{1/2} D(u)^{1/2}.
\]

Proof. We have by Lemma 1.2
\[
\sum_{y \in Y} ((w(y), \delta u(y))) = H(w, du) \leq H(w)^{1/2} H(du)^{1/2} \leq H(w)^{1/2} D(u)^{1/2}.
\]

Corollary 2.2. Let $u \in D(N; \mathcal{H})$ and $w \in F_H(a, b; \mathcal{H})$. Then
\[
\sum_{y \in Y} ((w(y), \delta u(y))) \leq H(w)^{1/2} D(u)^{1/2}.
\]

Proof. There exists a sequence $\{w_n\}$ in $F_0(a, b; \mathcal{H})$ such that $H(w_n - w) \to 0$ as $n \to \infty$. We have by Lemma 2.3 $H(w_n, du) \leq H(w_n)^{1/2} D(u)^{1/2}$. Since $du \in L_H(Y; \mathcal{H})$, we see that $H(w_n, du) = H(w, du)$ and $H(w_n) = H(w)$ as $n \to \infty$. \square

Lemma 2.4. Let $u \in D(N; \mathcal{H})$ and $w \in F_H(a, b; \mathcal{H})$. Then
\[
\sum_{x \in X} ((u(x), \partial w(x))) = \sum_{y \in Y} ((\delta u(y), w(y))).
\]

Proof. There exists a sequence $\{w_n\}$ in $F_0(a, b; \mathcal{H})$ such that $H(w_n - w) \to 0$ as $n \to \infty$. Since the support of w_n is a finite set, we have
\[
((u(a), \partial w_n(a))) + ((u(b), \partial w_n(b))) = \sum_{x \in X} ((u(x), \partial w_n(x))) = \sum_{y \in Y} ((\delta u(y), w_n(y))) = H(du, w_n).
\]

By letting $n \to \infty$, we obtain the desired inequality, since $du \in L_H(Y; \mathcal{H})$ and $\partial w(x) = 0$ for $x \in X \setminus \{a, b\}$. \square

Denote by $C_0(N)$ the set of all finite cycles on N, i.e.,
\[
C_0(N) := \{ \omega \in L_0(Y; \mathcal{H}); \partial \omega(x) = 0 \text{ on } X \}.
\]

Lemma 2.5. Let $\tilde{w} \in F(a, b; \mathcal{H})$ such that $H(\tilde{w}) < \infty$. Suppose that $H(\tilde{w}, \omega) = 0$ for every $\omega \in C_0(N)$. Then there exists $\tilde{\omega} \in D(N; \mathcal{H}; a)$ such that $d\tilde{\omega} = -\tilde{w}$.
Lemma 2.3

Let \(p_1, p_2 \) be path indices of paths from \(a \) to \(x \) (cf. [4]). First we shall prove

\[
\sum_{y \in Y} p_1(y)r(y)\tilde{w}(y) = \sum_{y \in Y} p_2(y)r(y)\tilde{w}(y).
\]

In fact, for any \(h \in \mathcal{H} \), \(\omega(y) := (p_1(y) - p_2(y))h \) belongs to \(C_0(N) \), so that we have by our assumption

\[
0 = H(\tilde{w}, (p_1 - p_2)h) = \sum_{y \in Y} ((r(y)(p_1(y) - p_2(y))\tilde{w}(y)), h)).
\]

Since \((p_1 - p_2)\tilde{w} \in L_0(Y; \mathcal{H})\), we see by Lemma 1.3.

\[
((\sum_{y \in Y} r(y)((p_1(y) - p_2(y))\tilde{w}(y)), h)) = 0.
\]

Since \(h \in \mathcal{H} \) is arbitrary, our assertion follows. Define \(\tilde{u} \in L(X; \mathcal{H}) \) by \(\tilde{u}(a) = 0 \) and

\[
\tilde{u}(x) := \sum_{y \in Y} p_x(y)\tilde{w}(y) \text{ for } x \neq a,
\]

where \(p_x \) is the path index of a path from \(a \) to \(x \). This function is well-defined by the above observation. Let \(y' \in Y \) and \(\{x \in X; K(x, y') \neq 0\} = \{x_1, x_2\} \). Let \(p_{x_2} \) be the path index of a path \(P_{x_2} \) from \(a \) to \(x_2 \) which passes the arc \(y' \) after the node \(x_1 \). Namely \(P_{x_2} \) consists of a path \(P_{x_1} \) from \(a \) to \(x_1 \) and the single arc \(y' \). We have

\[
\tilde{u}(x_2) = \sum_{y \in Y} p_{x_2}(y)\tilde{w}(y) = \sum_{y \in Y} p_{x_1}(y)\tilde{w} + r(y')K(x_1, y')\tilde{w}(y') = \tilde{u}(x_1) + r(y')K(x_1, y')\tilde{w}(y'),
\]

so that \(\tilde{u}(x_2) = \tilde{u}(x_1) + r(y')K(x_1, y')\tilde{w}(y'), \) or \(\delta\tilde{u}(y') = -r(y')\tilde{w}(y') \).

\[\square \]

3. INVERSE RELATION I

Now let us consider the following pair of extremum problems on the Hilbert network \(N \) which are related to \(\mathcal{H} \)-valued functions on \(X \) or \(Y \):

\[
d_*(a, b; \mathcal{H}) := \inf\{D(w); u \in L(X; \mathcal{H}), ((u(a), e)) = 0, ((u(b), e)) = 1\},
\]

\[
d^*(a, b; \mathcal{H}; e) := \inf\{H(w); w \in F_H(a, b; \mathcal{H}), \partial w(b) = e\}
\]

First we have

Theorem 3.1. \(1 \leq d_*(a, b; \mathcal{H})d^*(a, b; \mathcal{H}, e) \).

Proof. Let \(u \) be a feasible solution for \(d_*(a, b; \mathcal{H}) \) and let \(w \) be a feasible solution for \(d^*(a, b; \mathcal{H}; e) \). It suffices to show that \(1 \leq H(w^{1/2})D(u^{1/2}) \). There exists a sequence \(\{w_n\} \) in \(F_0(a, b; \mathcal{H}) \) such that \(H(w - w_n) \to 0 \) as \(n \to \infty \). We have by Lemma 2.3

\[
1 = ((u(b), e)) = ((u(b), \partial w(b))) = \lim_{n \to \infty} ((u(b), \partial w_n(b))) = \lim_{n \to \infty} \sum_{x \in X} ((u(x), \partial w_n(x))) = \lim_{n \to \infty} \sum_{y \in Y} ((\delta u(y), w_n(y))) \leq \lim_{n \to \infty} H(w_n^{1/2}D(u)^{1/2}) = H(w)^{1/2}D(u)^{1/2}. \quad \square
\]

To prove the converse inequality, we prepare
Lemma 3.1. There exists a unique optimal solution for $d^*(a, b; \mathcal{H}; e)$.

Proof. Let $\{w_n\}$ be a minimizing sequence for $d^*(a, b; \mathcal{H}; e)$, i.e., $\{w_n\} \subset F_H(a, b; \mathcal{H})$, $\partial w_n(b) = e$ and $H(w_n) \rightarrow d^*(a, b; \mathcal{H}; e)$ as $n \rightarrow \infty$. Since $(w_n + w_m)/2$ is a feasible solution for $d^*(a, b; \mathcal{H}; e)$, we have

$$d^*(a, b; \mathcal{H}; e) \leq H((w_n + w_m)/2) \leq H((w_n + w_m)/2) + H((w_n - w_m)/2) = [H(w_n) + H(w_m)]/2 \rightarrow d^*(a, b; \mathcal{H}; e)$$

as $m, n \rightarrow \infty$. Therefore $H(w_n - w_m) \rightarrow 0$ as $n, m \rightarrow \infty$. It follows that $\{w_n\}$ is a Cauchy sequence in the Hilbert space $L_H(Y; \mathcal{H})$. There exists $\tilde{w} \in L_H(Y; \mathcal{H})$ such that $H(w_n - \tilde{w}) \rightarrow 0$ as $n \rightarrow \infty$. Then $\tilde{w} \in F_H(a, b; \mathcal{H})$, $\partial \tilde{w}(b) = e$ and $d^*(a, b; \mathcal{H}; e) = H(\tilde{w})$. Namely \tilde{w} is an optimal solution for $d^*(a, b; \mathcal{H}; e)$. Since $H(w)$ is a strictly convex function of $w \in L_H(Y; \mathcal{H})$, the uniqueness of the optimal solution follows. \hfill \Box

Lemma 3.2. Let \tilde{w} be the optimal solution for $d^*(a, b; \mathcal{H}; e)$. Then $H(\tilde{w}, \omega) = 0$ for every $\omega \in C_0(N)$.

Proof. For any $\omega \in C_0(N)$ and $t \in \mathbb{R}$, $\tilde{w} + t\omega$ is a feasible solution for $d^*(a, b; \mathcal{H}; e)$. Thus

$$H(\tilde{w}) \leq H(\tilde{w} + t\omega) = H(\tilde{w}) + 2tH(\tilde{w}, \omega) + t^2H(\omega).$$

By the standard variational argument, we obtain $H(\tilde{w}, \omega) = 0$. \hfill \Box

Lemma 3.3. Let $\tilde{w}(y)$ be the same as above. There exists $\hat{u} \in D(N; \mathcal{H})$ such that $\hat{u}(a) = 0$, $((\hat{u}(b), e)) = d^*(a, b; \mathcal{H}; e)$ and $\delta \hat{u} = -\tilde{w}$.

Proof. Let \hat{u} be the function defined by \tilde{w} in Lemma 3.2. Then $\hat{u}(a) = 0$ and $d\hat{u} = -\tilde{w}$. There exists $\{w_n\} \subset F_0(a, b; \mathcal{H})$ such that $H(w_n - \tilde{w}) \rightarrow 0$ as $n \rightarrow \infty$. Let p_b a path index of a path from a to b. Since $w_n - p_b\partial w_n(b) \in C_0(N)$, we have $H(w_n, w_n - p_b\partial w_n(b)) = 0$. From $\partial w_n(b) \partial w_n(b) = e$, it follows that $H(\tilde{w}, \tilde{w} - p_b e) = 0$, so that

$$d^*(a, b; \mathcal{H}; e) = H(\tilde{w}) = H(\tilde{w}, p_b e) = ((\hat{u}(b), e)).$$

\hfill \Box

Theorem 3.2. $d_e(a, b; \mathcal{H})d^*(a, b; \mathcal{H}; e) = 1$.

Proof. Let \hat{w} be the optimal solution for $d^*(a, b; \mathcal{H}; e)$ and let \hat{u} be the function defined in Lemma 3.3. Then $v := \hat{u}/d^*(a, b; \mathcal{H}; e)$ is a feasible solution for $d_e(a, b; \mathcal{H})$ and

$$d_e(a, b; \mathcal{H}) \leq D(v) = D(\hat{u})/d^*(a, b; \mathcal{H}; e)^2 = H(\hat{w})/(d^*(a, b; \mathcal{H}; e)^2 = 1/d^*(a, b; \mathcal{H}; e),$$

so that $d_e(a, b; \mathcal{H})d^*(a, b; \mathcal{H}; e) \leq 1$. Thus the equality holds by Theorem 3.1. \hfill \Box
4. INVERSE RELATION II

Let us consider further extremum problems on the Hilbert network N:
\[
\begin{align*}
d(a, b; \mathcal{H}; e) &:= \inf\{D(u); u \in L(X; \mathcal{H}), u(a) = 0, u(b) = e\}, \\
d(a, b; \mathcal{H}) &:= \inf\{D(u); u \in L(X; \mathcal{H}), u(a) = 0, \|u(b)\| = 1\}, \\
d^*_e(a, b; \mathcal{H}) &:= \inf\{H(w); w \in F_H(a, b; \mathcal{H}), I_e(w) = 1\}, \\
d^*(a, b; \mathcal{H}) &:= \inf\{H(w); w \in F_H(a, b; \mathcal{H}), I(w) = 1\}.
\end{align*}
\]
Clearly
\[
d_e(a, b; \mathcal{H}) \leq d(a, b; \mathcal{H}; e), \quad d(a, b; \mathcal{H}) \leq d(a, b; \mathcal{H}; e),
\]
\[
d^*_e(a, b; \mathcal{H}) \leq d^*(a, b; \mathcal{H}; e), \quad d^*(a, b; \mathcal{H}) \leq d^*(a, b; \mathcal{H}; e).
\]

We have

Theorem 4.1. $1 \leq d(a, b; \mathcal{H}; e)d^*_e(a, b; \mathcal{H})$.

Proof. It suffices to show that $1 \leq H(w)^{1/2}D(u)^{1/2}$ holds for any feasible solution u for $d(a, b; \mathcal{H}; e)$ and any feasible solution w for $d^*_e(a, b; \mathcal{H})$. By the corollary of Lemma 2.3 and Lemma 2.4, we have
\[
1 = I_e(w) = ((\partial w(b), e)) = \sum_{x \in X}((\partial w(x), u(x)))
\]
\[
= \sum_{y \in Y}((w(y), \delta u(y)))
\]
\[
\leq H(w)^{1/2}D(u)^{1/2}.
\]

To prove the converse inequality, we prepare

Lemma 4.1. There exists a unique optimal solution for $d(a, b; \mathcal{H}; e)$.

Proof. Let $\{u_n\}$ be a minimizing sequence for $d(a, b; \mathcal{H}; e)$, i.e., $\{u_n\} \subset D(N; \mathcal{H}; a)$, $u_n(b) = e$ and $D(u_n) \to d(a, b; \mathcal{H}; e)$ as $n \to \infty$. Since $(u_n + u_m)/2$ is a feasible solution for $d(a, b; \mathcal{H}; e)$, we have
\[
d(a, b; \mathcal{H}; e) \leq D((u_n + u_m)/2)
\]
\[
\leq D((u_n + u_m)/2) + D((u_n - u_m)/2)
\]
\[
= [D(u_n) + D(u_m)]/2 \to d(a, b; \mathcal{H}; e)
\]
as $n \to \infty$. Therefore $D(u_n - u_m) \to 0$ as $n, m \to \infty$. It follows from Proposition 1.1 that there exists $\tilde{u} \in D(N; \mathcal{H}; a)$ such that $D(u_n - \tilde{u}) \to 0$ as $n \to \infty$. Clearly $\tilde{u}(b) = e$ and $\alpha = D(\tilde{u})$. Namely \tilde{u} is an optimal solution. The uniqueness of the optimal solution follows from the fact that $D(u)$ is strict convex on $D(N; \mathcal{H}; a)$.

Lemma 4.2. Assume that N is a finite network. Let \tilde{u} be the optimal solution for $d(a, b; \mathcal{H}; e)$ and put $\tilde{w}(y) := d\tilde{u}(y)$. Then $\tilde{w} \in F(a, b; \mathcal{H})$ and $I_e(\tilde{w}) = D(\tilde{u})$.

Proof. Let $f \in D(N; \mathcal{H})$ satisfy $f(a) = f(b) = 0$. Then, for any $t \in \mathbb{R}$, $\tilde{u} + tf$ is a feasible solution for $d(a, b; \mathcal{H}; e)$, so that
\[
D(\tilde{u}) \leq D(\tilde{u} + tf) = D(\tilde{u}) + 2tD(\tilde{u}, f) + t^2D(f).
\]
By the standard variational argument, we have $D(\hat{u}, f) = 0$. On the other hand, we have
\[
D(\hat{u}, f) = \sum_{y \in Y} \left((\hat{w}(y), \sum_{z \in X} K(z, y) f(z)) \right)
= \sum_{z \in X} \sum_{y \in Y} \left((K(z, y) \hat{w}(y), f(z)) \right)
= \sum_{z \in X} \left((\partial \hat{w}(z), f(z)) \right).
\]

Denote by ε_x the characteristic function of $\{x\}$, i.e., $\varepsilon_x(x) = 1$ and $\varepsilon_x(z) = 0$ for $z \neq x$. Let $x \neq a, b$. For any $h \in \mathcal{H}$, we may take $\varepsilon_x h$ for f, which leads to
\[
((\partial \hat{w}(x), h)) = 0.
\]

Therefore $\partial \hat{w}(x) = 0$ for $x \neq a, b$. Namely \hat{w} satisfies (F.1). Since N is a finite network, we have $\hat{w} \in F(a, b; \mathcal{H})$ by Lemma 2.1. By taking $\hat{u} = \varepsilon_b e$ for f, we obtain $D(\hat{u}, \hat{u} - \varepsilon_b e) = 0$, so that
\[
D(\hat{u}) = D(\hat{u}, \varepsilon_b e) = ((\partial \hat{w}(b), e))
\]
Therefore $I_\varepsilon(\hat{w}) = D(\hat{u})$. \qed

Theorem 4.2. Assume that N is a finite network. Then the inverse relation $d(a, b; \mathcal{H}; e) d^*_e(a, b; \mathcal{H}) = 1$ holds.

Proof. Let \hat{u} be the optimal solution for $d(a, b; \mathcal{H}; e)$ and let $\hat{w} = d \hat{u}$. We see by Lemma 4.2 that $\hat{w}(y)/D(\hat{u})$ is a feasible solution for $d^*_e(a, b; \mathcal{H})$, so that
\[
d^*_e(a, b; \mathcal{H}) \leq H(\hat{w}(y)/D(\hat{u}))
= D(\hat{u})/D(\hat{u})^2
= 1/D(\hat{u}) = 1/d(a, b; \mathcal{H}; e).
\]

Thus $d(a, b; \mathcal{H}; e) d^*_e(a, b; \mathcal{H}) \leq 1$. \qed

In order to establish the equality in Theorem 4.2 in the case where N is an infinite network, we consider an exhaustion $\{G_n\}(G_n := < X_n, y_n >)$ of G (cf. [4]) with $a, b \in X_1$. A Hilbert subnetwork N_n of N is defined as the pair of the
pair of the
pair of the
pair of the
pair of the
pair of the
pair of the
pair of the
pair of the
pair of the
pair of the

On each finite subnetwork N_n, we define the Dirichlet mutual sum of $u_1, u_2 \in L(X_n; \mathcal{H})$ by
\[
D_n(u_1, u_2) := \sum_{y \in Y_n} ((r(y) du_1(y), du_2(y)))
\]
and put $D_n(u) = D_n(u, u)$. For $w \in L(Y_n; \mathcal{H})$, we define $H_n(w)$ and $\partial_n w$ by
\[
H_n(w) := \sum_{y \in Y_n} ((r(y) w(y), w(y)))
\]
\[
\partial_n w(x) := \sum_{y \in Y_n} K(x, y) w(y).
\]

For large n, we have $\partial_n w(a) = \partial w(a)$ and $\partial_n w(b) = \partial w(b)$. Let us consider the following extremum problems on N_n:
\[
d_n := d(a, b; N_n; \mathcal{H}; e) := \inf\{ D_n(u); u \in L(X_n; \mathcal{H}), u(a) = 0, u(a) = e \},
\]
\[
d^*_n := d^*_e(a, b; N_n; \mathcal{H}) := \inf\{ H_n(w); w \in F_n(a, b; \mathcal{H}), ((\partial_n w(b), e)) = 1 \},
\]
where $F_n(a, b; \mathcal{H}) := \{ w \in L(Y_n; \mathcal{H}); \partial_n w(x) = 0 \text{ on } X_n \setminus \{a, b\} \}$.

Corollary 4.1. \(\{d_e^*(a, b; N_n; \mathcal{H})\} \) converges to \(d_e^*(a, b; \mathcal{H}) \) as \(n \to \infty \).

Proof. Let \(\tilde{u} \) and \(u_n \) be the optimal solutions of \(d(a, b; \mathcal{H}'; e) \) and \(d_n \) respectively. Then for every \(f \in L(X_n; \mathcal{H}) \) satisfying \(f(a) = f(b) = 0 \), we have \(D_n(u_n, f) = 0 \) as in the proof of Lemma 4.2. For \(n < m \), we have
\[
D_n(\tilde{u} - u_n, u_n) = 0 \quad \text{and} \quad D_n(u_m - u_n, u_n) = 0.
\]
Furthermore
\[
D_n(u_n) \leq D_n(\tilde{u}) \leq D(\tilde{u}) < \infty.
\]
By the relation
\[
0 \leq D_n(u_m - u_n) = D_n(u_m) - D_n(u_n) \leq D_m(u_m) - D_n(u_n),
\]
we see that the limit of \(\{D_n(u_n)\} \) exists, and hence
\[
\lim_{n \to \infty} D_n(u_m - u_n) = 0.
\]
For \(k < n < m \), we have
\[
D_k(u_m - u_n) \leq D_n(u_m - u_n) \to 0 \quad (n \to \infty).
\]
Thus \(\{u_n\} \) is a Cauchy sequence with respect to \(D_k \), and the limit of \(\{u_n(x)\} \)
equals for all \(x \in X_k \) both in the sense of \(D_k \) and in the sense of norm convergence in \(\mathcal{H} \). Let \(v \) be the limit of \(\{u_n\} \). Then \(v(a) = 0 \) and \(v(b) = e \), so that \(D(\tilde{u}) \leq D(v) \). Since \(D_k(u_n) \leq D_n(u_n) \) if \(k \leq n \), we have
\[
D_k(v) = \lim_{n \to \infty} D_k(u_n) \leq \lim_{n \to \infty} D_n(u_n) \leq D(\tilde{u}).
\]
Letting \(k \to \infty \), we obtain \(D(v) \leq D(\tilde{u}) \), and hence \(D(v) = D(\tilde{u}) \). By the uniqueness of the optimal solution, we have \(v = \tilde{u} \) and
\[
\lim_{n \to \infty} D_n(u_n) = D(\tilde{u}). \quad \square
\]

Theorem 4.3. \(d(a, b; \mathcal{H}; e) d_e^*(a, b; \mathcal{H}) = 1 \).

Proof. It is easily seen that for large \(n \) we have
\[
d_n^* = \inf \{H(w); w \in F(a, b; \mathcal{H}), I_e(w) = 1, w_n = 0 \text{ on } Y \setminus Y_n\}.
\]
Therefore we obtain \(d_n^* \geq d_{n+1}^* \geq d_e^*(a, b; \mathcal{H}) \), so that
\[
d_e^*(a, b; \mathcal{H}) \leq \lim_{n \to \infty} d_n^*.
\]
Since \(d_n \cdot d_n^* = 1 \) by Theorem 4.2, we have by Lemma 4.3
\[
d(a, b; \mathcal{H}; e) d_e^*(a, b; \mathcal{H}) \leq \lim_{n \to \infty} d_n \cdot d_n^* = 1.
\]
Our equality follows from Theorem 4.1. \(\square \)

Corollary 4.1. \(\{d_e^*(a, b; N_n; \mathcal{H})\} \) converges to \(d_e^*(a, b; \mathcal{H}) \) as \(n \to \infty \).
5. Extremal length

Let \(a \) and \(b \) be two distinct nodes and let \(P_{a,b} \) be the set of all paths from \(a \) to \(b \). For a path \(P \) and a function \(w \) on \(Y \), we set for simplicity
\[
\sum_P w(y) := \sum_{y \in C_Y(P)} w(y)
\]
The extremal length \(EL(a, b; \mathcal{H}) \) of \(N \) between \(a \) and \(b \) is defined by the inverse of the value of the extremum problem:
\[
EL(a, b; \mathcal{H})^{-1} := \inf \{ H(w); w \in EL(P_{a,b}; \mathcal{H}) \},
\]
where \(EL(P_{a,b}; \mathcal{H}) \) is the set of all \(w \in L(Y; \mathcal{H}) \) satisfying
\[
\sum_P \| r(y)w(y) \| \geq 1 \quad \text{for all} \quad P \in P_{a,b}.
\]
The extremal length \(EL_e(a, b; \mathcal{H}) \) of \(N \) between \(a \) and \(b \) is defined by the inverse of the value of the extremum problem:
\[
EL_e(a, b; \mathcal{H})^{-1} := \inf \{ H(w); w \in EL_e(P_{a,b}; \mathcal{H}) \},
\]
where \(EL_e(P_{a,b}; \mathcal{H}) \) is the set of all \(w \in L(Y; \mathcal{H}) \) satisfying
\[
\sum_P |(r(y)w(y), e)| \geq 1 \quad \text{for all} \quad P \in P_{a,b}.
\]
We have
\[
EL(a, b; \mathcal{H}) \geq EL_e(a, b; \mathcal{H}),
\]
since \(|(r(y)w(y), e)| \leq \| r(y)w(y) \| \| e \| = \| r(y)w(y) \| \).

Lemma 5.1. \(EL_e(a, b; \mathcal{H})^{-1} \leq d_e(a, b; \mathcal{H}) \).

Proof. Let \(u \) be any feasible solution for \(d_e(a, b; \mathcal{H}) \) and put \(w(y) := du(y) \). Then \(w(y) \in \mathcal{H} \) for each \(y \in Y \). Let \(P \in P_{a,b} \) with \(C_X(P) := \{x_0, x_1, \cdots, x_n\} \) \((x_0 = a, x_n = b)\), \(C_Y(P) := \{y_1, y_2, \cdots, y_m\} \) and \(\{x \in X; K(x, y_i) \neq 0\} = \{x_{i-1}, x_i\} \) for \(i = 1, 2, \cdots, n \) as in the proof of Lemma 1.4. Then we have
\[
\sum_P |((r(y)w(y), e))| = \sum_{i=1}^n |((\delta u(y_i), e))|\]
\[
\geq \sum_{i=1}^n |((u(x_i) - u(x_{i-1}), e))|\]
\[
\geq ((u(b), e)) - ((u(a), e)) = 1.
\]
Therefore
\[
EL_e(a, b; \mathcal{H})^{-1} \leq H(w) = D(u),
\]
and hence \(EL_e(a, b; \mathcal{H})^{-1} \leq d_e(a, b; \mathcal{H}) \). \(\square \)

Lemma 5.2. Let \(w \) be a feasible solution for \(EL_e(a, b; \mathcal{H}) \). Then
\[
d_e(a, b; \mathcal{H}) \leq \sum_{y \in Y} ((r(y)w(y), w(y)))((r(y)e, e))((r(y)^{-1}e, e)).
\]
Proof. Put \(V(y) := |(r(y)w(y), e)| \). Then
\[
\sum_P V(y) \geq 1 \quad \text{for all } P \in \mathbf{P}_{a,b}.
\]
By the duality between the max-potential problem and the min-work problem (cf. [4]), we can find \(\beta \in L(X; \mathbb{R}) \) such that \(\beta(a) = 0, \beta(b) = 1 \) and \(|\delta \beta(y)| \leq V(y) \) on \(Y \). Let \(u(x) := \beta(x)e \). Then \(u \in L(X; \mathcal{H}) \), \(u(a) = 0 \) and \(u(b) = e \), so that by Lemma 1.1
\[
d_e(a, b; \mathcal{H}) \leq D(u) = \sum_{y \in Y} (r(y)^{-1} \delta u(y), \delta u(y))
\]
\[
= \sum_{y \in Y} (\delta \beta(y))^2 ((r(y)^{-1} e, e))
\]
\[
\leq \sum_{y \in Y} V(y)^2 ((r(y)^{-1} e, e))
\]
\[
\leq \sum_{y \in Y} ((r(y)w(y), w(y)))((r(y)e, e))((r(y)^{-1} e, e))
\]
\(\square \)

Theorem 5.1. Let \(M(r) := \sup\{(r(y)e, e)|(r(y)^{-1} e, e)); y \in Y\} \). Then
\[
EL_e(a, b; \mathcal{H})^{-1} \leq d_e(a, b; \mathcal{H}) \leq M(r)EL_e(a, b; \mathcal{H})^{-1}.
\]

Corollary 5.1. Assume that \((r(y)e, e)|(r(y)^{-1} e, e)) = 1 \) for all \(y \in Y \). Then
\[
d_e(a, b; \mathcal{H}) = EL_e(a, b; \mathcal{H})^{-1}.
\]

Remark 1. Let \(I \) be the identity map of \(\mathcal{H} \) and let \(\gamma \in L(Y; \mathbb{R}) \) be positive. Then \(r(y) = \gamma(y)I \) is positive and invertible. Clearly, we have \((r(y)e, e) = \gamma(y)\) and \((r(y)^{-1} e, e)) = 1/\gamma(y)\), so that the condition in the above theorem holds in this case.

We shall prove

Theorem 5.2. Assume that the graph \(G = \{X, Y, K\} \) is a tree. Then
\[
d_e(a, b; \mathcal{H}) = EL_e(a, b; \mathcal{H})^{-1} = H(pe)^{-1} = \sum_P ((r(y)e, e)),
\]
where \(p \) is the path index of the path \(P \) from \(a \) to \(b \).

Proof. Since the graph is a tree, there exists a unique path \(P \) from \(a \) to \(b \). Let \(p \) be the path index of \(P \). Then
\[
F_H(a, b; \mathcal{H}) = \{tph; h \in \mathcal{H}, t \in \mathbb{R}\}.
\]
If \(w \) is a feasible solution for \(d^*(a, b; \mathcal{H}; e) \), then \(w = pe \) and
\[
d^*(a, b; \mathcal{H}; e) = H(pe) = \sum_{y \in Y} |p(y)|((r(y)e, e))
\]
\[
= \sum_P ((r(y)e, e)).
\]
Let \(w \) be a feasible solution for \(EL_e(a, b; \mathcal{H})^{-1} \). Then we have by Lemma 1.2
\[
1 \leq \sum_P |((r(y)w(y), e))| = \sum_{y \in Y} |((r(y)w(y), p(y)e))|)
\]
\[
\leq H(w)^{1/2} H(pe)^{1/2},
\]
so that \(H(pe)^{-1} \leq H(w) \). Therefore by Theorem 3.2
\[
d_e(a, b; \mathcal{H}) = H(pe)^{-1} \leq EL_e(a, b; \mathcal{H})^{-1}.
\]
Our equality follows from Lemma 5.1. □

We show by an example that the equality $d_e(a, b; \mathcal{H}) = EL_e(a, b; \mathcal{H})^{-1}$ does not hold in general.

Example. Let $X = \{x_0, x_1, x_2\}$ and $Y = \{y_1, y_2, y_3\}$ and define K by

\[
K(x_0, y_1) = K(x_0, y_2) = K(x_1, y_3) = -1,
K(x_1, y_2) = K(x_2, y_1) = K(x_2, y_3) = 1
\]

and $K(x, y) = 0$ for any other pair. Then $G = \{X, Y, K\}$ is a finite graph. Take \mathcal{H} as \mathbb{R}^2 with the usual inner product and define $r(y)$ by

\[
r(y_i) := \begin{pmatrix} 1 & 0 & t_i \\ 0 & 1 & 0 \end{pmatrix}
\]

with $t_i > 0$ for $i = 1, 2, 3$. Then

\[
r(y_i)^{-1} = \begin{pmatrix} 1 & 0 & 1/t_i \\ 0 & 1 & 0 \end{pmatrix}.
\]

Let $a = x_0$, $b = x_2$ in the above setting and let $e = (e_1, e_2)^T \in \mathbb{R}^2$. For $w \in L(Y; \mathbb{R}^2)$, set $w(y_i) = (\xi_i, \eta_i)^T$ for $i = 1, 2, 3$. Then

\[
H(w) = \sum_{i=1}^{3}(\xi_i^2 + t_i\eta_i^2).
\]

Let w be a feasible solution for $d^*(a, b; \mathbb{R}^2; e)$. Then $w(y_2) = w(y_3)$ or $\xi_2 = \xi_3$, $\eta_2 = \eta_3$ and

\[
\xi_1 + \xi_2 = e_1, \quad \eta_1 + \eta_2 = e_2.
\]

Minimizing $H(w)$ subject to this constraints, we obtain

\[
d^*(a, b; \mathbb{R}^2; e) = \frac{2}{3}e_2^2 + \frac{t_1(t_2 + t_3)}{t_1 + t_2 + t_3}e_2^2,
\]

so that by Theorem 3.2

\[
d_e(a, b; \mathbb{R}^2) = \frac{3(t_1 + t_2 + t_3)}{2(t_1 + t_2 + t_3)e_1^2 + 3t_1(t_2 + t_3)e_2^2}.
\]

On the other hand, the feasibility of $w \in L(Y; \mathbb{R}^2)$ for $EL_e(a, b; \mathbb{R}^2)$ implies

\[
\xi_1 e_1 + t_1 \eta_1 e_2 \geq 1,
(\xi_2 + \xi_3)e_1 + (t_2 \eta_2 + t_3 \eta_3)e_2 \geq 1.
\]

Minimizing $H(w)$ subject to this constraints, we obtain

\[
EL_e(a, b; \mathbb{R}^2)^{-1} = \frac{3e_2^2 + (t_1 + t_2 + t_3)e_2^2}{(e_1^2 + t_1e_2^2)[2e_1^2 + (t_2 + t_3)e_2^2]}.
\]

We have

\[
d_e(a, b; \mathbb{R}^2) - EL_e(a, b; \mathbb{R}^2)^{-1} = \frac{(t_2 + t_3 - 2t_1)^2e_1^2e_2^2}{\alpha} \geq 0,
\]
\[
\alpha = (e_1^2 + t_1e_3^2)[2e_1^2 + (t_2 + t_3)e_3^2][2(t_1 + t_2 + t_3)e_1^2 + 3t_1(t_2 + t_3)e_2^2].
\]
The equality holds in case \(e_1 = 0\), or \(e_2 = 0\) or \(t_2 + t_3 = 2t_1\).

6. Extremal width

Let \(a\) and \(b\) be distinct two nodes and let \(Q_{a,b}\) be the set of all cuts between \(a\) and \(b\) (cf. [4]).

The extremal width \(EW(a, b; \mathcal{H})\) of \(N\) between \(a\) and \(b\) is defined by the inverse of the value of the extremum problem:

\[
EW(a, b; \mathcal{H})^{-1} := \inf \{ H(w); w \in EW(Q_{a,b}; \mathcal{H}) \},
\]
where \(EW(Q_{a,b}; \mathcal{H})\) is the set of all \(w \in L(Y; \mathcal{H})\) satisfying

\[
\sum_{y \in Q} \|w(y)\| \geq 1 \quad \text{for all} \quad Q \in Q_{a,b}.
\]

The extremal width \(EW_e(a, b; \mathcal{H})\) of \(N\) between \(a\) and \(b\) is defined by the inverse of the value of the extremum problem:

\[
EW_e(a, b; \mathcal{H})^{-1} := \inf \{ H(w); w \in EW_e(Q_{a,b}; \mathcal{H}) \},
\]
where \(EW_e(Q_{a,b}; \mathcal{H})\) is the set of all \(w \in L(Y; \mathcal{H})\) satisfying

\[
\sum_{y \in Q} |((w(y), e))| \geq 1 \quad \text{for all} \quad Q \in Q_{a,b}.
\]

We have

\[
EW(a, b; \mathcal{H}) \geq EW_e(a, b; \mathcal{H}),
\]
since \(||((w(y), e))|| \leq \|w(y)\||e\| = \|w(y)\||.

Lemma 6.1. \(EW_e(a, b; \mathcal{H})^{-1} \leq d^*_e(a, b; \mathcal{H})\).

Proof. Let \(Q \in Q_{a,b}\). Then there exist two disjoint subsets \(Q(a)\) and \(Q(b)\) of \(X\) such that

\[
a \in Q(a), \quad b \in Q(b), \quad X = Q(a) \cup Q(b) \quad \text{and} \quad Q = Q(a) \cap Q(b).
\]

For a subset \(A\) of \(X\), denote by \(\varepsilon_A \in L(X; \mathbb{R})\) the characteristic function of \(A\). Then \(|\delta \varepsilon_{Q(y)}(y)| = 1\) for \(y \in Q\) and \(|\delta \varepsilon_{Q(y)}(y)| = 0\) for \(y \not\in Q\). Let \(w\) be a feasible solution for \(d^*_e(a, b; \mathcal{H})\). There exists a sequence \(\{w_n\} \subset F_0(a, b; \mathcal{H})\) such that \(H(w - w_n) \rightarrow 0\) as \(n \rightarrow \infty\). We have

\[
I_e(w_n) = ((\partial w_n(b), e)) = \sum_{x \in X} ((\partial w_n(x), \varepsilon_Q(x)e))
\]

\[
= \sum_{y \in Y} ((w_n(y), \delta \varepsilon_Q(y)e))
\]

\[\leq \sum_{y \in Q} |((w_n(y), e))|.
\]

Namely \(w_n/I_e(w_n)\) is a feasible solution for \(EW_e(a, b; \mathcal{H})\), so that

\[
EW_e(a, b; \mathcal{H})^{-1} \leq H(w_n/I_e(w_n)) = H(w_n)/(I_e(w_n))^2.
\]

Letting \(n \rightarrow \infty\), we obtain \(EW_e(a, b; \mathcal{H})^{-1} \leq H(w)\), so that \(EW_e(a, b; \mathcal{H})^{-1} \leq d^*_e(a, b; \mathcal{H})\). \(\square\)
Lemma 6.2. Let \(w \) be a feasible solution for \(EW_e(a, b; \mathcal{H}) \). Then
\[
d^*_e(a, b; \mathcal{H}) \leq \sum_{y \in Y} ((r(y)w(y), w(y))((r(y)e, e)(r(y)^{-1}e, e)).
\]

Proof. Put \(V(y) := ||(w(y), e)|| \). Then
\[
\sum_{y \in Q} V(y) \geq 1 \quad \text{for all} \quad Q \in Q_{a,b}.
\]

By the duality between the max-flow problem and the min-cut problem (cf. [4]), we can find \(\varphi \in L(Y; \mathbb{R}) \) such that \(|\varphi(y)| \leq V(y) \) on \(Y \),
\[
\partial \varphi(x) = 0 \quad \text{for} \quad x \in X \setminus \{a, b\} \quad \text{and} \quad -\partial \varphi(a) = \partial \varphi(b) = 1.
\]
Let \(w(y) := \varphi(y)e \). Then \(w \in F(a, b; \mathcal{H}) \) and \(I_e(w) = 1 \). Thus we have
\[
d^*_e(a, b; \mathcal{H}) \leq H(w) = \sum_{y \in Y} ((r(y)\varphi(y)e, \varphi(y)e)) = \sum_{y \in Y} [\varphi(y)]^2((r(y)e, e)) \leq \sum_{y \in Y} ||(w(y), e)||^2((r(y)e, e)) \leq \sum_{y \in Y} ((r(y)w(y), w(y)))((r(y)^{-1}e, e))(r(y)e, e)).
\]

Theorem 6.1. Let \(M(r) := \sup\{(r(y)e, e)((r(y)^{-1}e, e)); y \in Y\} \). Then
\[
EW_e(a, b; \mathcal{H})^{-1} \leq d^*_e(a, b; \mathcal{H}) \leq M(r)EW_e(a, b; \mathcal{H})^{-1}.
\]

Corollary 6.1. Assume that \(((r(y)e, e)((r(y)^{-1}e, e)) = 1 \) for all \(y \in Y \). Then \(d^*_e(a, b; \mathcal{H}) = EW_e(a, b; \mathcal{H})^{-1} \).

We show by an example that the equality \(d^*_e(a, b; \mathcal{H}) = EW_e(a, b; \mathcal{H})^{-1} \) does not hold in general.

Example. Let \(X = \{x_0, x_1, x_2\} \) and \(Y = \{y_1, y_2\} \) and define \(K \) by
\[
K(x_i, y_i) = 1, \quad K(x_{i-1}, y_i) = -1 \quad (i = 1, 2)
\]
and \(K(x, y) = 0 \) for any other pair. Then \(G = \{X, Y, K\} \) is a finite graph. Notice that \(G \) is a tree. Take \(\mathcal{H} \) as \(\mathbb{R}^2 \) and define \(r(y) \) by
\[
r(y_i) := \begin{pmatrix} 1 & 0 \\ 0 & t_i \end{pmatrix}
\]
where \(t_i > 0 \) for \(i = 1, 2 \). Then
\[
r(y_i)^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1/t_i \end{pmatrix}.
\]

Let \(a = x_0, \ b = x_2 \) in the above setting and let \(e = (e_1, e_2)^T \in \mathbb{R}^2 \). For \(w(y_i) = (\xi_i, \eta_i) \in L(Y; \mathbb{R}^2) \), we have
\[
H(w) = \sum_{i=1}^2 (\xi_i^2 + t_i \eta_i^2).
If \(w \) is a feasible solution for \(d^*_e(a, b; \mathbb{R}^2) \), then \(\xi_1 = \xi_2, \eta_1 = \eta_2 \) and \(I_e(w) = 1 \) implies \(\xi_1 e_1 + \eta_1 e_2 = 1 \). Minimizing \(H(w) \) subject to this constraints, we obtain

\[
d^*_e(a, b; \mathbb{R}^2) = \frac{1}{e_1^2/2 + e_2^2/(t_1 + t_2)}.
\]

On the other hand, if \(w \) is feasible for \(EW_e(a, b; \mathbb{R}^2)^{-1} \), then we have

\[
\xi_1 e_1 + \eta_1 e_1 \geq 1, \quad \xi_2 e_1 + \eta_2 e_2 \geq 1.
\]

Minimizing \(H(w) \) subject to this constraints, we obtain

\[
EW_e(a, b; \mathbb{R}^2)^{-1} = \frac{t_1}{t_1 e_1^2 + e_2^2} + \frac{t_2}{t_2 e_1^2 + e_2^2}.
\]

Therefore

\[
d^*_e(a, b; \mathbb{R}^2) - EW_e(a, b; \mathbb{R}^2)^{-1} = \frac{(t_1 - t_2)^2 e_1^2 e_2^2}{(t_1 + t_2)(t_1 e_1^2 + e_2^2)(t_2 e_1^2 + e_2^2)} \geq 0,
\]

and the equality holds if \(t_1 = t_2 \) or \(e_1 = 0 \) or \(e_2 = 0 \).

References