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Abstract. We develop a theory of Kuramochi boundary on an infinite net-
work. The discrete Laplacian and the Dirichlet sum in the discrete potential
theory on an infinite network play an important role in our study.

1. Introduction and preliminaries

The theory of Kuramochi boundary on Riemann surfaces due to [10] has been
developed analogous as in the case of Martin boundary (cf. [5]). We study
a discrete analogy of the theory of Kuramochi boundary on Riemann surfaces,
regarding an infinite network as a Riemann surface. We take the same line as in
the discrete potential theory in [11], [12] and [13] in the sense that the discrete
Laplacian and the Dirichlet sum play the role of the Laplacian and the Dirichlet
integral. In order to emphasize the analogy to the continuous case, the contents
of this paper are arranged parallel to those of the paper [10] of M. Ohtsuka. For
notation and terminology concerning the infinite network, we mainly follow [7]
and [12].

Let N = {X, Y, K, r} be an infinite network which is connected, locally finite
and has no self-loop. Here X is the countable set of nodes, Y is the countable
set of arcs, K is the node-arc incidence function (matrix) and r is a positive real
valued function on Y . For each y ∈ Y , denote by e(y) the extremities of y, i.e.,

e(y) := {x ∈ X; K(x, y) 6= 0}.
For each a ∈ X, let Y (a) be the set of arcs which are incident to node a:

Y (a) := {y ∈ Y ; K(a, y) 6= 0}.
The geodesic distance ρ(a, b) between two nodes a and b is the number of arcs
in the shortest path joining a and b. Let us put

X(a) := {x ∈ X; ρ(a, x) ≤ 1}, W (a) := {x ∈ X; ρ(a, x) = 1}.
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It is clear that

X(a) = ∪{e(y); y ∈ Y (a)} and W (a) = X(a) \ {a}.
An exhaustion {Nn}(Nn = < Xn, Yn >) of N is the sequence of finite subnetworks
Nn such that X(x) ⊂ Xn+1 for all x ∈ Xn, Yn ⊂ Yn+1 and

X = ∪∞n=1Xn, Y = ∪∞n=1Yn.

We say that a subset A of X which contains more than or equal to two nodes
is connected if, for every distinct nodes a, b ∈ A, there exists a path P from a
to b such that the set of nodes on P is a subset of A. For a subset A of X, the
components of X \A are defined as the maximal connected subsets of X \A, in
case X \ A is not connected.

Denote by L(X) the set of all real valued functions on X and by L+(X) the
set of all non-negative real valued functions on X. We use the notation L(Y )
similarly. The support Sf of a function f ∈ L(X) is defined by

Sf := {x ∈ X; f(x) 6= 0}.
Denote by L0(X) the set of all f ∈ L(X) with finite support.

For a subset A of X, let εA be the characteristic function of A. In case A = {a},
we simply set εa := ε{a}.We often identify εa with the unit point measure ε̃a at
a. In this way, we identify a function µ ∈ L+(X) with the measure

µ̃ =
∑

a∈X
µ(a)ε̃a

and call the quantity

µ(X) :=
∑

x∈X
µ(x)

the total mass of µ. Conversely, a measure on X is identified with a function
which belongs to L+(X).

The discrete derivative du ∈ L(Y ) of u ∈ L(X) and the Dirichlet mutual sum
D(u, v) of u, v ∈ L(X) are defined by

du(y) := −r(y)−1
∑

x∈X
K(x, y)u(x).

D(u, v) :=
∑

y∈Y
r(y)[du(y)][dv(y)].

We set D(u) := D(u, u) and call it the Dirichlet sum of u. Denote by D(N) the
set of all u ∈ L(X) with finite Dirichlet sum:

D(N) := {u ∈ L(X); D(u) < ∞}.
The discrete Laplacian ∆u ∈ L(X) of u ∈ L(X) is defined by

∆u(x) :=
∑

y∈Y
K(x, y)[du(y)].

We have
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Lemma 1.1. Let u, f ∈ L(X). Then the discrete Dirichlet integral formula:

D(u, f) = −∑
x∈X

[∆u(x)]f(x)

holds if any one of the following conditions holds:
(1) f ∈ L0(X) or u ∈ L0(X);
(2) du ∈ L0(Y )

Proof. For w ∈ L(Y ), put

∂w(x) :=
∑

y∈Y
K(x, y)w(y).

Then ∆u = ∂[du]. Observe that the relation
∑

x∈X
v(x)∂w(x) = −∑

y∈Y
r(y)[dv(y)]w(y)

holds if v ∈ L0(X) or w ∈ L0(Y ). In fact, in these cases, the order of summation
can be interchanged, since N is locally finite.

Corollary 1.1. D(u, εa) = −∆u(a) for every a ∈ X.

To rewrite ∆u in a more familiar form, we introduce c(x, z) for x, z ∈ X, x 6= z
and c(x) for x ∈ X as follows:

c(x, z) :=
∑

y∈Y
r(y)−1|K(x, y)K(z, y)|,

c(x) :=
∑

y∈Y
r(y)−1|K(x, y)|.

For simplicity, we set c(x, x) := 0. Clearly, c(x, z) = c(z, x) and c(x, z) = 0 for
all z ∈ X \W (x). Recall that c(x) is the total conductance at x, i.e.,

c(x) =
∑

z∈X
c(x, z) =

∑
z∈W (x)

c(x, z).

We have
∆u(x) = −c(x)u(x) +

∑
z∈X

c(x, z)u(z).

Remark 1.1. Let u1, u2 ∈ L(X) and u1 ≤ u2 on X. If u1(a0) = u2(a0), then
the inequality ∆u1(a0) ≤ ∆u2(a0) holds.

Definition 1.1. We say that a function u ∈ L(X) is harmonic (resp. superhar-
monic) on a subset A of X if ∆u(x) = 0 (resp. ∆u(x) ≤ 0) for all x ∈ A.

Now we give the framework of this paper. We always fix a node x0 and
set X0 = X \ {a0}. The operation ϕA defined in §2 with a finite subset A
of X0 and a ϕ ∈ L(X) plays a fundamental role in our study. The discrete
Kuramochi function g̃a is defined in §3 as in [7] with the aid of 1{a}. Taking the

Kuramochi function as a potential kernel, we define the Kuramochi potential G̃µ
of a non-negative function µ on X0. In §4, we introduce an SHS function (or full
superharmonic function) as a non-negative real valued function v on X which
satisfies vA ≤ v for every finite subset A of X0. We say that an SHS function
is an HS function if it is harmonic on X0. The main result in S 4 is a Riesz
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decomposition theorem which assures that every SHS function is represented as
the sum of a Kuramochi potential and an HS function. In §5, the operation v∗A
(the reduced function of v onto X \ A) is introduced for an SHS function and a
subset A of X0 as a generalization of vA. It will be shown that v∗A has properties
analogous to vA. Thus except this section we use the notation vA instead of v∗A.
The Kuramochi boundary of an infinite network will be introduced in §6 more in
detail than in [7]. Extending the Kuramochi kernel to the Kuramochi boundary
∂N of N continuously, we study in §7 the representation of HS0 function by
means of Kuramochi potential of a measure on the Kuramochi boundary. By
means of a reduced function vF of an SHS function v onto a closed subset F of
∂N , the points of ∂N are classified into minimal points and non-minimal points
in §8. The relation between a minimal function and a minimal point will be
given in §10. Finally, the uniqueness of the canonical representation of HS0 is
proved in §11.

2. Dirichlet principle

Denote by R the set of all real numbers and let a0 ∈ X be a fixed node in this
paper. We introduce the following notation:

X0 : = X \ {a0}
D(N ; a0) := {u ∈ D(N); u(a0) = 0}.

Notice that D(N ; a0) is a Hilbert space with respect to the inner product (u, v) :=
D(u, v) and that ‖u‖ := [D(u)]1/2 is a norm on D(N ; a0). Observe that the norm
convergence on D(N ; a0) implies the pointwise convergence (cf. [12]). Namely, if
un, u ∈ D(N ; a0) and if D(un−u) → 0 as n →∞, then un(x) → u(x) as n →∞
for every x ∈ X.

Hereafter, we always assume that an exhaustion {Nn}(Nn = < Xn, Yn >) of
N satisfies the condition a0 ∈ X1.

For a subset A of X0 and ϕ ∈ L(X), set

DA(ϕ) := {u ∈ D(N ; a0); u = ϕ on A}.
The following Dirichlet principle in N is well-known (cf. [7] and [12]):

Theorem 2.1. Assume that DA(ϕ) 6= ∅. Then there exists a unique h ∈ DA(ϕ)
which has the minimum Dirichlet sum among the functions in DA(ϕ). The func-
tion h is harmonic in X0 \ A and is characterized by h ∈ DA(ϕ) and

(2.1) (u− h, h) = 0 for all u ∈ DA(ϕ).

Definition 2.1. Denote by ϕA the unique function h in the above theorem, i.e.,
ϕA ∈ DA(ϕ) and

D(ϕA) = min{D(u); u ∈ DA(ϕ)}.
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Corollary 2.1. (ϕA, f) = 0 for every f ∈ D(N ; a0) with f = 0 on A.

Proof. Let f ∈ D(N ; a0) with f = 0 on A. Then u = f + ϕA ∈ DA(ϕ), so that
we have (f, ϕA) = 0 by (2.1).

Proposition 2.1. The condition DA(ϕ) 6= ∅ holds if any one of the following
conditions is satisfied:
(1) A is a finite subset of X0 and ϕ ∈ L(X).
(2) A is a subset of X0 and D(ϕ) < ∞.

We recall some properties of ϕA studied in [7]:

Theorem 2.2. Let A and B be subsets of X0 such that A ⊂ B and let ϕ ∈ L(X).
If DB(ϕ) 6= ∅, then (ϕA)B = ϕA.

Proof. By the relation DA(ϕ) ⊃ DB(ϕ) 6= ∅, ϕA ∈ D(N ; a0) exists by Theorem
2.1, so that (ϕA)B exists by Proposition 2.1. Since (ϕA)B ∈ DA(ϕ), D(ϕA) ≤
D((ϕA)B). Since ϕA ∈ DB(ϕA), D((ϕA)B) ≤ D(ϕA). Hence D((ϕA)B) = D(ϕA)
and ϕA = (ϕA)B by the uniqueness of ϕA.

For a subset A of X0, put

LA(X) := {ϕ ∈ L(X);DA(ϕ) 6= ∅}.
Theorem 2.3. ϕA is a positive linear mapping from LA(X) into D(N ; a0),
i.e.,
(1) ϕ = 0 on A if and only if ϕA = 0.
(2) The condition: ϕ ≥ 0 on A implies that ϕA ≥ 0 on X.
(3) (ϕ + ψ)A = ϕA + ψA for ϕ, ψ ∈ LA(X)
(4) (cϕ)A = cϕA for ϕ ∈ LA(X), c ∈ R.

Proof. (1) Since ϕA = ϕ on A, the ”if” part is clear. If ϕ = 0 on A, then
0 ∈ DA(ϕ) and D(ϕA) = 0. Since ϕA ∈ D(N ; a0), we have ϕA = 0.

(2) Assume that ϕ ≥ 0 on A. Then ϕ+
A = max(ϕA, 0) ∈ DA(ϕ), so that

D(ϕA) ≤ D(ϕ+
A). By Corollary 2 of Lemma 2 in [12], we have D(ϕ+

A) ≤ D(ϕA).
Hence D(ϕ+

A) = D(ϕA) and ϕA = ϕ+
A ∈ L+(X) by the uniqueness of ϕA.

(3) Let ϕ and ψ satisfy DA(ϕ) 6= ∅ and DA(ψ) 6= ∅ and put f = ϕ + ψ and
h = ϕA + ψA. Then h ∈ DA(f) and (h− fA, fA) = 0 by (2.1). Since h− fA = 0
on A, we have by Corollary 2.1

D(h− fA) = D(h) + D(fA)− 2(h, fA)

= D(h)− (h, fA) = (h, h− fA)

= (ϕA, h− fA) + (ψA, h− fA) = 0

Thus h = fA.
(4) Let ϕ ∈ LA(X), and let c be a number and put h = (cϕ)A. We have

cϕA ∈ DA(cϕ) and cϕA − h = 0 on A, so that

D(cϕA − h) = (cϕA − h, cϕA)− (cϕA − h, h) = 0

by (2.1) and Corollary 2.1. Thus h = cϕA.
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Corollary 2.2. Let ϕ, ψ ∈ LA(X). If ϕ ≥ ψ on A, then ϕA ≥ ψA on X.

Theorem 2.4. Let A be a finite subset of X0. Then for each x ∈ X0, there
exists a unique function ωx

A ∈ L+(X) such that ωx
A(z) = 0 on X0 \ A and

ϕA(x) =
∑

z∈A
ϕ(z)ωx

A(z)

for every ϕ ∈ L(X).

Proof. The uniqueness of ωx
A is clear. To prove the existence of ωx

A, let x ∈ X0.
Since A is a finite subset of X0. Then LA(X) = L(X) from Proposition 2.1.
Hence for each x ∈ X0 we may consider that ϕA(x) is a linear functional on
D(N ; a0) by Theorem 2.3. By Lemma 1 in [12], there exists a constant Mx

depending only on {x} such that

(2.2) |u(x)| ≤ Mx[D(u)]1/2 for all u ∈ D(N ; a0).

For ϕ ∈ D(N ; a0), we have by (2.1) and (2.2)

|ϕA(x)| ≤ Mx[DϕA)]1/2 ≤ Mx[D(ϕ)]1/2,

which implies the continuity of ϕA on D(N ; a0). By the Riesz representation
theorem, there exists βx

A ∈ D(N ; a0) such that ϕA(x) = (ϕ, βx
A) for all ϕ ∈

D(N ; a0). Put ωx
A = −∆βx

A. Then by Lemma 1.1

(2.3) ϕA(x) = (ϕ, βx
A) =

∑
z∈X

ϕ(z)ωx
A(z)

for every ϕ ∈ L0(X). For b ∈ X0, we have by (2.3)

(2.4) 0 ≤ (εb)A(x) =
∑

z∈X
εb(z)ωx

A(z) = ωx
A(b),

i.e., ωx
A ∈ L+(X). In case b ∈ X0 \ A, we have ωx

A(b) = 0 by (2.4) and Theorem
2.2(1), namely, Sωx

A
⊂ A. Therefore, it follows that

(2.5) ϕA(x) =
∑

z∈A
ϕ(z)ωx

A(z)

for all ϕ ∈ L0(X). For ϕ ∈ L(X), consider the function ψ ∈ L0(X) defined by
ψ = ϕ on A and ψ = 0 on X \ A. Then ψA = ϕA by Theorem 2.2(1),(2). It
follows that (2.5) holds for all ϕ ∈ L(X).

Remark 2.1. Notice that ωx
A = εx if A is a finite subset of X0 and x ∈ A.

Proposition 2.2. Let x ∈ X0 and take A := W (x). Then ωx
A(z) = c(x, z)/c(x)

for z ∈ W (x) and ωx
A(z) = 0 for z ∈ X \W (x).
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Proof. Since ϕA is harmonic on X0 \ A and ϕA(z) = ϕ(z) on A, we have

0 = ∆ϕA(x) = −c(x)ϕA(x) +
∑

z∈X
c(x, z)ϕA(z)

= −c(x)ϕA(x) +
∑

z∈A
c(x, z)ϕ(z),

so that

ϕA(x) =
∑

z∈A

c(x, z)

c(x)
ϕ(z).

Therefore ∑
z∈A

c(x, z)

c(x)
ϕ(z) =

∑
z∈A

ϕ(z)ωx
A(z)

for all ϕ ∈ L(X). By taking ϕ = εa for a ∈ A = W (x), we obtain ωx
A(a) =

c(x, a)/c(x).

Theorem 2.5. Let ϕ ∈ LA(X). Then

(2.2) min(0, inf{ϕ(z); z ∈ A}) ≤ ϕA ≤ max(0, sup{ϕ(z); z ∈ A}).
Proof. Put

c1 := min(0, inf{ϕ(z); z ∈ A}) ≤ 0, c2 := max(0, sup{ϕ(z); z ∈ A}) ≥ 0.

We may assume that both c1 and c2 are finite. Define f1, f2 by

f1(x) := max(ϕA, c1), f2(x) := min(ϕA, c2).

Then f1, f2 ∈ DA(ϕ), so that D(ϕA) ≤ D(fk) for k = 1, 2. Noting that max(t, c1)
and min(t, c2) are contractions on R, we see that D(fk) ≤ D(ϕA) for k = 1, 2 by
Lemma 2 in [12]. Therefore D(f1) = D(f2) = D(ϕA). By the uniqueness of ϕA,
we have f1 = f2 = ϕA, and hence c1 ≤ ϕA ≤ c2.

Corollary 2.3. If A is a finite subset of X0, then ωx
A(X) ≤ 1 for x ∈ X0 \ A.

Proof. By Theorem 2.5, 1A(x) ≤ 1 on X. Our assertion follows immediately
from Theorem 2.4.

Lemma 2.1. Let A be a finite subset of X0, and let {ϕk} be a sequence of func-
tions of L(X) which converges pointwise to ϕ ∈ L(X). Then {(ϕk)A} converges
uniformly to ϕA as k →∞.

Proof. For any ε > 0, there exists k0 such that

sup{|ϕk(a)− ϕ(a)|; a ∈ A} < ε

for all k ≥ k0, since A is a finite set. By Theorems 2.4 and 2.5, we have

|(ϕk)A(x)− ϕA(x)| = |∑
a∈A

[ϕk(a)− ϕ(a)]ωx
A(a)|

≤ ∑
a∈A

|ϕk(a)− ϕ(a)|ωx
A(a)

≤ ε ωx
A(A) ≤ ε

for all k ≥ k0 and all x ∈ X. This completes the proof.
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Lemma 2.2. Let ϕ ∈ L+(X). Then ϕA∪B ≤ ϕA+ϕB holds for any finite subsets
A, B of X0.

Proof. Put h := ϕA + ϕB − ϕA∪B. Then hA∪B = h by Theorems 2.2 and 2.3.
Since h ≥ 0 on A ∪B, we have by Theorem 2.5

h(x) = hA∪B(x) ≥ min{h(z); z ∈ A ∪B} ≥ 0

on X.

3. Kuramochi function

Now we introduce a discrete analogue of the Kuramochi function in the theory
of Riemann surface and study its fundamental properties as in [7] and [10].

Definition 3.1. Let a ∈ X0 and denote by 1{a} the function ϕA when we take A
as {a} and ϕ as 1. We set

g̃a(x) = g̃(x, a) := 1{a}/D(1{a})

and call it the Kuramochi function of N with pole at a ∈ X0.

Needless to say, 1{a} ∈ D(N ; a0) and D(1{a}) 6= 0.
The following properties are well-known (cf. [7] and [8]):

Theorem 3.1. The Kuramochi function g̃a has the following properties:
(1) ∆g̃a(x) = −εa(x) on X0.
(2) 0 < g̃a(x) ≤ g̃a(a) < ∞ on the component of X0 which contains a and
g̃a(x) = 0 on every component of X0 which does not contain a.
(3) g̃a is a reproducing kernel of D(N ; a0), i.e.,

(3.1) (g̃a, u) = u(a) for every u ∈ D(N ; a0).

(4) If f ∈ L0(X) and f(a0) = 0, then

(3.2) f(a) = (g̃a, f) = −∑
x∈X

[∆f(x)]g̃a(x).

(5) g̃a(b) = g̃b(a) for every a, b ∈ X0.
(6) ∆g̃a(a0) = 1.

We give the proof of the following theorem (Theorem 3.2 in [7]), since this is
a key result in this paper.

Theorem 3.2. Let A be a nonempty subset X0. Then:
(1) (g̃a)A = ga on X if a ∈ A.
(2) (g̃a)A ≤ g̃a on X if A is a finite set and a /∈ A.
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Proof. For simplicity we put g̃ = g̃a, h = 1{a}, α = D(1{a}) and g̃A = (g̃a)A.
Then g̃ = h/α and g̃A = hA/α by Theorem 2.3.

(1) Assume that a ∈ A. Then hA = (1{a})A = 1{a} = h by Theorem 2.2, and
hence (g̃a)A = ga on X.

(2) Assume that A is a finite set and a /∈ A. Put u := g̃− g̃A and B := A∪{a}.
Then by Theorems 2.2 and 2.3

uB = g̃B − (g̃A)B = g̃ − g̃A = u,

since a ∈ B and A ⊂ B. Since u = 0 on A, Theorem 2.5 implies that u ≥
min(0, u(a)). Since u is superharmonic on X \ A, u cannot attain its minimum
at x = a (cf. Lemma 2.1 in [13]). Hence u ≥ 0 on X, i.e., (g̃a)A ≤ g̃a on X.

Theorem 3.3. Let A be a nonempty finite subset of X0. Then (g̃a)A(b) =
(g̃b)A(a) for every a, b ∈ X0.

Proof. By Theorem 2.4 and Theorem 3.2(1), we have

(g̃a)A(b) =
∑

x∈A
g̃a(x)ωb

A(x) =
∑

x∈A
g̃x(a)ωb

A(x)

=
∑

x∈A
[(g̃x)A(a)]ωb

A(x) =
∑

x∈A
[
∑

z∈A
g̃x(z)ωa

A(z)]ωb
A(x)

=
∑

z∈A
[
∑

x∈A
g̃z(x)ωb

A(x)]ωa
A(z)

=
∑

z∈A
[(g̃z)A(b)]ωa

A(z) =
∑

z∈A
g̃z(b)ω

a
A(z)

=
∑

z∈A
g̃b(z)ωa

A(z) = (g̃b)A(a) ¤

For µ ∈ L+(X), we define the g̃-potential G̃µ of µ by

G̃µ(x) =
∑

a∈X
g̃a(x)µ(a).

We call G̃µ the Kuramochi potential of µ if G̃µ ∈ L+(X) and put

M(G̃) := {µ ∈ L+(X); µ(a0) = 0, G̃µ ∈ L+(X)}.
Furthermore, denote by G̃Aµ the (g̃a)A-potential of µ, i.e.,

(G̃Aµ)(x) :=
∑

a∈X
(g̃a)A(x)µ(a).

Lemma 3.1. Let A be a finite subset of X0. Then G̃Aµ = (G̃µ)A for every
µ ∈ M(G̃).

Proof. By Theorem 3.2, G̃Aµ ∈ L(X) for every µ ∈ M(G̃). We have by Theorem
2.4

(g̃a)A(x) =
∑

z∈A
g̃a(z)ωx

A(z)
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for every x ∈ X0. Therefore, we have

(G̃Aµ)(x) =
∑

a∈X
(g̃a)A(x)µ(x)

=
∑

a∈X
[
∑

z∈A
g̃a(z)ωx

A(z)]µ(a)

=
∑

z∈A
[
∑

a∈X
g̃a(z)µ(a)]ωx

A(z)

=
∑

z∈A
G̃µ(z)ωx

A(z)

= (G̃µ)A(x). ¤

By Theorem 3.1(1), we have

Lemma 3.2. If µ ∈ M(G̃), then ∆G̃µ = −µ on X0. Consequently, G̃µ is
harmonic on X0 \ Sµ and superharmonic on X0.

Lemma 3.3. Let µ ∈ M(G̃). Then µ(X) = ∆G̃µ(a0).

Proof. Since ∆g̃a(a0) = 1 for all a ∈ X0 by Theorem 3.1(6) and µ(a0) = 0, we
have

∆G̃µ(a0) =
∑

x∈X
∆g̃a(a0)µ(x) = µ(X). ¤

Corollary 3.1. µ(X) < ∞ for every µ ∈ M(G̃).

Notice that another useful characterization of the Kuramochi function g̃ was
given in [7] by using the concept of flows from a0 to a ∈ X0. Some examples of
Kuramochi functions were given there. We recall a simple one of them. Let Z+

be the set of all non-negative integers.

Example 3.1. Let X = {xk; k ∈ Z+}, Y = {yk+1; k ∈ Z+},

K(xk−1, yk) = −1, K(xk, yk) = 1 for k ∈ Z+, k ≥ 1,

and K(x, y) = 0 for any other pair of (x, y). Take a0 = x0 and set

Rk :=
k∑

j=1

r(yj).

For n ≥ 1, we have g̃xn(x0) = 0, g̃xn(xk) = Rk for 1 ≤ k ≤ n and g̃xn(xk) = Rn

for k ≥ n.
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4. HS functions and SHS functions

We begin with

Definition 4.1. Let v ∈ L+(X) which is not equal to 0 identically. We say that
v is an SHS (or full superharmonic) function if vA(x) ≤ v(x) on X for every
finite subset A of X0. We say that v is an HS function if it is an SHS function
which is harmonic on X0. We say that v is an SHS0(resp. HS0) function if it is
an SHS (resp. HS) which satisfies v(a0) = 0.

Notice that for any SHS function v, there exists an SHS0 function which takes
same values as v on X0. In fact, for an SHS function v, define u by u = v on X0

and u(a0) = 0. Since uA = vA for any finite subset A of X0 by Theorem 2.3(1),
u is an SHS0 function.

Proposition 4.1. If v is an SHS function, then it is superharmonic on X0.

Proof. Let x ∈ X0 and let take A as W (x). From Proposition 2.2 it follows that

v(x) ≥ vA(x) =
∑

z∈A
v(z)ωx

A(z) =
∑

z∈W (x)

[c(x, z)/c(x)]v(z),

so that ∆v(x) ≤ 0.
By Lemma 2.1 we have

Theorem 4.1. Let {vn} be a sequence of SHS (resp. SHS0, HS and HS0) func-
tions. If {vn} converges pointwise to v ∈ L(X), then v is an SHS (resp. SHS0,
HS and HS0 function.

Theorem 4.2. Every Kuramochi potential G̃µ is an SHS0 function.

Proof. For a finite subset A of X0, we have by Lemma 3.1 and Theorem 3.2

(G̃µ)A(x) =
∑

a∈X
(g̃a)A(x)µ(a)

≤ ∑
a∈X

g̃a(x)µ(a) = G̃µ(x),

so that G̃µ is an SHS function. Since g̃a(a0) = 0, we have

G̃µ(a0) =
∑

a∈X
g̃a(a0)µ(a) = 0. ¤

Theorem 4.3. Let v be an SHS function and let A be a finite subset of X0.
Then there exists a unique ν ∈ L+(X) such that vA = G̃ν and Sν ⊂ A.
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Proof. By definition, vA is harmonic on X0 \ A. To prove that vA is superhar-
monic on A, let a ∈ A. Then we have vA(a) = v(a) and vA(x) ≤ v(x) on X, so
that

∆vA(a) = −c(a)vA(a) +
∑

x∈X
c(a, x)vA(x)

≤ −c(a)v(a) +
∑

x∈X
c(a, x)v(x) = ∆v(a) ≤ 0,

since v is superharmonic on X. Thus vA is superharmonic on A. Let ν(x) :=
−∆vA(x) on X0 and ν(a0) := 0. Then ν ∈ L+(X) and ν(x) = 0 on X \A. Notice
that G̃ν ∈ D(N ; a0). To prove vA = G̃ν, put h := vA − G̃ν. Then h is harmonic
on X0 by Lemma 3.2. Since Sν ⊂ A and (g̃a)A(x) = g̃a(x) for every a ∈ A by
Theorem 3.2(1), we have (G̃ν)A = G̃ν and

hA = (vA)A − (G̃ν)A = vA − G̃ν = h

on X0. Since D(h) < ∞, we have by Theorem 2.5,

(4.1) min(0, min{h(x); z ∈ A}) ≤ h ≤ max(0, max{h(x); z ∈ A})
on X, so that h attains its minimum on A. By the minimum principle, h is equal
to 0 on the connected component X∗ of X \{a0} which contains the node x0 ∈ A
such that h(x0) = min{h(x); z ∈ A}. Thus min{h(x); z ∈ A} = 0. By applying
the same reasoning to −h, we obtain max{h(x); z ∈ A} = 0. By (4.1), we have
h = 0, and hence vA = G̃ν. The uniqueness of ν follows from Lemma 3.2.

Corollary 4.1. If v is an SHS function and if A is a finite subset of X0, then
vA is an SHS0 function.

Now we shall prove the following Riesz decomposition theorem which assures
that every SHS function is equal to the sum of a Kuramochi potential and an
HS function. More precisely

Theorem 4.4. For an SHS function v, there exist µ ∈ M(G̃) and a non-negative
HS function q such that v = G̃µ + q on X0.

Proof. Let v be an SHS function and let {Nn}(Nn = < Xn, Yn >) be an
exhaustion of N . For Bn := Xn \ {a0}, there exists νn ∈ L+(X) such that
vBn = G̃νn and Sνn ⊂ Bn by Theorem 4.3. For simplicity, put vn := vBn . Put
νn(x) := −∆vn(x) for x ∈ X0 and νn(a0) := 0 and define µn by µn = νn on Xn−1

and µn = 0 on X \Xn−1. Since vn = v on Xn, we have µn(x) = −∆v(x) on Bn−1

and µn(x) = 0 on X \ Bn−1. We see easily that {µn} is an increasing sequence
and converges pointwise to µ ∈ L+(X) defined by µ(x) = −∆v(x) for x ∈ X0

and µ(a0) = 0. Since µn ≤ µn+1 ≤ νn+1, we have

G̃µn ≤ G̃µn+1 ≤ G̃νn+1 = vn+1 ≤ v,

so that p = limn→∞ G̃µn exists and p ∈ L + (X). By Fatou’s lemma, we have

G̃µ(x) =
∑

a∈X
g̃a(x)µ(a) ≤ lim inf

n→∞
∑

a∈X
g̃a(x)µn(a) = lim

n→∞ G̃µn(x) = p(x) ≤ v(x).
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Thus µ ∈ M(G̃). Since µn ≤ µ, we have p ≤ G̃µ, and hence p = G̃µ. Now
put λn := νn − µn and qn := G̃λn. Then vn = G̃νn = G̃µn + qn. Notice that
qn ∈ L+(X), since λn ∈ L+(X). For m < n, we have vn = vm = v on Xm and

qm − qn = G̃µn − G̃µm ≥ 0

on Xm. Namely {qn} converges decreasingly to some q ∈ L+(X). Since v =
G̃µn + qn on Bn, we have v = G̃µ + q on X0. Since qn is an SHS function by
Theorem 4.2, q is an SHS function by Theorem 4.1. Since qn is harmonic on
Bn−1, q is harmonic on X0. Therefore q is an HS function.

Finally we give a positive superharmonic function which is not an SHS func-
tion.

Example 4.1. Let N , a0 and Rn be the same as in Example 3.1. Assume
that R :=

∑
y∈Y r(y) < ∞. Fix n ≥ 1 and consider the function u defined by

u(a0) := 0, u(xk) := Rk/Rn for 1 ≤ k ≤ n and u(xk) := 1 − (Rk − Rn)/R for
k ≥ n + 1. It is easy to show that u(x) is a positive superharmonic function in
X0. Take A := {xn}. We see that uA(xk) = u(xk) for 1 ≤ k ≤ n and uA(xk) = 1
for k ≥ n + 1, since uA is harmonic on {xk; k 6= 0, n}, uA = u on A and uA has
the minimum Dirichlet sum among DA(u). Namely, uA(xk) > u(xk) for k > n+1
and u is not an SHS function.

5. Reduced function of an SHS function

The function vA is always defined for a finite subset A of X0 and v ∈ L(X).
Now we introduce a function v∗A similar to vA for any SHS function v and for
any subset A of X0. We begin with

Lemma 5.1. Let v be an SHS function and let A be a subset of X0. For an
exhaustion {Nn}(Nn = < Xn, Yn >) of N , put An := A ∩ Xn. Then {vAn}
converges increasingly to a function v∗A. This v∗A does not depend on the choice
of an exhaustion of N and has the following properties:
(1) v∗A = v on A.
(2) v∗A ≤ v on X.
(3) v∗A is an SHS0 function.

Proof. For simplicity, put vn := vAn . Then vn ≤ v. For m < n, we have by
Theorems 2.2 and 2.3

0 ≤ (v − vm)An = vn − (vm)An = vn − vm,

so that 0 ≤ vm ≤ vn ≤ v. Thus {vn} converges to a function f ∈ L+(X).
Let {N ′

n}(N ′
n =< X ′

n, Y ′
n >) be another exhaustion of N and put A′

n = A∩X ′
n.

Let f ′ be the limit of {vA′n}. For a fixed An, there exists A′
k such that An ⊂ A′

k,
so that vAn ≤ vA′

k
≤ f ′. Thus f ≤ f ′. By the symmetry of our discussion, we

conclude that f = f ′. Denote by v∗A the limit of {vn}. (1) and (2) follow from
the fact that vn = v on An and vn ≤ v on X.
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(3) Since vn is an SHS0 function, v∗A is also an SHS0 function by Theorem
4.1.

For an SHS function v and a subset A of X0, we call the function v∗A defined
in Lemma 5.1 the reduced function of v onto X \ A. Furthermore, we call the
sequence {vn} used in Lemma 5.1 a determining sequence of v∗A.

By our definition, it is clear that v∗A = vA for every finite subset A of X0.

Theorem 5.1. Let u and v be SHS functions and let A and B be subsets of X0.
Then
(1) (u + v)∗A = u∗A + v∗A.
(2) v∗A∪B ≤ v∗A + v∗B.
(3) If A ⊂ B, then v∗A ≤ v∗B.
(4) If A ⊂ B, then (v∗A)∗B = v∗A.

Proof. (1) Let {un} and {vn} be determining sequences of u∗A and v∗A respec-
tively. Then (u + v)An = un + vv by Theorem 2.3. Letting n → ∞, we obtain
(1).

(2) Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N and put An = A∩Xn

and Bn = B ∩Xn. Then vAn∪Bn ≤ vAn + vBn by Lemma 2.2. We let n →∞ and
obtain (2).

(3) It suffices to show (3) in case both A and B are finite sets. We have by
Theorems 2.2 and 2.3

0 ≤ (v − vA)B = vA − (vA)B = vA − vB.

(4) By Lemma 5.1(3), (v∗A)∗B ≤ v∗A. To prove the converse inequality, we
consider an exhaustion {Nn}(Nn = < Xn, Yn >) of N and put An := A ∩ Xn

and Bn := B ∩ Xn. For m < n, we have Am ⊂ Bn, so that (vAm)Bn = vAm

by Theorem 2.2. Since vAn ≤ v∗A by definition, we have vAm ≤ (v∗A)Bn . Letting
n →∞ first and then m →∞, we obtain v∗A ≤ (v∗A)∗B.

Theorem 5.2. Let A be a subset of X0, let v be an SHS function such that
DA(v) 6= ∅ and let {vn} be a determining sequence of v∗A. Then v∗A ∈ D(N ; a0)
and D(vn − v∗A) → 0 as n →∞.

Proof. Let u ∈ DA(v), let vn be a determining sequence of v∗A and let An be the
same as in Lemma 5.1. Then u ∈ DAn(v) and D(vn) ≤ D(u) < ∞. For m < n,
we have (vn − vm, vm) = 0 by Theorem 2.1, so that

0 ≤ D(vn − vm) = D(vn)−D(vm).

Thus {D(vn)} is an increasing sequence which is bounded from above. It follows
that {vn} is a Cauchy sequence in D(N ; a0). Since {vn} converges pointwise to
v∗A, we conclude that D(vn − v∗A) → 0 as n →∞ and v∗A ∈ D(N ; a0).

Definition 5.1. We say that v is a DSHS (resp. DHS) if it is an SHS (resp. HS)
function and D(v) < ∞. We define a DSHS0 (resp. DHS0) function similarly.
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If v is a DSHS function, then DA(v) 6= ∅ by Proposition 2.1. Thus we have

Corollary 5.1. Let A be a subset of X0.
(1) If v is a DSHS function, then v∗A ∈ D(N ; a0).
(2) Let {vn} be a determining sequence of v∗A. If v is a DSHS function, then
D(vn − v∗A) → 0 as n →∞.

Theorem 5.3. If v is a DSHS function, then v∗A = vA for any subset A of X0.

Proof. Let An be the same as in Lemma 5.1 and put vn := vAn . Since DA(v) ⊂
DAn(v), we have (u− vn, vn) = 0 for all u ∈ DA(v) and for all n by Theorem 2.1.
Since D(vn − v∗A) → 0 as n →∞ by Corollary 5.1, we have (u− v∗A, v∗A) = 0 for
all u ∈ DA(v), and hence v∗A = vA.

Corollary 5.2. If v is a DSHS0 function, then D(v∗A) ≤ D(v).

Proof. It suffices to note that v ∈ DA(v) ¤.

Corollary 5.3. Let v be a DSHS function and let A and B be subsets of X0. If
A ⊂ B, then D(v∗B − v∗A) = D(v∗B)−D(v∗A).

Proof. Since vB = v∗B ∈ DB(v) ⊂ DA(v) by Theorem 5.3 and Corollary 5.1, we
have (vB−vA, vA) = 0 by Theorem 2.1, and hence D(vB−vA) = D(vB)−D(vA).

6. Definition of Kuramochi boundary of N

In this section we sometimes use the notation g̃(x, a) for the Kuramochi func-
tion g̃a(x).

Definition 6.1. We say that a sequence {xj} of nodes in X0 tends to the infinity
of N if, for any finite subset A of X0, there exists j0 such that xj ∈ X0 \ A for
all j ≥ j0.

Lemma 6.1. Assume that a sequence {xj} of nodes in X0 tends to the infinity
of N . Then {g̃(x, xj)} is a bounded sequence for each x ∈ X0.

Proof. By Theorem 3.1(2), we have

g̃(x, xj) = g̃xj
(x) = g̃x(xj) ≤ g̃x(x) < ∞

for all j and x ∈ X0.

Corollary 6.1. If {xj} is a sequence of nodes in X0 which tends to the infinity
of N , then {g̃(·, xj)} contains a convergent subsequence.
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We say that {xj} is a fundamental sequence if it is a sequence of nodes in X0

which tends to the infinity of N such that {g̃(·, xj)} converges. Two fundamen-
tal sequences {xj} and {x′j} are said to be equivalent if the limit functions of
{g̃(·, xj)} and {g̃(·, x′j)} are equal to each other.

Definition 6.2. A Kuramochi boundary point of N is defined as an equivalence
class of fundamental sequences. The Kuramochi boundary (denoted by ∂N) of N
is the set of Kuramochi boundary points.

For ξ ∈ ∂N , there exists a fundamental sequence {xj} in X0 such that
limj→∞ g̃(x, xj) exists for every x ∈ X. In this case, we set

g̃(x, ξ) = g̃ξ(x) := lim
j→∞

g̃(x, xj)

and call the sequence {xj} a determining sequence of ξ. The definition of g̃ξ(x)
does not depend on the choice of a determining sequence of ξ.

Let us put X̃ := X0 ∪ ∂N and introduce a metric d on X̃ by

(6.1) d(x1, x2) :=
∑

x∈X
α(x)

|g̃(x, x1)− g̃(x, x2)|
1 + |g̃(x, x1)− g̃(x, x2)|

for x1, x2 ∈ X̃, where α ∈ L+(X) is positive on X0 and α(a0) = 0 and α(X) < ∞.

By our definition, a sequence {xj} ⊂ X̃ converges to x ∈ X̃ in the sense of d if
and only if g̃(·, xj) → g̃(·, x) as j →∞ in the sense of the pointwise convergence.
The topology induced by this metric d on X0 coincides with the original discrete
topology.

Proposition 6.1. X̃ = X0 ∪ ∂N is a compact metric space with the metric d.

Proof. It suffices to notice that {g̃(·, xj)} contains a convergent subsequence for
any sequence {xj} tending to ∂N by Corollary 6.1.

Proposition 6.2. Let ξ ∈ ∂N . Then:
(1) g̃ξ = g(·, ξ) is harmonic on X0, g̃ξ(a0) = 0 and ∆g̃ξ(a0) = 1.
(2) g̃ξ is an HS0 function.

Proof. Let {xj} be a determining sequence of ξ ∈ ∂N . Then we have

∆g̃xj
= −εxj

+ εa0 .

By letting j →∞, we see that ∆g̃ξ = εa0 . This implies (1).

(2) Since g̃xj
is an SHS0 function, our assertion follows from Theorem 4.1.

As a direct consequence of the topology induced by the metric d, we have

Proposition 6.3. g̃(x, ξ) is a continuous function of ξ ∈ X for each x ∈ X0.

We prepare
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Lemma 6.2. Let a0 and a′0 be distinct two nodes and let g̃a and g̃′a be the re-
producing kernels of D(N ; a0) and D(N ; a′0) respectively with a ∈ X \ {a0, a

′
0}.

Then
(1) g̃a = g̃′a + g̃a′0 − g̃′a(a0).
(2) g̃′a = g̃a + g̃′a0

− g̃a(a
′
0).

Proof. By symmetry, we have only to show (1). Denote by ψa the right hand
side of (1). For any u ∈ D(N ; a0), we have u− u(a′0) ∈ D(N ; a′0) and

(ψa, u) = (g̃′a, u− u(a′0)) + (g̃a′0 , u)

= u(a)− u(a′0) + u(a′0) = u(a),

and hence ψa is a reproducing kernel of D(N ; a0). By the uniqueness of g̃a, we
conclude that ψa = g̃a.

Theorem 6.1. The definition of Kuramochi boundary points of N does not de-
pend on the choice of a0 in the sense that every equivalent class of sequences of
nodes near the boundary of N is the same.

Proof. Let a0 and a′0 be two fixed nodes and assume that {xj} is a fundamental
sequence converging to ξ with respect to a0. Let {Nn}(Nn = < Xn, Yn >) be an
exhaustion of N such that {a0, a

′
0} ⊂ X1. Denote by g̃a (resp. g̃′a) the Kuramochi

function of N with pole at a with respect to a0 (resp. a′0). By Lemma 6.2(2), we
have

g̃′xj
(x)− g̃′a0

(x) = g̃xj
(x)− g̃xj

(a′0) → g̃ξ(x)− g̃ξ(a
′
0)

as n → ∞ for each x ∈ X. Therefore {xj} is a fundamental sequence with
respect to a′0. Consequently two equivalent fundamental sequences with respect
to a0 are fundamental sequences with respect to a′0 and equivalent to each other.

Next we show the converse. Let {xj} and {x′j} be fundamental sequences
which determine distinct boundary points ξ and ξ′ with respect to a0. Assume
that {xj} and {x′j} determine the same boundary point ξ0 with respect to a′0.
Then by Lemma 6.2(1)

|g̃ξ(x)− g̃ξ′(x)| = lim
j→∞

|g̃xj
(x)− g̃x′j(x)|

= lim
j→∞

|g̃′xj
(x)− g′x′j(x)− g̃′xj

(a0) + g̃′x′j(a0)|
= |g̃′ξ0(x)− g̃′ξ0(x)− g̃′ξ0(a0) + g̃′ξ0(a0)| = 0

for all x ∈ X. Therefore g̃ξ(x) = g̃ξ′(x) for all x ∈ X, and hence ξ = ξ′. This is
a contradiction.

Several examples of Kuramochi boundaries were given in [7].
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7. Integral representation of HS0 and SHS0 functions

A measure on a compact Hausdorff space means a positive Radon measure on
it. We say that a sequence {µn} of measures on a compact Hausdorff space Ω
converges vaguely to a measure µ on Ω if

∫
fdµn →

∫
fdµ

as n →∞ for every real-valued continuous function f on Ω.
The following lemma is well-known (cf. [1]):

Lemma 7.1. Let {µn} be a sequence of measures on a compact Hausdorff space
Ω. If the set {µn(Ω)} of total masses is bounded, then there exists a subsequence
of {µn} which converges vaguely to some measure on Ω.

Results on measure theory which we use in this paper are found in [1].
Notice that ∂N may not be a countable set (cf. [7]). Therefore a measure on

X̃ can not be identified with a function on X̃ in general.
For a measure µ on X̃, the Kuramochi potential G̃µ of µ is defined by

G̃µ(x) :=
∫

g̃z(x)dµ(z)

if the integral is finite for all x ∈ X. Namely, we only consider the case where
G̃µ ∈ L(X).

First we have

Theorem 7.1. Every SHS0 function v is expressed as a Kuramochi potential of
a measure on X̃, and vice versa.

Proof. By Theorem 4.4(Riesz decomposition theorem), an SHS0 function v can
be written in the form: v = G̃µ+u, where µ(x) := −∆v(x) for x ∈ X0, µ(a0) = 0

and u is an HS0 function. By regarding µ as a measure on X̃, we have only to
show that every HS0 function can be expressed as a Kuramochi potential of a
measure on X̃. Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N and put
An := Xn − Xn−1. Since u and uAn are harmonic on Xn−1 \ {a0} and uAn = u
on An ∪ {a0}, we have uAn = u on Xn by the minimum principle. There exists
νn ∈ L+(X) such that uAn = G̃νn and ν(X \ An) = 0 by Theorem 4.3. Notice
that

νn(X̃) = νn(X) = ∆G̃νn(a0) = ∆u(a0) < ∞
for all n. We regard νn as a measure on X̃. Since the set of the total mass of νn

is bounded, we can extract a vaguely convergent subsequence of {νn} (cf. [1]).
Denote the subsequence {νn} again and let ν be the limit. By Lemma 7.1, we
see that ν({x}) = 0 for every x ∈ X0, so that ν is a measure on ∂N . We have
by Lemma 7.1

uAn(x) =
∑

ξ∈X̃
g̃ξ(x)νn(ξ) =

∫
g̃ξ(x)dνn(ξ) →

∫
g̃ξ(x)dν(ξ)

as n → ∞, since g̃ξ(x) is a continuous function of ξ for each x ∈ X0. Since

uAn = u on Xn, we obtain u = G̃ν.
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To prove the converse, let u = G̃ν be a Kuramochi potential of a measure ν
on ∂N , i.e., ν(X0) = 0. Since g̃ξ(a0) = 0 for all ξ ∈ X̃, we have

u(a0) =
∫

g̃ξ(a0)dν(ξ) = 0.

For x ∈ X0 and ξ ∈ ∂N , we have ∆g̃ξ(x) = 0, so that

∆u(x) =
∫

ξ∈∂N
∆g̃ξ(x)dν(ξ) = 0.

To prove that u is an HS0 function, it suffices to show that uA ≤ u for every
finite subset A of X0. We have by Theorem 2.4 and Lemma 5.1

uA(x) =
∑

z∈A
u(z)ωx

A(z)

=
∑

z∈A
ωx

A(z)
∫

ξ∈∂N
g̃ξ(z)dν(ξ)

=
∫ ∑

z∈A
g̃ξ(z)ωx

A(z)dν(ξ)

=
∫

(g̃ξ)A(x)dν(ξ) ≤
∫

g̃ξ(x)dν(ξ) = u(x). ¤

Corollary 7.1. If µ is a measure on X̃ such that Sµ ⊂ ∂N , then v := G̃µ is an
HS0 function.

Proof. It suffices to note that

∆v(x) =
∫

∆g̃ξ(x)dµ(ξ) = 0

for x ∈ X0, since g̃ξ is harmonic on X0.

Definition 7.1. For an SHS function v and an infinite subset A of X0, we put
vA := v∗A in the rest of this paper. In this sense, we put

(G̃Aµ)(x) :=
∫

(g̃z)A(x)dµ(z).

For an infinite subset A of X0, denote by Aa the closure of A in the space X̃.
Denote by Sµ the support of a measure µ on X̃.

As an extension of Theorem 4.3, we have

Theorem 7.2. Let v be an SHS function and let A be an infinite subset of X0.
Then there exists a measure µ on X̃ such that vA = G̃µ and Sµ ⊂ Aa.

Proof. Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N , and put An :=
A ∩ Xn. By Theorem 4.3 there exists νn ∈ L+(X) such that vAn = G̃νn and
Sνn ⊂ An. We have by Lemma 3.3

νn(X̃) = ∆G̃νn(a0) = ∆vAn(a0) ≤ ∆vA(a0) < ∞.

Namely, {νn(X̃)} is bounded. There exists a subsequence of {νn} which converges
vaguely to a measure. Denote by {νn} the subsequence again and let ν be the



76 A. MURAKAMI AND M. YAMASAKI

limit. Then Sν ⊂ Aa. Since g̃z(x) is a continuous function of z in X̃ for each
x ∈ X0,

vAn(x) = G̃νn(x) =
∫

g̃z(x)dνn(z) →
∫

g̃z(x)dν(z) = G̃µ(x)

as n →∞ for each x ∈ X0. By definition, {vAn} converges pointwise to vA, and
hence vA(x) = G̃ν(x).

Definition 7.2. We say that µ is an associated measure of vA if vA = G̃µ holds.

Remark 7.1. Let v be an SHS function and let µ be an associated measure of
vA. Then

µ(X̃) = ∆G̃µ(a0) = ∆vA(a0).

As a generalization of Lemma 3.1, we have

Theorem 7.3. Let µ be a measure on X̃. Then (G̃µ)A = G̃Aµ for every subset
A of X0.

Proof. Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N and put An :=
A ∩Xn. Then {(g̃z)An} converges increasingly to (g̃z)A as n → ∞. By Lemma
3.1 and Lebesgue’s dominated convergence theorem, we have

(G̃µ)A = lim
n→∞(G̃µ)An = lim

n→∞(G̃An)µ

= lim
n→∞

∫
(g̃z)An(x)dµ(z)

=
∫

(g̃z)A(x)dµ(z) = G̃Aµ. ¤

For a closed subset F of ∂N , we introduce the reduced function vF of an SHS
function v onto X̃ \ F .

Definition 7.3. For a closed subset F of ∂N , let us put

d(x, F ) := min{d(x, ξ); ξ ∈ F}.

Lemma 7.2. Let v be an SHS function and F be a closed subset of ∂N and put
F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. Then {vF(m)

} converges decreasingly to an
HS0 function. Denote the limit by vF and call it the reduced function of v to
X̃ \ F .

Proof. Since F(m+1) ⊂ F(m), we have

0 ≤ vF(m+1)
≤ vF(m)

by Theorem 5.1(3). Thus {vF(m)
} converges decreasingly to an SHS0 function by

Theorem 4.1. Since vF(m)
is harmonic on X0 \ F(m), its limit is harmonic on X0.
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Proposition 7.1. Let u and v be SHS functions and let E and F be closed
subsets of ∂N . Then:
(1) vF ≤ v on X.
(2) v∂N = v if v is an HS0 function.
(3) (u + v)F = uF + vF .
(4) If E ⊂ F , then vE ≤ vF .

Proof. (1) We have vF(m)
≤ v by Lemma 5.1, so that vF ≤ v.

(2) Let F = ∂N . Then X̃ \ F(m) is a finite subset of X0 and vF(m)
= v on

F(m). Since v − vF(m)
is harmonic on X0 \ F(m) and is equal to 0 on F(m) ∪ {a0},

we see by the maximum principle that vF(m)
= v on X0, and hence v∂N = v on X.

(3) It suffices to notice that (u + v)F(m)
= uF(m)

+ vF(m)
by Theorem 5.1(1).

(4) follows easily from Theorem 5.1(3).
Similarly to Theorem 7.2, we have

Theorem 7.4. Let v be an SHS function and let F be a closed subset of ∂N .
Then there exists a measure µ such that Sµ ⊂ F and

vF (x) =
∫

g̃ξ(x)dµ(ξ)

holds for every x ∈ X0.

Proof. Let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. By Theorem 7.2, there exists a

measure µm such that vF(m)
= G̃µm and Sµm ⊂ (F(m))

a. By Remark 7.1

µm(X̃) = ∆vF(m)
(a0) ≤ ∆vF(1)

(a0) < ∞,

so that {µm(X̃)} is bounded. There exists a vaguely convergent subsequence of
{µm}. Denote it again by {µm} and let µ be its limit. For each x ∈ X, we have
by Lemma 7.1

vF (x) = lim
m→∞ vF(m)

(x) = lim
m→∞ G̃µm(x) = G̃µ(x) ¤ .

Corollary 7.2. µ(X̃) = ∆G̃µ(a0) = ∆vF (a0).

Similarly to Theorem 7.3, we have

Theorem 7.5. Let µ be a measure on X̃ and let F be a closed subset of ∂N .
Then (G̃µ)F = G̃F µ.
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Proof. Let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. Then {(g̃z)F(m)
} converges

increasingly to (g̃z)F as m → ∞. By Theorem 7.3 and Lebesgue’s dominated
convergence theorem, we have

(G̃µ)F = lim
m→∞(G̃µ)F(m)

= lim
m→∞ G̃F(m)

µ

= lim
m→∞

∫
(g̃z)F(m)

(x)dµ(z)

=
∫

(g̃z)F (x)dµ(z) = G̃F µ. ¤

Example 7.1. Let N and a0 be the same as in Example 3.1 and let F = ∂N .
Let {km} be an increasing subsequence of {k} such that F(m) = {xk; k ≥ km}.
We have 1F(m)

(xk) = Rk/Rkm for k = 0, 1, 2, · · · , km − 1 and 1F(m)
(xk) = 1 for

k ≥ km. Letting m → ∞, we obtain 1F (xk) = Rk/R if R < ∞ and 1F = 0 if
R = ∞.

Since g̃ξ is an HS0 function and ∂N = {ξ}, we have (g̃ξ){ξ} = g̃ξ.

8. Classification of boundary points

Similarly to Theorem 5.2, we have

Theorem 8.1. Let v be a DSHS function, let F be a closed subset of ∂N and
let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. Then D(vF(m)

− vF ) → 0 as m →∞.

Proof. For m < n, we have F(n) ⊂ F(m) and

0 ≤ D(vF(n)
− vF(m)

) = D(vF(m)
)−D(vF(n)

),

by Corollary 5.3. It follows that {D(vF(n)
)} has a limits and that {vF(n)

} forms

a Cauchy sequence in D(N ; a0). Our assertion follows from the fact that {vF(n)
}

converges pointwise to vF .

Corollary 8.1. vF ∈ D(N ; a0) for a DSHS function v and a closed subset F of
∂N .

Theorem 8.2. Let v be a DSHS function and F be a closed subset of ∂N . Then
(vF )F = vF holds.

Proof. Let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m} and put un := vF(n)
− vF . For

m < n, un ∈ DF(m)
(un), since un ∈ D(N ; a0). We have D((un)F(m)

) ≤ D(un) → 0
as n → ∞ by Theorems 2.1 and 8.1. On the other hand, we have by Theorem
2.2

D((un)F(m)
) = D((vF(n)

)F(m)
− (vF )F(m)

) = D(vF(n)
− (vF )F(m)

).

Letting n →∞, wo obtain D(vF − (vF )F(m)
) = 0. Hence vF = (vF )F(m)

for all m,

which implies vF = (vF )F .
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Corollary 8.2. (1F )F = 1F .

In order to study the relation: (vF )F = vF for an SHS function v and a closed
subset F of ∂N , we prepare

Lemma 8.1. Let u be an HS function, let F be a closed subset of ∂N such that
1F = 0 and let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. Then

(8.1) (uF(m)
)A − (uF )A ≤ uF(m)

− uF

for every finite subset A of X0.

Proof. Let A be a finite subset of X0, let n be a large number such that n > m
and F(n)∩A = ∅ and let {Nk}(Nk =< Xk, Yk >) be an exhaustion of N . We put

B(k)
m = Bm := F(m) ∩ Xk and M := max{u(x); x ∈ A} and prove the following

inequality:

(8.2) (u
B

(k)
m

)A − (u
B

(k)
n

)A ≤ u
B

(m)
n
− u

B
(k)
n

+ M1F(n)∩Xk
.

For simplicity, we put

f := uBm − uBn , h := f − fA + M1Bn

and show that h ≥ 0 on X.
By Theorems 2.2 and 2.3, fA = (uBm)A − (uBn)A and

fA∪Bn = (uBm)A∪Bn − (uBn)A∪Bn ≤ uBm − uBn = f,

so that we have

hA∪Bn = fA∪Bn − (fA)A∪Bn + M(1Bn)A∪Bn

= fA∪Bn − fA + M1Bn

≤ f − fA + M1Bn = h.

By this inequality and Theorem 2.5, we have

h(x) ≥ hA∪Bn(x) ≥ β := min{h(z); z ∈ A ∪Bn}
for all x ∈ X0. Now we have only to show that β ≥ 0. For z ∈ A, h(z) =
M1Bn(z) ≥ 0. We consider the case where z ∈ Bn. By the relation f ≤ uBm ≤
u ≤ M on A, we have by Theorem 2.5

fA(x) ≤ max{f(z); z ∈ A} ≤ M

on X. Since f ≥ 0 by Theorem 5.1(3), we have for z ∈ Bn

h(z) ≥ −fA(z) + M ≥ 0,

and hence β ≥ 0 and (8.2) holds.
Letting k →∞ in (8.2), we obtain

(8.3) (uF(m)
)A − (uF(n)

)A ≤ uF(m)
− uF(n)

+ M1F(n)
.

Next letting n →∞ in (8.3), we have by Lemmas 2.1 and 7.2

(uF(m)
)A − (uF )A ≤ uF(m)

− uF + M1F = uF(m)
− uF ,
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since 1F = 0. This completes the proof of (8.1).

Theorem 8.3. Let v be an SHS function and let F be a closed subset of ∂N . If
1F = 0, then (vF )F = vF holds.

Proof. Since vF is an HS0 function by Lemma 7.2, (vF )F ≤ vF . We show
the converse inequality. By Theorem 4.4, v can be decomposed in the form:
v = G̃µ + u, where µ(x) = −∆v(x) on X0, µ(a0) = 0 and u is an HS function.
We have by Proposition 7.1(3) and Theorem 7.5,

vF = G̃F µ + uF , (vF )F =
∑

z∈X
((g̃z)F )F µ(z) + (uF )F .

Since g̃z is DSHS function for z ∈ X0, we have ((g̃z)F )F = (g̃z)F by Theorem 8.2.
Therefore it suffices to show that uF ≤ (uF )F . Let F(m) := {x ∈ X0; d(x, F ) ≤
1/m}. By Lemma 8.1, we have

(uF(m)
)A − (uF )A ≤ uF(m)

− uF

for every finite subset A of X0. Let {Nn}(Nn = < Xn, Yn >) be an exhaustion
of N and take A = B(k)

m := F(m) ∩Xk as in Lemma 8.1. Letting k →∞, we have

(uF(m)
)
B

(k)
m
→ (uF(m)

)F(m)
= uF(m)

by Theorem 5.1 and (uF )
B

(k)
m
→ (uF )F(m)

. Therefore we have (uF )F(m)
≥ uF . By

letting m →∞, we obtain (uF )F ≥ uF .

Definition 8.1. For each ξ ∈ ∂N , set

α(ξ) := ∆(g̃ξ){ξ}(a0).

Theorem 8.4. For ξ ∈ ∂N , α(ξ) = 1 or α(ξ) = 0.

Proof. For simplicity, we put g̃ := g̃ξ and F := {ξ}. Then g̃F = α(ξ)g̃ by
Theorem 7.4 and Corollary 7.2. If 1F = 0, we have by Theorem 8.3

g̃F = (g̃F )F = (α(ξ)g̃)F = α(ξ)2g̃,

so that α(ξ)(1− α(ξ)) = 0, i.e., α(ξ) = 1 or α(ξ) = 0.
If 1F > 0, then 1F = cg̃ with c > 0 by Theorem 7.4. By Corollary 8.2,we have

g̃F =
1

c
(1F )F =

1

c
1F = g̃.

Since g̃F = α(ξ)g̃, we conclude that α(ξ) = 1.

Corollary 8.3. According as α(ξ) = 0 or 1, (g̃ξ){ξ} = 0 or g̃ξ.
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Definition 8.2. We set

(∂N)0 := {ξ ∈ ∂N ; α(ξ) = 0},

(∂N)1 := {ξ ∈ ∂N ; α(ξ) = 1}.
We call an element of (∂N)1(resp. (∂N)0) a Kuramochi minimal (resp. non-
minimal) (boundary) point.

We prove

Theorem 8.5. (∂N)0 is an Fσ-set.

Proof. Let m ∈ Z+,m ≥ 1. Define δm as the set of all ξ ∈ ∂N with the following
property:

αB(ξ) := ∆(g̃ξ)B(a0) ≤ 1

2

for every infinite subset B of X0 such that Ba contains a neighborhood of ξ and

B ⊂ U(ξ, 1/m) := {z ∈ X̃; d(z, ξ) <
1

m
}.

First we show (∂N)0 = ∪∞m=1δm. Let ξ ∈ (∂N)0, let F := {ξ} and let A(k) :=
{x ∈ X0; d(x, ξ) ≤ 1/k} and put g̃ := g̃ξ. Then (g̃)F = limk→∞(g̃)A(k)

by Lemma

7.2. Since (g̃)F = 0 by Corollary 8.3, we have

lim
k→∞

αA(k)
(ξ) = lim

k→∞
∆(g̃)A(k)

(a0) = ∆(g̃)F (a0) = 0.

There exists k0 such that αA(k)
(ξ) ≤ 1/2 for all k ≥ k0. For any infinite subset

B of X0 such that ξ ∈ Ba and B ⊂ U(ξ, 1/k), we have B ⊂ A(k) and

αB(ξ) ≤ αA(k)
(ξ) ≤ 1/2

for k ≥ k0, so that ξ ∈ δk for k ≥ k0.
Conversely, if ξ ∈ δm, then α(ξ) ≤ αB(ξ) ≤ 1/2, where B = A(m+1) mentioned

in the definition of δm. Since α(ξ) = 0 or 1, we have α(ξ) = 0, so that ξ ∈ (∂N)0.
Therefore (∂N)0 is equal to the countable union of δm.

Next we prove that δm is closed. Let ξj ∈ δm and assume that ξj → ξ0

as j → ∞. Put g̃j := g̃ξj
and g̃0 := g̃ξ0 . Take B in such a way that Ba

contains a neighborhood of ξ0 and B ⊂ U(ξ0, 1/m). There is a j0 such that
ξj ∈ Ba for every j ≥ j0. Since ξj ∈ δm, αB(ξj) ≤ 1/2 for every j ≥ j0.
Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N and put Bn = B ∩ Xn.
Since (g̃0)Bn converges increasingly to (g̃0)B as n →∞ and these functions take
value 0 at a0, we see by Remark 1.1 that ∆(g̃0)Bn(a0) converges increasingly to
∆(g̃0)B(a0). Thus, for any ε > 0, there exists a large n such that

∆(g̃0)B(a0)− ε < ∆(g̃0)Bn(a0).
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Since ∆(g̃j)Bn(a0) ≤ ∆(g̃j)B(a0), we have

1

2
≥ lim sup

j→∞
αB(ξj) = lim sup

j→∞
∆(g̃j)B(a0)

≥ lim inf
j→∞

∆(g̃j)B(a0)

≥ lim
j→∞

∆(g̃j)Bn(a0) by Lemma 2.1

= ∆(g̃0)Bn(a0).

Therefore, ∆(g̃0)B(a0) < 1/2 + ε. Since ε is arbitrary, we obtain αB(ξ0) =
∆(g̃0)B(a0) ≤ 1/2, and hence ξ0 ∈ δm.

9. Canonical representation

Lemma 9.1. Let v be an SHS function and let Fn be a sequence of closed subsets
of ∂N such that Fn ⊂ Fn+1 and F = ∪∞n=1Fn is closed. If vFn = 0 for each n,
then vF = 0.

Proof. Let x0 ∈ X0 and take ε > 0. For each Fn, there exists a subset Bn of X0

such that x0 /∈ Bn, Ba
n is a closed neighborhood of Fn and vBn(x0) < ε/2n. Then

∪∞n=1B
a
n ⊃ ∪∞n=1Fn = F.

There exist B1, · · · , Bq such that Ba
1 ∪ · · · ∪ Ba

q is a closed neighborhood of F .
Let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m}. If m is large, F(m) ⊂ B := B1 ∪ · · · ∪ Bq.
Then we have by Theorem 5.1(2)

vF ≤ vF(m)
≤ vB ≤

q∑

n=1

vBn ,

so that vF (x0) ≤ ε. Since ε is arbitrary, vF (x0) = 0. Since vF is harmonic on X0

and attains its minimum at x0, we have vF = 0 by the minimum principle.

Lemma 9.2. Let v be an SHS function and assume that (vF )F = vF for every
closed subset F of (∂N)0. Then vF = 0 for every closed subset F of (∂N)0.

Proof. Let F be a closed subset of (∂N)0. Then F is equal to the countable
union of the sets {δm} defined in the proof of Theorem 8.5. Let E be a closed
subset of δm with diameter less than 1/(2m) and let B be a subset of X0 such that
Ba is a closed neighborhood of E and Ba is contained in 1/(2m)-neighborhood
of E. Then Ba is contained in the (1/m)-neighborhood of any point of E. Hence
αB(ξ) ≤ 1/2 for every ξ ∈ E ⊂ δm. On the other hand, vE = G̃µ by Theorem
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7.4, where µ is a measure such that µ(X̃ \ E) = 0. Since (vE)E = vE by our
assumption, we have by Proposition 7.1 and Remark 1.1

µ(E) = ∆G̃µ(a0) = ∆vE(a0) = ∆(vE)E(a0)

= ∆(G̃µ)E(a0) ≤ ∆(G̃µ)B(a0)

= ∆(G̃B)µ(a0) =
∫

∆(g̃ξ)B(a0)dµ(ξ)

=
∫

αB(ξ)dµ(ξ) ≤ 1

2
µ(E).

It follows that µ(E) = 0, i.e., µ = 0 and hence vE = 0. Since δm can be divided
into a finite number of closed sets with diameter less than 1/(2m), we see by
Lemma 9.1 that vδm = 0. Since F ∩ δm is closed and F = ∪∞m=1(F ∩ δm), we have
vF = 0 by Lemma 9.1.

Theorem 9.1. Let v be an SHS function. Then vF = 0 for any closed subset F
of (∂N)0.

Proof. By Corollary 8.2, (1F )F = 1F for every closed subset F of ∂N , so that
1F = 0 for every closed subset F of (∂N)0 by Lemma 9.2. On account of Theorem
8.3, we have (vF )F = vF , and hence vF = 0 by Lemma 9.2.

Theorem 9.2. Let v be an SHS function and let F be a closed subset of ∂N .
Then there exists a measure µ such that µ(X̃ \ (F ∩ (∂N)1) = 0 and

vF (x) =
∫

F∩(∂N)1
g̃ξ(x)dµ(ξ).

Proof. Let F(m) := {x ∈ X0; d(x, F ) ≤ 1/m} and let µm and µ be the same as
in the proof of Theorem 7.4. Then {µn} converges vaguely to µ, Sµ ⊂ F and

vF (x) =
∫

F
g̃ξ(x)dµ(ξ).

It suffices to show that µ((∂N)0) = 0.
Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N . By Theorem 4.3, there

exists µ(n)
m ∈ L+(X) such that S

µ
(n)
m
⊂ F n

m := F(m) ∩Xn and vF n
m

= G̃µ(n)
m . As in

the proof of Theorem 7.2, we may assume that {µ(n)
m } converges vaguely to µm

as n →∞.
Let ε > 0 be given and fix x0 ∈ X0. For δk defined in the proof of Theorem

8.5, we have vδk
= 0 by Theorem 9.1. There exists a closed neighborhood E of

δk in X̃ such that vB(x0) < ε with B := E ∩X0.
Define ν(n)

m by ν(n)
m = µ(n)

m on B and ν(n)
m = 0 on X \ B. We may assume

that {ν(n)
m } converges vaguely to a measure νm such that Sνm ⊂ (B ∩ F(m))

a as
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n →∞ and that {νm} converges vaguely to a measure ν such that Sν ⊂ Ba ∩ F
as m →∞. Since S

ν
(n)
m
⊂ B, we have by Theorem 3.2(1)

G̃ν(n)
m =

∑
z∈B

g̃zν
(n)
m (z) =

∑
z∈B

(g̃z)Bν(n)
m (z) = (G̃ν(n)

m )B

≤ (vF n
m
)B ≤ vB,

since G̃ν(n)
m ≤ G̃µ(n)

m ≤ v. By letting n →∞ and then m →∞, we obtain

(9.1) G̃ν ≤ vB on X0.

Now we proceed the proof of µ((∂N)0) = 0. By (9.1), we have
∫

δk

g̃ξ(x0)dν(ξ) ≤ G̃ν(x0) ≤ vB(x0) < ε.

Since ε is arbitrary and g̃ξ(x0) > 0 on δk, we see that ν(δk) = 0. Therefore

ν((∂N)0) = ν(
∞∑

k=1

δk) ≤
∞∑

k=1

ν(δk) = 0.

Finally we show that µ(δk) = 0 for each k.

For any ε > 0, there exists a continuous function f on X̃ such that 0 ≤ f ≤ 1
on X̃, f = 1 on δk, Sf ⊂ E and

|µ(δk)−
∫

fdµ| < ε, |ν(δk)−
∫

fdν| < ε.

Since µ(n)
m = ν(n)

m on B = E ∩X0, we have
∑

x∈X
f(x)µ(n)

m (x) =
∑

x∈X
f(x)ν(n)

m (x).

Letting n → ∞ and then m → ∞, we obtain
∫

fdµ =
∫

fdν. Therefore

|µ(δk) − ν(δk)| < ε. Since ε is arbitrary, we have µ(δk) = ν(δk) = 0. Hence
µ((∂N)0) = 0.

Corollary 9.1. Let u be an HS0 function and let µ be the associated measure of
u. Then

u(x) =
∫

(∂N)1
g̃ξ(x)dµ(ξ).

Proof. By Proposition 7.1 and Theorem 9.2, we have

u(x) = u∂N(x) =
∫

(∂N)1
g̃ξ(x)dµ(ξ). ¤

We call the measure µ in Corollary 9.1 a canonical measure of u and the
representation a canonical representation.

Theorem 9.3. Let v be an SHS function and F be a closed subset of ∂N .
(1) If E is a closed subset of ∂N and if F ⊂ E, then (vF )E = vF .
(2) If B is an infinite subset of X0 such that Ba is a closed neighborhood of F ,
then (vF )B = vF .
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Proof. (1) Let ξ ∈ F ∩ (∂N)1. By Corollary 8.3 and Proposition 7.1(1),(4),
we have

g̃ξ = (g̃ξ){ξ} ≤ (g̃ξ)E ≤ g̃ξ

and hence (g̃ξ)E = g̃ξ. By Theorem 9.2, vF = G̃µ with Sµ ⊂ F and µ((∂N)0) = 0.
By Theorem 7.5

(vF )E = (G̃µ)E = G̃Eµ =
∫

F∩(∂N)1
(g̃ξ)Edµ(ξ)

=
∫

F∩(∂N)1
g̃ξdµ(ξ) = G̃µ = vF .

(2) Since vF is an HS0 function, (vF )B ≤ vF . Let F(m) := {x ∈ X0; d(x, F ) ≤
1/m}. Then F(m) ⊂ B for large m and we have

vF = lim
m→∞ vF(m)

≤ vB.

In particular, we have (g̃ξ)F ≤ (g̃ξ)B. We have by Theorem 7.3 and the above
observation,

(vF )B = (G̃µ)B = G̃Bµ =
∫

(g̃ξ)Bdµ(ξ)

≥
∫

(g̃ξ)F dµ(ξ) = (G̃)F µ

= (G̃µ)F = (vF )F = vF .

Therefore (vF )B = vF .

10. Minimal functions

Definition 10.1. Let u be an HS0 function. We say that u is minimal if v = cu
whenever v and u− v are HS0 functions.

Lemma 10.1. Let u be a minimal function. If u is expressed as

u(x) =
∫

B
g̃z(x)dµ(z)

with a Borel subset B of ∂N and a measure µ, then µ is a point measure at some
ξ0 ∈ B with total mass c = ∆u(a0).

Proof. Since µ(B) > 0, there exists a closed subset F1 of B such that the
diameter of F1 is less than 1 and µ(F1) > 0. Let F2 be a closed subset of F1 with
diameter less than 1/2 such that µ(F2) > 0. In this way, we obtain a sequence
{Fj} of closed subsets of B such that µ(Fj) > 0, Fj ⊂ Fj−1 and the diameter of
Fj is less than 1/j. There exists a point ξ0 ∈ B such that ξ0 ∈ Fj for all j. Let

v :=
∫

Fj

g̃ξdµ(ξ).
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Then

u− v = u−
∫

Fj

g̃ξdµ(ξ) =
∫

B\Fj

g̃ξdµ(ξ),

so that v and u−v are HS0 functions by Corollary 7.1. Since u is minimal, there
exists cj > 0 such that u = cjv = G̃µj, where µj is the restriction of cjµ to Fj.
By Remark 7.1,

µj(X̃) = ∆u(a0) = c.

Let µ0 be the vague limit of a subsequence of {µj}. Then we see that µ0 is a

point measure at ξ0 and that u = G̃µ0 = cg̃ξ0 . Suppose that µ 6= µ0. Then there
exists a closed subset F of B such that ξ0 /∈ F and µ(F ) > 0. By the same
reasoning as above, we can find a point ξ1 ∈ B such that u = cg̃ξ1 . Therefore,
g̃ξ0 = g̃ξ1 and hence ξ0 = ξ1. This is a contradiction. Thus µ = µ0.

Theorem 10.1. (1) Let u be minimal and let F be a closed subset of ∂N . If
uF > 0 in X0 and u − uF is an HS0 function, then there exist a point ξ0 ∈
F ∩ (∂N)1 such that u(x) = cg̃ξ0(x) with c = ∆u(a0).
(2) Any minimal function is a constant multiple of g̃ξ for some ξ ∈ (∂N)1.
(3) g̃ξ is minimal if and only if ξ ∈ (∂N)1.

Proof. (1) Since uF and u − uF are HS0 functions by our assumption, the
minimality of u implies uF = c′u with a constant c′. The condition uF > 0
implies that c′ > 0. By Theorem 9.2 and Lemma 10.1, we have

u =
1

c′
uF =

1

c′

∫

F∩(∂N)1
g̃ξdµ(ξ) = cg̃ξ0

for some point ξ0 ∈ F ∩ (∂N)1.

(2) follows from Corollary 9.1 and Lemma 10.1.

(3) Let ξ ∈ (∂N)1 and suppose that v and v′ := g̃ξ − v are HS0 functions.
By Corollary 8.3, (g̃ξ)F = g̃ξ with F = {ξ}. We have

vF + v′F = (g̃ξ)F = g̃ξ = v + v′.

From vF ≤ v and v′F ≤ v′, it follows that vF = v and v′F = v′. By Theorem 7.4,
v = cg̃ξ, which implies that g̃ξ is minimal.

Conversely, assume that g̃ξ is minimal. By (2), there exist ξ0 ∈ (∂N)1 and a
constant c such that g̃ξ = cg̃ξ0 . Observing that

∆g̃ξ(a0) = ∆g̃ξ0(a0) = 1,

we see that c = 1, so that ξ = ξ0 ∈ (∂N)1.
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11. Uniqueness of canonical representation

For a finite subset A of X0 and ξ ∈ ∂N , there exists by Theorem 4.3 µξ,A ∈
L+(X) such that (g̃ξ)A = G̃µξ,A and µξ,A(z) = 0 on X \ A.

Lemma 11.1. For f ∈ L0(X) with f(a0) = 0, let

Φf (ξ) :=
∑

z∈X
f(z)µξ,A(z).

Then Φf (ξ) is continuous on ∂N .

Proof. Let ξ1, ξ2 ∈ ∂N . By Theorem 3.1(4) and Theorem 2.5, we have

|Φf (ξ1)− Φf (ξ2)| = |∑
z∈X

(−∑
a∈X

[∆f(a)]g̃z(a))(µξ1,A(z)− (µξ2,A(z))|
≤ ∑

a∈X
|∆f(a)||∑

z∈X
g̃z(a)(µξ1,A(z)− µξ2,A(z))|

=
∑

a∈X
|∆f(a)||(g̃ξ1)A(a)− (g̃ξ2)A(a)|

=
∑

a∈X
|∆f(a)||(g̃ξ1 − g̃ξ2)A(a)|

≤ max
a∈A

|g̃ξ1 − g̃ξ2|
∑

a∈X
|∆f(a)|.

By definition, d(ξ1, ξ2) → 0 if and only if |g̃ξ1(x)− g̃ξ2(x)| → 0 for each x ∈ X0.
Thus Φf (ξ) is continuous on ∂N .

Lemma 11.2. Let {Nn}(Nn = < Xn, Yn >) be an exhaustion of N and put

µ
(n)
ξ = µξ,Xn. If ξ ∈ (∂N)1, then {µ(n)

ξ } converges vaguely to the unit point
measure at ξ as n →∞.

Proof. Since G̃µ
(n)
ξ = (g̃ξ)Xn = g̃ξ on Xn, we see that G̃µ

(n)
ξ (x) → g̃ξ(x) as

n →∞ for each x ∈ X0. Noting that

µ
(n)
ξ (X) = ∆(g̃ξ)Xn(a0) = ∆g̃ξ(a0) = 1,

we see that there exists a subsequence of {µ(n)
ξ } which converges vaguely to a

measure µ0. Denote by {µ(n)
ξ } the subsequence again. Since g̃ξ(x) is a continuous

function of ξ on X̃, we have by Lemma 7.1 G̃µ
(n)
ξ (x) → G̃µ0(x) as n → ∞ for

each x ∈ X0. Thus g̃ξ = G̃µ0. By Lemma 10.1 and Theorem 10.1(3), there exists

a point ξ0 ∈ (∂N)1 such that G̃µ0 = g̃ξ0 , so that ξ = ξ0. Thus µ0 is the unit

point measure at ξ. Furthermore, for any subsequence of {µ(n)
ξ } which converges

vaguely to a measure ν, we see by the above argument that ν = µ0, and hence

we conclude that {µ(n)
ξ } converges vaguely to µ0.

Theorem 11.1. Let u be an HS0 function. If there exist measures µ and ν on
∂N such that µ((∂N)0) = ν((∂N)0) = 0 and u = G̃µ = G̃ν, then µ = ν. Namely,
the canonical representation of an HS0 function is unique.
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Proof. Let {µ(n)
ξ } be the same as in Lemma 11.2. For µ, we define a sequence

{µn} of functions in L+(X) by

µn(z) =
∫

µ
(n)
ξ (z)dµ(ξ)

for each z ∈ X0. This is possible because µ
(n)
ξ (z) = Φεz(ξ) is a continuous

function of ξ on ∂N for every z ∈ X0 by Lemma 11.1. Similarly, we define {νn}
for ν. We have by Theorem 7.3

G̃µn(x) =
∑

x∈X
g̃z(x)µn(z) =

∑
x∈X

g̃z(x)
∫

µ
(n)
ξ (z)dµ(ξ)

=
∫ ∑

x∈X
g̃z(x)µ

(n)
ξ (z)dµ(ξ) =

∫
G̃µ

(n)
ξ (x)dµ(ξ)

=
∫

(g̃ξ)Xndµ(ξ) = (G̃µ)Xn .

Similarly, G̃νn = (G̃ν)Xn , and hence G̃µn = G̃νn. Thus µn = νn by Lemma

3.2. Let f be a continuous function on X̃. By Lemma 11.2, fn(ξ) :=
∫

fdµ
(n)
ξ

converges to f(ξ) as n →∞. Observing that

µ
(n)
ξ (X) = ∆G̃µ

(n)
ξ (a0) = ∆(g̃ξ)Xn(a0) ≤ ∆g̃ξ(a0) = 1,

we have

|fn(ξ)| ≤ cµ
(n)
ξ (X) ≤ c with c := max{|f(z)|; z ∈ X̃} < ∞.

By Lebesgue’s dominated convergence theorem, we have

lim
n→∞

∫
fdµn = lim

n→∞

∫
(
∫

fdµ
(n)
ξ )dµ(ξ) = lim

n→∞

∫
fn(ξ)dµ(ξ) =

∫
fdµ.

Thus µn converges vaguely to µ. Similarly, νn converges vaguely to ν and hence
µ = ν.

By Theorem 9.2, we obtain

Corollary 11.1. Let v be an SHS function and let F be a closed subset of ∂N .
The canonical measure for vF is supported by F .
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