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Abstract. We generalize the concept of Lie triple algebra, introduced as
tangent algebra of geodesic homogeneous left Lie loop [19], to some algebraic
systems equipped with some more multilinear operations, under an idea based
on purely geometric point of view. That is, the operations of Lie triple al-
gebras defined by the parallel torsion and curvature tensors of the canonical
connection of homogeneous left Lie loops will be extended to ones defined by
some connection whose torsion is not assumed to be parallel. The new alge-
braic system thus obtained will be called Lie triple multi-algebra. We present
a method of constructing a Lie triple multi-algebra from double Lie algebras.

1. Introduction

The concept of Lie triple algebra has been introduced by Yamaguti [60] un-
der the name of general Lie triple system, related with the canonical connection
of reductive homogeneous space of Nomizu [51]. It is an algebraic system on a
vector space equipped with a bilinear multiplication and a trilinear multiplica-
tion, which contains both of the concepts of Lie algebra and Lie triple system as
special cases.

In 1975, the author has introduced the concept of homogeneous Lie loops
(cf. Kikkawa [19] as a non-associative generalization of the concept of Lie
groups, that is, a kind of differentiable algebraic binary systems on manifolds.
Then, he defined the tangent Lie triple algebra of the homogeneous Lie loop,
or of homogeneous left Lie loop (cf. Kikkawa [19], [38]) with the bilinear and
trilinear multiplications on the tangent space at the unit element, by the values of
the torsion tensor and curvature tensor of the canonical connection, respectively.
This is a generalization of the Lie algebras of Lie groups. In fact, any Lie group
is a homogeneous Lie loop with the (−)-connection as the canonical connection,
and the bracket operation of the Lie algebra is given by the value of the torsion
tensor of this connection. For differentiable homogeneous loops and tangent Lie
triple algebras, see also Hofmann-Strambach [10], [11] and Miheev-Sabinin
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[50]. On the same line, the theory of generalization of Lie groups and tangent
algebraic systems related with linear connections has been developed by Sagle
and others in [12], [55], [56] and [57].

In this paper, we generalize the concept of Lie triple algebra from the view-
point of algebraic systems whose multiplications are given by the values of torsion
and curvature tensors of some linear connection. To do this, in section 2, we re-
call some identities for the covariant differentiation of linear connections. Then,
in section 3, we introduce the new algebraic system called Lie triple multi-algebra
on any vector space which is a generalized concept of that of Lie triple algebras.

The concept of differentiable local loops was originated in 1936 by S. S.
Chern [7] as differentiable webs on manifolds. For the relations between loops
and webs, see e.g. Bol [5]. In 1964, the concept of geodesic local loops on
linearly connected manifolds was introduced by Kikkawa [13] and, indepen-
dently, by Sabinin [53] in 1972. See also Akivis [3], Miheev-Sabinin [50] and
Sabinin [54]. For locally reductive spaces, that is, linearly connected manifolds
whose torsion and curvature are parallel, the geodesic local loops are reduced
to homogeneous local Lie loops and their tangent algebras are reduced to Lie
triple algebras. In [19] - [46] the author has developed the extensive theory of
geodesic homogeneous (left) Lie loops and their tangent Lie triple algebras and
shown that it is a full generalization of the theory of Lie groups and Lie alge-
bras. The tangent algebraic system of analytic loops in general was considered by
Akivis [2], which is called Akivis Algebra. The related theory has been developed
in Akivis [1] - [3], Akivis-Shelekhov [4] and Hofmann-Strambach [10].
See also Hofmann-Strambach [11], Goldberg [9]. The concept of Akivis
algebras was generalized for analytic n-loops in Goldberg [8] and Smith [59].

On the other hand, in [37], the author has introduced the concept of pro-
jectivity of geodesic local loops, and found the method to get from a geodesic
homogeneous left Lie loops a new one, by means of changing of the canonical con-
nection to the other locally reductive connection. By this method, the theory of
projectivity has been developed in Kikkawa [37] - [45] and Sanami-Kikkawa
[58]. Especially, the structural theory of projectivity of simple Lie groups has
been investigated in [58], where the tangent Lie triple algebras of homogeneous
left Lie loops in projective relation with a simple Lie group G are determined by
projective double Lie algebras of the Lie algebra of G. In section 4, motivated
by this method, we give a method of constructing a Lie triple multi-algebra g
from two Lie algebras s and t on the same vector space.

The problem of finding algebraic properties of geodesic local loops on linearly
connected manifolds whose tangent algebras form Lie triple multi-algebras is still
open.

2. Covariant differentiation of linear connections

In this section, we recall some identities on covariant differentiation of linear
connections, that are familiar to differential geometers.
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Let M be a differentiable manifold of class C∞ with a linear connection ∇.
In what follows, we assume that all functions, vector fields and tensor fields are
of class C∞. We denote the torsion tensor field and the curvature tensor field of
∇ by S and R, respectively, which are given by the following formulas:

S(X,Y ) := [X,Y ]−∇XY + ∇Y X(2.1)

R(X,Y )Z := ∇[X,Y]Z −∇X∇Y Z + ∇Y ∇XZ,(2.2)

for any vector fields X,Y, Z on M . We denote here the Lie bracket of vector
fields by the big bracket [X,Y ] to distinguish from the usual bracket notation
used later for a multilinear algebraic operation.

For any tensor field K of type (1, p), the covariant derivative ∇K of K is a
tensor field of type (1, p + 1) given by the following equations:(cf. Kobayashi-
Nomizu [47] pp.124-125)

(∇K)(X1, X2, . . . , Xp; Y ) := ∇Y (K(X1, X2, . . . , Xp))

− K(∇Y X1, X2, . . . , Xp) − K(X1,∇Y X2, . . . , Xp)

− · · · − K(X1, X2, . . . ,∇Y Xp),

(2.3)

for any vector fields X1, X2, . . . , Xp and Y on M . A tensor field K on M is
said to be parallel if ∇K = 0 . Moreover, for any integer m, the m-th covariant
derivative ∇mK of any tensor field K is defined inductively to be a tensor field
of type (1, p + m) given by the equation

(∇mK)(X1, X2, . . . , Xp; Y1; Y2; . . . ; Ym)

:= (∇(∇m−1K))(X1, X2, . . . , Xp; Y1; Y2; . . . ; Ym−1; Ym).
(2.4)

In particular, for any vector fields Y1, Y2 , we set

(∇Y1K)(X1, X2, . . . , Xp) := (∇K)(X1, X2, . . . , Xp; Y1),

(∇2K)(; Y1; Y2)(X1, X2, . . . , Xp)

:= (∇2K)(X1, X2, . . . , Xp; Y1; Y2).

(2.5)

Then, we get tensor fields ∇Y1K = ∇K(; Y1) and (∇2K)(; Y1; Y2) of type (1, p),
which satisfy the following identity:

(∇2K)(; X; Y ) = ∇Y (∇XK) −∇∇Y XK.(2.6)

From this equation, we get the following ;

(∇2K)(; X; Y ) − (∇2K)(; Y ; X) = R(X,Y )K −∇S(X,Y )K(2.7)

(Ricci’s identity),

where

(R(X,Y )K)(X1, X2, . . . , Xp) := R(X,Y )(K(X1, X2, . . . , Xp))

− K(R(X,Y )X1, X2, . . . , Xp) − K(X1, R(X,Y )X2, . . . , Xp)

− · · · − K(X1, X2, . . . , R(X,Y )Xp).

(2.8)
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In the following we recall some identities for the torsion tensor field S and
the curvature tensor field R. Here, we denote by SX,Y,Z the cyclic sum with
respect to X,Y, Z :

SX,Y,Z{R(X,Y )Z + S(S(X,Y ), Z) − (∇XS)(Y, Z)} = 0(2.9)

(Bianchi’s 1st identity)

SX,Y,Z{R(S(X,Y ), Z)W − ((∇XR)(Y, Z)W )} = 0(2.10)

(Bianchi’s 2nd identity)

(∇2S)(; X; Y ) − (∇2S)(; Y ; X) = R(X,Y )S −∇S(X,Y )S(2.11)

(Ricci’s identity for S)

(∇2R)(; X; Y ) − (∇2R)(; Y ; X) = R(X,Y )R −∇S(X,Y )R(2.12)

(Ricci’s identity for R)

(∇2(∇S))(; X; Y ) − (∇2(∇S))(; Y ; X)

= R(X,Y )((∇S)) −∇S(X,Y )(∇S)
(2.13)

(Ricci’s identity for ∇S)

and so on.

3. Lie triple multi-algebras

In this section, we introduce a new concept of algebraic systems on vector
spaces which is induced from the relations of torsion and curvature tensors of
linearly connected manifolds mentioned in the last section.

Let M be a manifold with a linear connection ∇. If the torsion tensor S and
the curvature tensor R are parallel, we see that the real vector space X(M) of
all vector fields on M forms a Lie triple algebra (X(M); [X,Y ], 〈X,Y, Z〉), where
the bilinear and trilinear operations [X,Y ] and 〈X,Y, Z〉 are given by ;

[X,Y ] := S(X,Y ), 〈X,Y, Z〉 := R(X,Y )Z,

for any vector fields X,Y, Z. Notice that the bracket [X,Y ] does not mean the
Lie bracket of vector fields.

Assume that M is a geodesic homogeneous (left) Lie loop and ∇ is its canoni-
cal connection. Then, by restricting these operations to the tangent space Te(M)
at the unit element e of M, we get the tangent Lie triple algebra

(g := (Te(M); [X,Y ], 〈X,Y, Z〉)
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for any elements X = Xe, Y = Ye, Z = Ze ∈ Te(M) and

[X,Y ] := Se(Xe, Ye), 〈X,Y, Z〉 := Re(Xe, Ye)Ze,(3.1)

that is, it satisfies the following relations:

[X,Y ] = −[Y,X](3.2)

〈X,Y, Z〉 = −〈Y,X,Z〉(3.3)

SX,Y,Z{〈X,Y, Z〉 + [[X,Y ], Z]} = 0(3.4)

SX,Y,Z{〈[X,Y ], Z,W 〉} = 0(3.5)

〈U, V, [X,Y ]〉 = [〈U, V,X〉, Y ] + [X, 〈U, V, Y 〉](3.6)

〈U, V, 〈X,Y, Z〉〉 = 〈〈U, V,X〉, Y, Z〉
+ 〈X, 〈U, V, Y 〉, Z〉 + 〈X,Y, 〈U, V, Z〉〉(3.7)

for any X,Y, Z, U, V,W ∈ g. In fact, under the assumptions ∇S = 0 and ∇R = 0,
the formulae (3.4), (3.5), (3.6) and (3.7) are obtained from Bianchi’s 1st identity,
2nd identity, Ricci’s identity for S and for R in §2, respectively.

Remark. As is well-known, a Lie triple algebra g is reduced to a Lie algebra if
the ternary operation 〈X,Y, Z〉 vanishes identically, while it is reduced to a Lie
triple system if the binary operation [X,Y ] vanishes identically.

Now we introduce the new algebraic system, motivated by the direct corre-
spondence above between the axiom of Lie triple algebra ((3.2) - (3.7)) and the
identities of Bianchi and Ricci for the parallel torsion tensor S and the parallel
curvature tensor R:

Definition 3.1. A Lie triple multi-algebra g = (V; [X,Y ], [X,Y ; Z], 〈X,Y, Z〉)
is a vector space V over a field of characteristic 0 equipped with a family of
V-valued multilinear operations on V :

[X,Y ], [X,Y ; Z] and 〈X,Y, Z〉

satisfying the following relations:

[X,Y ] = −[Y,X](3.8)

[X,Y ; Z] = −[Y,X; Z](3.9)

〈X,Y, Z〉 = −〈Y,X,Z〉(3.10)

SX,Y,Z{〈X,Y, Z〉 + [[X,Y ], Z] − [X,Y ; Z]} = 0(3.11)

SX,Y,Z{〈[X,Y ], Z,W 〉} = 0(3.12)

〈U, V, [X,Y ]〉 = [〈U, V,X〉, Y ] + [X, 〈U, V, Y 〉]
− [X,Y ; [U, V ]]

(3.13)
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〈U, V, [X,Y ; Z]〉 = [〈U, V,X〉, Y ; Z] + [X, 〈U, V, Y 〉; Z]

+ [X,Y ; 〈U, V, Z〉](3.14)

〈U, V, 〈X,Y, Z〉〉 = 〈〈U, V,X〉, Y, Z〉 + 〈X, 〈U, V, Y 〉, Z〉
+ 〈X,Y, 〈U, V, Z〉〉(3.15)

Indeed, assume that a linear connection ∇ on a manifold M has the torsion
tensor S and the curvature tensor R satisfying ∇2S = 0 and ∇R = 0. Then
the infinite-dimensional vector space X(M) of all vector fields on M forms a Lie
triple multi-algebra, because (3.8) - (3.10) are evident by anti-symmetricity of S
and R, and Bianchi’s identities and Ricci’s identities for S,∇S and R assure the
formulas (3.11) - (3.15), respectively.

Remark. If the ternary operation [X,Y ; Z] of a Lie triple multi-algebra vanishes
identically, it is reduced to a Lie triple algebra. On the other hand, we can define
more general concepts of Lie triple multi-algebras of order k for the operation
[X,Y ] and of order m for the operation 〈X,Y, Z〉 as [X,Y ; Z1; Z2; . . . ; Zk] and
〈X,Y, Z; W1; W2; . . . ; Wm〉, respectively. In this paper, we do not consider them
because we want to investigate the first stage of generalization of the tangent Lie
triple multi-algebras of analytic loops .

In what follows, we will consider Lie triple multi-algebras (of order 1 for
[X,Y ]). Let g = (V; [X,Y ], [X,Y ; Z], 〈X,Y, Z〉) be a Lie triple multi-algebra on
a vector space V. We can define the concepts of Lie triple multi-subalgebras of
g and homomorphisms of Lie triple multi-algebras in a natural manner.

Definition 3.2. A Lie triple multi-subalgebra h of g given on a subspace H of
V will be called an ideal of g if it satisfies the following relations:

[g, h] ⊂ h(3.16)

[g, h; g] ⊂ h and [g, g; h] ⊂ h(3.17)

〈g, h, g〉 ⊂ h.(3.18)

A Lie triple multi-algebra g is said to be simple if it has no non-trivial ideal.

Remark. If the Lie triple multi-algebra g is reduced to a Lie triple algebra,
the ideals of g are reduced to those of the Lie triple algebra (general Lie triple
system) which was introduced by Yamaguti in [61].

From this definition, we can easily obtain the following results:

Proposition 3.1. Let h be a Lie triple multi-subalgebra of a Lie triple multi-
algebra g. Then, h is an ideal of g if and only if it is a kernel of a homomorphism
of g into some Lie triple multi-algebra.
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Proposition 3.2. Let h be an ideal of a Lie triple multi-algebra g. Then, the
quotient multi-algebra g/h is defined in a natural manner which forms a Lie
triple multi-algebra under the natural multilinear operations [X̃, Ỹ ] , [X̃, Ỹ ; Z̃]
and 〈X̃, Ỹ , Z̃〉 defined for X̃ = X + h, Ỹ = Y + h and Z̃ = Z + h.

4. Construction of Lie triple multi-algebras from double Lie
algebras

In this section, we construct a Lie triple multi-algebra

g = (V; [X,Y ], [X,Y ; Z], 〈X,Y, Z〉)

from two Lie algebras (double Lie algebras) given on the same vector space V.

Theorem 4.1. Let s = (V; S(X,Y )) and t = (V; T (X,Y )) be two Lie algebras
on the same vector space V whose bracket operations are given by S(X,Y ) and
T (X,Y ), respectively. Consider an algebraic system

g = (V; [X,Y ], [X,Y ; Z], 〈X,Y, Z〉)

on V given by

[X,Y ] := S(X,Y ) + 2T (X,Y )(4.1)

[X,Y ; Z] := T (S(X,Y ), Z) − S(T (X,Z), Y ) − S(X,T (Y, Z))(4.2)

〈X,Y, Z〉 := −T (S(X,Y ) + T (X,Y ), Z)(4.3)

for X,Y, Z ∈ V.
Assume that the two Lie algebras s and t satisfy the following:

T (W, [X,Y ; Z]) = 0(4.4)

[T (W,X), Y ; Z] + [X,T (W,Y ); Z] = 0(4.5)

[X,Y ; S(U, V )] = 0(4.6)

[X,Y ; T (U, V )] = 0(4.7)

for X,Y, Z, U, V,W ∈ V. Then g forms a Lie triple multi-algebra on V.

Proof. We show that the operations (4.1), (4.2) and (4.3) satisfy the relations
(3.8) - (3.15) under the assumptions (4.4) - (4.7). By definition of the operations,
the relations (3.8), (3.9) and (3.10) are clear. By a straightforward calculation
we get the relation (3.11). We see that the (3.12) is equivalent to

SX,Y,ZT (W, [X,Y ; Z]) = 0,
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which is valid because (4.4) is assumed. On the other hand, we can show that
the relation (3.13) is equivalent to the following condition:

[X,Y ; 2S(U, V ) + T (U, V )]) = 0,

which is assured by (4.6) and (4.7). We can also show that the relations (3.14) is
deduced by the assumptions (4.5), (4.6) and (4.7). Finally, we can see that the
relation (3.15) is equivalent to the following equation:

T (W, [X,Y ; S(U, V ) + T (U, V )]) = 0,

which is clear by (4.4).

Remark. As a special case of the results in the theorem above, we have already
known the case of projective double Lie algebras discussed in [58], where the
condition

T (U, S(X,Y )) = S(T (U,X), Y ) + S(X,T (U, Y ))(4.8)

is given. In this case, we have

[X,Y ; Z] = 0 for all X,Y, Z ∈ g,

and we see that the Lie triple multi-algebra g is reduced to a Lie triple algebra.

As for the Lie triple multi-algebras constructed by ideals of double Lie alge-
bras, we have the following

Theorem 4.2. Let g = (V; [X,Y ], [X,Y ; Z], 〈X,Y, Z〉) be a Lie triple multi-
algebra constructed by double Lie algebras s = (V; S(X,Y )) and t = (V; T (X,Y ))
on a vector space V. Assume that a subspace H of V induces ideals of both
of the Lie algebras s and t, that is, the restrictions sH = (H; SH(X,Y )) and
tH = (H; TH(X,Y )) to H are ideals of s and t, respectively. Then, the Lie triple
multi-algebra

h = (H; [X,Y ]H, [X,Y ; Z]H, 〈X,Y, Z〉H)

constructed by sH and tH on H is an ideal of g.

Proof. Since S and T satisfy the relations

S(V,H) ⊂ H and T (V,H) ⊂ H

the definitions (4.1), (4.2) and (4.3) of the operations of the constructed Lie triple
multi-algebra imply the following relations:

[g, h] ⊂ h, [g, h; g] ⊂ h, [g, g; h] ⊂ h and 〈g, h, g〉 ⊂ h

which show the assertion of the theorem.

From this theorem we have the following corollary:
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Corollary 4.3. If the Lie triple multi-algebra costructed by double Lie algebras
is simple, then the two Lie algebras have no ideals on any non-trivial underlying
subspace in common.
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