SOME REMARKS ON REPRESENTATIONS OF GENERALIZED INVERSE $*$-SEMIGROUPS

TERUO IMAOKA AND TAKAHIDE OGAWA

(Received December 25, 1996)

Abstract. The Munn representation of an inverse semigroup S, in which the semigroup is represented by isomorphisms between principal ideals of the semilattice $E(S)$, is not always faithful. By introducing a concept of a pre-semilattice, Reilly considered of enlarging the carrier set $E(S)$ of the Munn representation in order to obtain a faithful representation of S as an inverse subsemigroup of a structure resembling the Munn semigroup $T_{E(S)}$.

The purpose of this paper is to obtain a generalization of the Reilly’s results for generalized inverse $*$-semigroups.

1. Introduction

A semigroup S with a unary operation $*: S \to S$ is called a regular $*$-semigroup if it satisfies

(i) $(x^*)^* = x$,
(ii) $(xy)^* = y^*x^*$,
(iii) $xx^*x = x$.

Let S be a regular $*$-semigroup. An idempotent e in S is called a projection if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by $E(A)$ and $P(A)$, respectively.

Let S be a regular $*$-semigroup. It is called a locally inverse $*$-semigroup if, for any $e \in E(S)$, eSe is an inverse subsemigroup of S. If $E(S)$ is a normal band, then S is called a generalized inverse $*$-semigroup.

Let S and T be regular $*$-semigroups. A homomorphism $\phi: S \to T$ is called a $*$-homomorphism if $(a\phi)^* = a^*\phi$. A congruence σ on S is called a $*$-congruence if $(a\sigma)^* = a^*\sigma$. A $*$-congruence σ on S is said to be idempotent-separating if $\sigma \subseteq \mathcal{H}$, where \mathcal{H} is one of the Green’s relations. Denote the maximum idempotent-separating $*$-congruence on S by μ_S or simply by μ. If μ_S is the identity relation

1991 Mathematics Subject Classification. primary 20M30; secondary 20M19.

Key words and phrases. representation, regular $*$-semigroup, generalized inverse semigroup.
on S, S is called fundamental. The following results are well-known, and we use them frequently throughout this paper.

Result 1.1. [2] Let S be a regular \ast-semigroup. Then we have the following:

1. $E(S) = P(S)^2$;
2. for any $a \in S$ and $e \in P(S)$, $a^* ea \in P(S)$;
3. each L-class and each R-class have one and only one projection;
4. $\mu_S = \{(a, b) \in S \times S : a^* ea = b^* eb$ and $aea^* = eb^* e$ for all $e \in P(S)\}$.

For a mapping $\alpha : A \rightarrow B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C.

As a generalization of the Preston-Vagner representations, one of the authors gave two types of representations of locally [generalized] inverse \ast-semigroups in [4], [6] and [7]. In this paper, we follow [7]. A non-empty set X with a reflexive and symmetric relation σ is called an ι-set, and denoted by $(X; \sigma)$. If σ is transitive, that is, if σ is an equivalence relation on X, $(X; \sigma)$ is called a transitive ι-set.

Let $(X; \sigma)$ be an ι-set. A subset A of X is called an ι-single subset of $(X; \sigma)$ if it satisfies the following condition:

for any $x \in X$, there is at most one element $y \in A$ such that $(x, y) \in \sigma$.

We consider the empty set to be an ι-single subset. We remark that if $(X; \sigma)$ is a transitive ι-set, a subset A of X is an ι-single subset if and only if, for $x, y \in A$, $(x, y) \in \sigma$ implies $x = y$. A mapping α in I_X, the symmetric inverse semigroup on X, is called a partial one-to-one ι-mapping on $(X; \sigma)$ if $d(\alpha), r(\alpha)$ are both ι-single subsets of $(X; \sigma)$, where $d(\alpha)$ and $r(\alpha)$ are the domain and the range of α, respectively. Denote the set of all partial one-to-one ι-mappings of $(X; \sigma)$ by $LI_{(X; \sigma)}$.

For any ι-single subsets A and B of $(X; \sigma)$, define $\theta_{A,B}$ by

$$\theta_{A,B} = \{(a, b) \in A \times B : (a, b) \in \sigma\} = (A \times B) \cap \sigma.$$

Since a subset of an ι-single subset is also an ι-single subset, $\theta_{A,B} \in LI_{(X; \sigma)}$.

For any $\alpha, \beta \in LI_{(X; \sigma)}$, define $\theta_{\alpha|,\beta}$ by $\theta_{\alpha|,\beta} = \theta_{r(\alpha),d(\beta)}$, and let $\mathcal{M} = \{\theta_{\alpha|,\beta} : \alpha, \beta \in LI_{(X; \sigma)}\}$, an indexed set of one-to-one partial functions. Now, define a multiplication \circ and a unary operation \ast on $LI_{(X; \sigma)}$ as follows:

$$\alpha \circ \beta = \alpha\theta_{\alpha|,\beta} \beta \quad \text{and} \quad \alpha^* = \alpha^{-1},$$

where the multiplication of the right side of the first equality is that of I_X. Denote $(LI_{(X; \sigma)}, \circ, \ast)$ by $LI_{(X; \sigma)}(\mathcal{M})$ or simply by $LI_{(X; \sigma)}$. In this paper, we use $LI_{(X; \sigma)}$ rather than $LI_{(X; \sigma)}(\mathcal{M})$.
RESULT 1.2. [7] For any t-set $(X; \sigma)$, $\mathcal{LI}(X, \sigma)$, defined above, is a locally inverse $*$-semigroup. If $(X; \sigma)$ is a transitive t-set, then $\mathcal{LI}(X, \sigma)$ is a generalized inverse $*$-semigroup. In this case, we denote it by $\mathcal{GI}(X, \sigma)$ instead of $\mathcal{LI}(X, \sigma)$.

Moreover, if σ is the identity relation on X, then $\mathcal{LI}(X, \sigma)$ is the symmetric inverse semigroup \mathcal{I}_X on X.

We call $\mathcal{LI}(X, \sigma) [\mathcal{GI}(X, \sigma)]$ the t-symmetric locally [generalized] inverse $*$-semigroup on the t-set (the transitive t-set) $(X; \sigma)$ with the structure sandwich set \mathcal{M}.

Let S be a regular $*$-semigroup, and define a relation Ω on S as follows:

$$(x, y) \in \Omega \iff \text{there exists } e \in E(S) \text{ such that } x \rho_e = y,$$

where $\rho_a (a \in S)$ is the mapping of Sa^* onto Sa defined by $x \rho_a = xa$.

RESULT 1.3. [7] Let S be a locally inverse $*$-semigroup. For each $a \in S$, let

$$\rho_a : x \mapsto xa \quad (x \in d(\rho_a) = Sa^*).$$

Then a mapping $\rho : a \mapsto \rho_a$ is a $*$-monomorphism of S into $\mathcal{LI}(S, \Omega)(\mathcal{M})$.

For a partial groupoid X, if there exist a semilattice Y, a partition $\pi : X \sim \sum \{X_e : e \in Y\}$ of X and mappings $\varphi_{e,f} : X_e \rightarrow X_f (e \geq f \in Y)$ such that

1. for any $e \in Y$, $\varphi_{e,e} = 1_{X_e}$,
2. if $e \geq f \geq g$, then $\varphi_{e,f} \varphi_{f,g} = \varphi_{e,g}$,
3. for $x \in X_e$, $y \in X_f$, xy is defined in X if and only if $x \varphi_{e,e,f} = y \varphi_{f,e,f}$, and in this case $xy = x \varphi_{e,e,f}$,

then X is called a strong π-groupoid with mappings $\{\varphi_{e,f} : e, f \in Y, e \geq f\}$, and it is denoted by $X(\pi; Y; \{\varphi_{e,f}\})$ or simply by $X(\pi)$.

Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π-groupoid. A subset A of X is called a π-singleton subset of $X(\pi; Y; \{\varphi_{e,f}\})$, if there exists $e \in Y$ such that

$$|A \cap X_f| = \begin{cases} 1 & \text{if } f \in \langle e \rangle, \\ 0 & \text{otherwise}, \end{cases}$$

$$(A \cap X_f) \varphi_{f,g} = A \cap X_g \quad \text{for any } f, g \in \langle e \rangle \text{ such that } f \geq g,$$

where $\langle e \rangle$ is the principal ideal of Y generated by e. In this case, we sometimes denote the π-singleton subset A by $A(e)$. If $A(e)$ is a π-singleton subset, then $|A \cap X_f| = 1$ for any $f \in \langle e \rangle$. We denote the only one element of $A \cap X_f$ by a_f. We remark that, for any π-singleton subset $A(e)$, $A(e) = \{a_e \varphi_{e,f} : f \in \langle e \rangle\}$. Denote the set of all π-singleton subsets of $X(\pi; Y; \{\varphi_{e,f}\})$ by \mathcal{X}.

Two π-singleton subsets $A(e)$ and $B(f)$ are said to be π-isomorphic to each other, if there exists an isomorphism $\pi : \langle e \rangle \rightarrow \langle f \rangle$ as semilattices. In this case, the mapping $\alpha : A(e) \rightarrow B(f)$ defined by $a_e \alpha = b_g \pi (g \in \langle e \rangle)$ is called a π-isomorphism of $A(e)$ to $B(f)$. It is obvious that α is a bijection of $A(e)$ onto $B(f)$, and hence $\alpha \in \mathcal{I}_X$.
Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π-groupoid. Define an equivalence relation \mathcal{U} on X by

$$\mathcal{U} = \{(A(e), B(f)) \in X \times X : \langle e \rangle \cong \langle f \rangle \text{ (as semilattices)}\}.$$

For $(A(e), B(f)) \in \mathcal{U}$, let $T_{A(e), B(f)}$ be the set of all π-isomorphisms of $A(e)$ onto $B(f)$, and let

$$T_{X(\pi)} = \bigcup_{(A(e), B(f)) \in \mathcal{U}} T_{A(e), B(f)}.$$

For any $\alpha, \beta \in T_{X(\pi)}$, define a mapping $\theta_{\alpha, \beta}$ as follows:

$$d(\theta_{\alpha, \beta}) = \{a \in r(\alpha) : \text{there exist } e \in Y \text{ and } b \in d(\beta) \text{ such that } a, b \in X_e\},$$

$$r(\theta_{\alpha, \beta}) = \{b \in d(\beta) : \text{there exist } e \in Y \text{ and } a \in r(\alpha) \text{ such that } a, b \in X_e\},$$

$$a\theta_{\alpha, \beta} = b \text{ if } r(\alpha) \cap X_e = \{a\} \text{ and } d(\beta) \cap X_e = \{b\}.$$

Then $\theta_{\alpha, \beta} \in T_{X(\pi)}$. Let $\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha, \beta \in T_{X(\pi)}\}$, and define a multiplication \circ and a unary operation \ast on $T_{X(\pi)}$ by

$$\alpha \circ \beta = \alpha \theta_{\alpha, \beta} \beta,$$

$$\alpha^\ast = \alpha^{-1}.$$

Then $T_{X(\pi)}(\circ, \ast)$ is a regular \ast-semigroup. We denote it by $T_{X(\pi)}(\mathcal{M})$.

Result 1.4. [5] A regular \ast-semigroup $T_{X(\pi)}(\mathcal{M})$ is a generalized inverse \ast-semigroup whose set of projections is partially isomorphic to X.

Let S be a generalized inverse \ast-semigroup. Hereafter, denote $E(S)$ and $P(S)$ simply by E and P, respectively. Let $E \sim \sum\{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. Then $\pi : P \sim \sum\{P_i : i \in I\}$ is a partition of P. For any $i, j \in I (i \geq j)$, define a mapping $\varphi_{i,j} : P_i \rightarrow P_j$ by

$$e\varphi_{i,j} = e f e \text{ for some (any) } f \in P_j.$$

Then $P(\pi; I; \{\varphi_{i,j}\})$ is a strong π-groupoid.

Result 1.5. [5] Let S be a generalized inverse \ast-semigroup. For each $a \in S$, let

$$\tau_a : e \mapsto a^\ast e a \quad (e \in d(\tau_a) = P(Sa^\ast)).$$

Then a mapping $\tau : a \mapsto \tau_a$ is a \ast-homomorphism of S into $T_{P(\pi)}(\mathcal{M})$ such that $\tau \circ \tau^{-1} = \mu$.

A regular \ast-subsemigroup T of a regular \ast-semigroup S is said to be P-full if $P(T) = P(S)$.

IMAOKA AND OGAWA
Result 1.6. [5] A generalized inverse \(* \)-semigroup \(S \) is fundamental if and only if it is \(* \)-isomorphic to a \(P \)-full generalized inverse \(* \)-subsemigroup of \(T_X(\pi)(M) \) on a strong \(\pi \)-groupoid \(X(\pi; \{\varphi_i\}) \) such that \(P(T_X(\pi)(M)) \) is partially isomorphic to \(P(S) \).

In \(\S\ 2 \), by introducing the concept of partially ordered \(\varrho \)-set \((X(\leq); \{\phi_x\}) \), we construct a fundamental generalized inverse \(* \)-semigroup \(T_X(\leq)(M) \). Also, we shall see that \(T_X(\leq)(M) \) has similar properties with \(T_X(\pi)(M) \), where \(T_X(\pi)(M) \) has been given by T. Imaoka, I. Inata and H. Yokoyama [5]. And we shall show that two concepts, strong \(\pi \)-groupoids and partially ordered \(\varrho \)-sets, are equivalent.

In \(\S\ 3 \), we shall introduce the notion of \(\omega \)-set \((X(\ll); \sigma) \), and construct a generalized inverse \(* \)-semigroup \(T_{(X(\ll);\sigma)}(M) \). Furthermore, let \(S \) be a generalized inverse \(* \)-semigroup with the set of projections \(P \), we shall make two generalized inverse \(* \)-semigroups \(T_{P(\leq)}(M) \) and \(T_{(S(\leq);\Omega)}(M) \), where the former is obtained in \(\S\ 2 \), and the latter is constructed in this section. Then we shall show that these three semigroups make a commutative diagram.

In \(\S\ 3 \), we shall introduce the notion of \(\omega \)-set \((X(\ll); \sigma) \), and construct a generalized inverse \(* \)-semigroup \(T_{(X(\ll);\sigma)}(M) \). Furthermore, let \(S \) be a generalized inverse \(* \)-semigroup with the set of projections \(P \), we shall make two generalized inverse \(* \)-semigroups \(T_{P(\leq)}(M) \) and \(T_{(S(\leq);\Omega)}(M) \), where the former is obtained in \(\S\ 2 \), and the latter is constructed in this section. Then we shall show that these three semigroups make a commutative diagram.

2. Fundamental generalized inverse \(* \)-semigroups

2.1. \(T_X(\leq)(M) \). Let \(X(\leq) \) be a partially ordered set and, for each \(x \in X \), consider an order-preserving mapping \(\phi_x : X \to X \). If a relation \(\varrho = \{ (x, y) \in X \times X : y \phi_x = x, x \phi_y = y \} \) is an equivalence relation on \(X \) such that

(P1) \(x \leq y \implies \) for each \(y' \in y \varrho \), there exists \(x' \in x \varrho \) such that \(x' \leq y' \),

(P2) a relation \(\leq = \{ (x \varrho, y \varrho) \in X/\varrho \times X/\varrho : \) there exists \(x' \in x \varrho \) such that \(x' \leq y' \} \) is a partial order and \(X/\varrho(\leq) \) is a semilattice,

(P3) \(x_1 \leq y_1, x_2 \leq y_2 \) and \(x_1 \varrho \leq x_2 \varrho \implies x_1 \leq x_2 \),

then \((X(\leq); \{\phi_x\}) \) is called a partially ordered \(\varrho \)-set.

Let \((X(\leq); \{\phi_x\}) \) be a partially ordered \(\varrho \)-set. Define an equivalence relation \(\mathcal{U} \) on \(\mathcal{X} \) by

\[\mathcal{U} = \{ \langle a \rangle, \langle b \rangle \in \mathcal{X} \times \mathcal{X} : \langle a \rangle \simeq \langle b \rangle \text{ (order isomorphic)} \}, \]

where \(\mathcal{X} \) is the set of all principal ideals of \((X(\leq); \{\phi_x\}) \). For \(\langle a \rangle, \langle b \rangle \in \mathcal{U} \), let \(T_{(a), (b)} \) be the set of all (order) isomorphisms of \(\langle a \rangle \) onto \(\langle b \rangle \), and let

\[T_X(\leq) = \bigcup_{(a), (b) \in \mathcal{U}} T_{(a), (b)}. \]
For any \(\alpha, \beta \in T_X(\leq) \), define a mapping \(\theta_{\alpha, \beta} \) as follows:
\[
\theta_{\alpha, \beta} = \{(x, y) \in r(\alpha) \times d(\beta) : (x, y) \in \varrho\},
\]
where \(\varrho \) is the equivalence relation on \(X \) induced by \(\{\phi_x\} \), as defined above.

To show that \(\theta_{\alpha, \beta} \in T_X(\leq) \), assume that \(r(\alpha) = \langle a \rangle \), \(d(\beta) = \langle b \rangle \) and \(a\varrho \land b\varrho = c\varrho \) (\(c \in X \)). Since \(c\varrho \leq a\varrho \) and \(c\varrho \leq b\varrho \), there exist \(c_1, c_2 \in c\varrho \) such that \(c_1 \leq a \) and \(c_2 \leq b \). For any \(x \in d(\theta_{\alpha, \beta}) \), there exists \(y \in \langle b \rangle \) such that \((x, y) \in \varrho \). Since \(x \leq a, c_1 \leq a \) and \(x\varrho \leq c_1\varrho \), we have \(x \leq c_1 \) and so \(x \in \langle c_1 \rangle \). Thus \(d(\theta_{\alpha, \beta}) \subseteq \langle c_1 \rangle \).

Conversely, let \(x \) be any element of \(\langle c_1 \rangle \). Since \(x\varrho \leq c_1\varrho = c_2\varrho \), there exists \(y \in x\varrho \) such that \(y \leq c_2 \). Therefore, \(x \in \langle c_1 \rangle \subseteq \langle a \rangle \), \(y \in \langle c_2 \rangle \subseteq \langle b \rangle \) and \((x, y) \in \varrho \), and so \(x \in d(\theta_{\alpha, \beta}) \). Thus \(\langle c_1 \rangle \subseteq d(\theta_{\alpha, \beta}) \), and hence \(d(\theta_{\alpha, \beta}) = \langle c_1 \rangle \). Similarly, \(r(\theta_{\alpha, \beta}) = \langle c_2 \rangle \). Since it is obvious that \(\theta_{\alpha, \beta} \) is a bijection, we have \(\theta_{\alpha, \beta} \in T_X(\leq) \).

Let \(\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha, \beta \in T_X(\leq)\} \), and define a multiplication \(\circ \) and a unary operation \(\ast \) on \(T_X(\leq) \) by
\[
\alpha \circ \beta = \alpha \theta_{\alpha, \beta} \beta, \quad \alpha^\ast = \alpha^{-1}.
\]

Then it is clear that \(T_X(\leq)(\circ, \ast) \) is a regular \(\ast \)-subsemigroup of the \(\tau \)-symmetric generalized inverse \(\ast \)-semigroup \(GI_{X, \varrho}(\mathcal{M}) \). Hence it is a generalized inverse \(\ast \)-semigroup and denoted by \(T_X(\leq)(\mathcal{M}) \).

Let \(S \) be a generalized inverse \(\ast \)-semigroup and \(P = P(S) \). We consider \(P \) as a partially ordered set with respect to the natural order. Now, we have the following results.

Theorem 2.1. A regular \(\ast \)-semigroup \(T_X(\leq)(\mathcal{M}) \) is a generalized inverse \(\ast \)-semigroup whose set of projections is order isomorphic to \(X(\leq) \).

Proof. It remains to show that \(T_X(\leq)(\mathcal{M}) \) is order isomorphic to \(X(\leq) \). It is clear that \(P(T_X(\leq)(\mathcal{M})) = \{1_{(a)} : a \in X\} \). Define a mapping \(\psi : X \to P(T_X(\leq)(\mathcal{M})) \) by \(a\psi = 1_{(a)} \) for \(a \in X \). It is obvious that \(\psi \) is onto. For \(a, b \in X \),
\[
1_{(a)} = 1_{(b)} \quad \implies \quad \langle a \rangle = \langle b \rangle \\
\implies \quad a \leq b \quad \text{and} \quad b \leq a \\
\implies \quad a = b.
\]
Thus \(\psi \) is one-to-one, and hence it is bijection.

Suppose that \(a \leq b \). Then \(\langle a \rangle \subseteq \langle b \rangle \). Thus \(1_{(a)} \circ 1_{(b)} = \theta_{(a)\ast(\ast)} = \theta_{(a)\ast(a)} = 1_{(a)} \), and so \(1_{(a)} \leq 1_{(b)} \). Conversely, let \(1_{(a)} \leq 1_{(b)} \). Then \(1_{(a)} = 1_{(a)} \circ 1_{(b)} \), and so \(\langle a \rangle = r(1_{(a)}) = r(1_{(a)} \circ 1_{(b)}) \subseteq \langle b \rangle \). Thus \(a \leq b \), and hence \(\psi \) is an isomorphism. \(\square \)

Corollary 2.2. A partially ordered set \(X \) is order isomorphic to the set of projections of a generalized inverse \(\ast \)-semigroup if and only if it is a partially ordered \(\varrho \)-set.
2.2. Representations. Let \(S \) be a generalized inverse \(* \)-semigroup. Hereafter, denote \(E(S) \) and \(P(S) \) simply by \(E \) and \(P \), respectively. Let \(E \approx \sum_{i \in I} E_i \) be the structure decomposition of \(E \), and let \(P_i = P(E_i) \). For any \(e \in P \), define a mapping \(\phi_e : P \to P \) by
\[
\phi_e f = efe.
\]
Let \(\leq \) be the natural order on \(S \), that is,
\[
a \leq b \iff a = cb = bf \quad \text{for some} \quad e, f \in P.
\]
Since \(S \) is a generalized inverse \(* \)-semigroup, it follows from [3] that \(\leq \) is compatible. Let \(\leq \) be the restriction of \(\leq \) to \(P \). It is obvious that for \(e, f \in P \),
\[
e \leq f \iff e = fef.
\]
Lemma 2.3. The set \((P(\leq); \{\phi_e\}) \), defined above, is a partially ordered \(g \)-set.

Proof. Let \(e, f \) and \(g \) be any elements of \(P \) such that \(f \leq g \). Since \(\leq \) is compatible, \(\phi_e = efe \leq ege = g\phi_e \). Thus \(\phi_e \) is order preserving.

For \(e \in P_i \) and \(f \in P_j \),
\[
eg \iff f\phi_e = e \quad \text{and} \quad e\phi_f = f
\]
\[
eg \iff efe = e \quad \text{and} \quad fef = f
\]
\[
eg \iff e\mathcal{J}^E f
\]
\[
eg \iff i = j.
\]
Then \(g = \mathcal{J}^E|_P \), and so \(P/g = \{P_i : i \in I\} \). It is easily to see that \(g \) satisfies the conditions (P1), (P2) and (P3), and we have the lemma. \(\blacksquare \)

Now, we can consider the generalized inverse \(* \)-semigroup \(T_{P(\leq)}(\mathcal{M}) \), where \(\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha \text{ and } \beta \text{ are order isomorphisms among principal ideals of } (P(\leq); \{\phi_e\})\} \).

Lemma 2.4. For any \(a \in S \), \(P(\mathcal{J}a) \) (\(= P(\mathcal{J}a^*a) \)) is a principal ideal of \((P(\leq); \{\phi_e\}) \).

Proof. We shall show that \(P(\mathcal{J}a) = \langle a^*a \rangle \). Let \(xa \) be any element of \(P(\mathcal{J}a) \). Since \(xa \) is a projection, \(xa = (xa)^*xa \), and so \(xa \leq a^*a \). Thus \(P(\mathcal{J}a) \subseteq \langle a^*a \rangle \). Conversely, let \(e \in P \) such that \(e \leq a^*a \). Then \(a^*aea^*a \), and so \(e \in P(\mathcal{J}a) \). Therefore, we have \(P(\mathcal{J}a) = \langle a^*a \rangle \). \(\blacksquare \)

For any \(a \in S \), define a mapping \(\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle \) by
\[
\tau_a \mapsto a^*ea.
\]
It follows from [5] that \(\tau_a \in T_{S(\leq)} \) and \(\tau_a^* = \tau_a^* \). Moreover, for any \(a, b \in S \), \(\theta_{\tau_a, \tau_b} = \tau_{aabb} \). And we have the following theorems.

Theorem 2.5. Let \(S \) be a generalized inverse \(* \)-semigroup such that \(E(S) = E \) and \(P(S) = P \). Let \(E \approx \sum_{i \in I} E_i \) be the structure decomposition of \(E \) and \(P_i = P(E_i) \). Denote the restriction of the natural order on \(S \) to \(P \) by \(\leq \). For any \(e \in P \), define a mapping \(\phi_e : P \to P \) by \(\phi_e = efe \). Then \((P(\leq); \{\phi_e\}) \) is a partially ordered \(g \)-set and \(T_{P(\leq)}(\mathcal{M}) \) is a generalized inverse \(* \)-semigroup.
Moreover, for any \(a \in S\), define a mapping \(\tau_a : \langle aa^* \rangle \to \langle a^*a \rangle\) by \(e\tau_a = a^*ea\). Then a mapping \(\tau : S \to T_{P(\preceq)}(M) (a \mapsto \tau_a)\) is a \(*\)-homomorphism and the kernel of \(\tau\) is the maximum idempotent-separating \(*\)-congruence on \(S\).

Theorem 2.6. A generalized inverse \(*\)-semigroup \(S\) is fundamental if and only if it is \(*\)-isomorphic to a \(P\)-full generalized inverse \(*\)-subsemigroup of \(T_{X(\preceq)}(M)\) on a partially ordered \(\rho\)-set \((X(\preceq); \{\phi_x\})\) such that \(P(T_{X(\preceq)}(M))\) is order isomorphic to \(P(S)\).

Denote the sets of all partially ordered \(\rho\)-sets and the set of all strong \(\pi\)-groupoids by \(P\) and \(S\), respectively.

Remark 2.7. Let \((X(\preceq); \{\phi_x\})\) be any element of \(P\). For any \(x \rho, y \rho \in X/\rho (x \rho \geq y \rho)\), define a mapping \(\overline{\varphi}_{xy} : X/\rho \to X/\rho\) by

\[
x' \overline{\varphi}_{xy} = y', \text{ where } y' \in y \rho \text{ such that } y' \preceq x'.
\]

Moreover, we define a partial product on \(X\) as follows:

\[
xy = \begin{cases}
 x \overline{\varphi}_{xy}(x \rho)(y \rho) & \text{if } x \overline{\varphi}_{xy}(x \rho)(y \rho) = y \overline{\varphi}_{xy}(x \rho)(y \rho) \\
 \text{undefined} & \text{otherwise.}
\end{cases}
\]

Then \((X(\preceq); \{\phi_x\})\) is a \(\pi\)-groupoid, where \(\pi_{\rho}\) is the partition of \(X\) induced by \(\rho\).

Conversely, let \((X(\preceq); \{\varphi_{e,f}\})\) be any element of \(S\). For any \(x \in X\), define a mapping \(\tilde{\phi}_x : X \to X\) by

\[
y \tilde{\phi}_x = x \varphi_{e,ef},
\]

where \(x \in X_e\) and \(y \in X_f\). If we define \(\triangleright = \{(x, y) \in X \times X : x \varphi_y = x\}\), then \(X(\preceq); \{\varphi_{e,f}\})\) is a partially ordered \(\rho\)-set.

Hence the mappings \(\lambda, \mu\) from \(P\) to \(S\) and from \(S\) to \(P\), respectively, are well-defined. Moreover \(\lambda \mu = 1_S\), and for any \((X(\preceq); \{\phi_x\}) \in P\), if \((X(\preceq); \{\phi_x\})\lambda \mu = (X(\preceq); \{\tilde{\phi}_x\})\) then \(\preceq = \triangleright\).

By the above argument, for any \((X(\preceq); \{\phi_x\})\) in \(P\), without loss of generality, we can consider \((X(\preceq); \{\phi_x\})\) as a member of \(P\lambda \mu\).

Now, let \((X(\preceq); \{\varphi_{e,f}\})\) be any element of \(S\). If \((X(\preceq); \{\varphi_{e,f}\})\mu = (X(\preceq); \{\phi_x\})\), then we can construct two generalized inverse \(*\)-semigroups \(T_{X(\preceq)}(M)\) and \(T_{X(\preceq)}(M)\). In this case, these two generalized inverse \(*\)-semigroups are \(*\)-isomorphic.

3. Extensions of \(T_{X(\preceq)}(M)\)

3.1. \(T_{X(\preceq);\rho}(M)\)

By a **pre-order** on a set \(X\) we shall mean a reflexive and transitive relation. Let \((X(\preceq); \{\phi_x\})\) be a pre-ordered set and let \(\nu = \{(a, b) \in X \times X : a \preceq b\}\). Then \(\nu\) is an equivalence relation on \(X\) and \(X/\nu\) is a partially ordered set with respect to the following induced relation.
Now, we define a mapping P. Clearly, ν is the smallest equivalence relation on X for which (C1) defines a partial order on X/ν. We call ν the minimum partial order congruence (mpo-congruence) on X from \preceq.

A subset A of X is an ideal of X provided that $x \preceq y$ and $y \in A$ implies $x \in A$. For $a \in X$, we call $\{x \in X : x \preceq a\}$ the principal ideal generated by a and denote it by $\langle a \rangle$.

A bijection α of one pre-ordered set X onto another Y will be called an isomorphism provided that, for $a, b \in X$, $a \preceq b$ if and only if $a \alpha \preceq b \alpha$. In particular, if ν_X and ν_Y denote the respective mpo-congruences then $(a, b) \in \nu_X$ if and only if $(a \alpha, b \alpha) \in \nu_Y$.

Let $X(\preceq)$ be a pre-ordered set and ν the mpo-congruence from \preceq. Then X is a partially pre-ordered ϱ-set if and only if X/ν is a partially ordered ϱ-set with respect to the naturally induced order \preceq from \preceq.

Let $X(\preceq)$ be a partially pre-ordered ϱ-set and σ an equivalence relation on X such that

- (O1) for any x in X, $\langle x \rangle$ is an ι-single subset with respect to σ.
- (O2) for x, y in X, if $(x, y) \in \sigma$ then $(x \varrho, y \varrho) \in \varrho$.
- (O3) for x, y, z in X, if $(x \varrho \varrho, y \varrho \varrho) = (z \varrho \varrho, z \varrho \varrho)$, $z_1 \nu \leq x \nu$ and $z_2 \nu \leq y \nu$ if and only if $\nu, \varrho \varrho \in (z \nu \varrho)$, then for any $a \in \langle z_i \rangle$, there exists $b \in \langle z_j \rangle$ such that $(a, b) \in \sigma$, where $1 \leq i, j \leq 2$.

Then $(X(\preceq); \sigma)$ is called an ω-set.

Let $(X(\preceq); \sigma)$ be an ω-set and let $T_{X(\preceq); \sigma}$ denote the set of all isomorphisms from a principal ideal onto another one.

For any $\alpha, \beta \in T_{X(\preceq); \sigma}$, define a mapping $\theta_{\alpha, \beta}$ as follows:

$$\theta_{\alpha, \beta} = \{(a, b) \in r(\alpha) \times d(\beta) : (a, b) \in \sigma\}.$$

Then $\theta_{\alpha, \beta} \in T_{X(\preceq); \sigma}$. Let $\mathcal{M} = \{\theta_{\alpha, \beta} : \alpha, \beta \in T_{X(\preceq); \sigma}\}$, and denote a multiplication \circ and a unary operation $*$ on $T_{X(\preceq); \sigma}$ by

$$\alpha \circ \beta = \alpha \theta_{\alpha, \beta} \beta,$$

$$\alpha^* = \alpha^{-1}.$$

Clearly, $\alpha \circ \beta$ is an isomorphism from $\langle z_1 \alpha^{-1} \rangle$ onto $\langle z_2 \beta \rangle$. It is obvious that $T_{X(\preceq); \sigma}(\circ, *)$ is a regular \ast-semigroup. Hence it is a generalized inverse \ast-semigroup and denoted by $T_{X(\preceq); \sigma}(\mathcal{M})$.

Theorem 3.1. A regular \ast-semigroup $T_{X(\preceq); \sigma}(\mathcal{M})$ is a generalized inverse \ast-subsemi-group of $\mathcal{G}\mathcal{I}_{X; \sigma}(\mathcal{M})$ whose set of projections is order isomorphic to X/ν.

Proof. Clearly, $T_{X(\preceq); \sigma}(\mathcal{M})$ is a generalized inverse \ast-semigroup of $\mathcal{G}\mathcal{I}_{X; \sigma}(\mathcal{M})$. It remains to show that $P(T_{X(\preceq); \sigma}(\mathcal{M}))$ is order isomorphic to X/ν. Hereafter, denote $P(T_{X(\preceq); \sigma}(\mathcal{M}))$ simply by P. It is easy to see that $P = \{1_{\langle x \rangle} : x \in X\}$.

Now, we define a mapping ψ of P to X/ν as follows: for any $1_{\langle x \rangle} \in P$,

$$av \leq b \nu \text{ if and only if } a \preceq b.$$

We call \preceq the naturally induced order on X/ν from \preceq. Clearly, ν is the smallest equivalence relation on X for which (C1) defines a partial order on X/ν. We call ν the minimum partial order congruence (mpo-congruence) on X from \preceq.
\[1_{(x)} \psi = x \nu\]

Let \(1_{(x)}, 1_{(y)}\) be elements of \(P\), then
\[
1_{(x)} = 1_{(y)} \iff \langle x \rangle = \langle y \rangle \\
\iff x \in \langle y \rangle \text{ and } y \in \langle x \rangle \\
\iff x \preceq y \text{ and } y \preceq x \\
\iff x \nu = y \nu,
\]
thus \(\psi\) is well-defined and one-to-one, and we can easily see that it is a bijection. For \(x, y \in X\),
\[
1_{(x)} \leq 1_{(y)} \iff \langle x \rangle = \langle x \rangle \circ \langle y \rangle \\
\iff \langle x \rangle \subseteq \langle y \rangle \\
\iff x \preceq y \\
\iff x \nu \leq y \nu.
\]

Then \(\psi\) is an order isomorphism. \(\square\)

Remark 3.2. In \(T_{(X; \preceq; \sigma)}(M)\), if \(\preceq = \triangleq \) and \(\sigma = \emptyset\) then \(T_{(X; \preceq; \sigma)}(M) = T_{(X; \preceq)}(M)\).

Let \((X(\preceq); \sigma)\) be an \(\omega\)-set and let \(Y = X/\nu\), where \(\nu\) is the mpo-congruence from \(\preceq\). For any element \(\alpha\) in \(T_{(X(\preceq); \sigma)}\), assume that \(d(\alpha) = \langle a \rangle\). Then we can define a new mapping \(\alpha' \in T_{Y(\preceq)}\) as follows:
\[
d(\alpha') = \{x \nu : x \in d(\alpha)\}, \\
(x \nu)\alpha' = (x \alpha)\nu.
\]
Since \(\alpha\) is an isomorphism, \(\alpha'\) is a bijection of \(\langle a \nu \rangle\) onto \(\langle (a \alpha)\nu \rangle\). For \(x \nu, y \nu \in \langle a \nu \rangle\), we have
\[
x \nu = y \nu \iff x \preceq y \\
\iff x \alpha \preceq y \alpha \\
\iff (x \alpha) \nu \leq (y \alpha) \nu \\
\iff (x \nu) \alpha' \leq (y \nu) \alpha'.
\]
Then \(\alpha' \in T_{Y(\preceq)}\).

Proposition 3.3. The mapping \(\xi : \alpha \mapsto \alpha'\) of \(T_{(X(\preceq); \sigma)}(M)\) into \(T_{Y(\preceq)}(M)\) is a \(\ast\)-homomorphism of \(T_{(X(\preceq); \sigma)}(M)\) onto a \(\mathcal{P}\)-full generalized inverse \(\ast\)-subsemigroup of \(T_{Y(\preceq)}(M)\) such that \(\xi \circ \xi^{-1} = \mu\), where \(\mu\) is the maximum idempotent separating \(\ast\)-congruence on \(T_{(X(\preceq); \sigma)}(M)\).

Proof. First we shall show that \(\xi\) is a \(\ast\)-homomorphism. It is obvious that \((\alpha^{-1})' = (\alpha')^{-1}\) for any \(\alpha \in T_{(X(\preceq); \sigma)}(M)\). Let \(\alpha, \beta \in T_{(X(\preceq); \sigma)}(M)\) such that \(r(\alpha) = \langle x \rangle\) and \(d(\beta) = \langle y \rangle\). There exist \(z_1 \nu, z_2 \nu \in (x \nu) \emptyset \land (y \nu) \emptyset\) such that \(z_1 \nu \leq x \nu\) and \(z_2 \nu \leq y \nu\). Then \(d(\theta_{\alpha, \beta}) = \langle z_1 \rangle\) and \(r(\theta_{\alpha, \beta}) = \langle z_2 \rangle\). Thus \(d(\alpha \circ \beta) = \langle z_1 \alpha^{-1} \rangle\) and so \(d((\alpha \circ \beta)') = \langle (z_1 \alpha^{-1}) \nu \rangle\). On the other hand, Since \(r(\alpha') = \langle x \nu \rangle\) and \(d(\beta') = \langle y \nu \rangle\), we have
\[
d(\alpha' \circ \beta') = d(\alpha' \theta_{\alpha', \beta'} \beta') = (z_1 \nu) (\alpha')^{-1} = \langle (z_1 \alpha^{-1}) \nu \rangle.
\]
Then \(d((\alpha \circ \beta)\xi) = d((\alpha\xi) \circ (\beta\xi)) \).

To show that \(\xi \) is a \(*\)-homomorphism, it is sufficient to show that \(\theta_{\alpha',\beta'} = (\theta_{\alpha,\beta})' \). It is clear that \(d(\theta_{\alpha',\beta'}) = d((\theta_{\alpha,\beta})') = \langle z_1 \nu \rangle \). For any \(av \in \langle z_1 \nu \rangle \), set \(av(\theta_{\alpha,\beta})' = (a\theta_{\alpha,\beta})'v = bv \) and \(av\theta_{\alpha',\beta'} = cv \). Since \((a,b) \in \sigma \), \((av,bv) \in \mathcal{P} \). On the other hand, \((av,cv) \in \mathcal{Q} \). Since \(\langle z_1 \nu \rangle \) is an \(\nu \)-set, \(bv = cv \), and we have \(\theta_{\alpha',\beta'} = (\theta_{\alpha,\beta})' \).

It is clear that \((T(\langle \xi \rangle;\sigma)(\mathcal{M})) \xi \) is \(\mathcal{P} \)-full and fundamental. To show that \(\xi \circ \xi^{-1} = \mu \), it is sufficient to prove \(\xi \) separates projections. For \(1_{(x)}, 1_{(y)} \in P(T(\langle \xi \rangle;\sigma)(\mathcal{M})) \),

\[
1_{(x)}\xi = 1_{(y)}\xi \implies 1_{(xv)} = 1_{(yv)} \implies xv \in \langle yv \rangle \text{ and } yv \in \langle xv \rangle \implies xv \leq yv \text{ and } yv \leq xv \implies x \preceq y \text{ and } y \preceq x \implies \langle x \rangle \subseteq \langle y \rangle \text{ and } \langle y \rangle \subseteq \langle x \rangle \implies 1_{(x)} = 1_{(y)}.
\]

Thus we have the proposition. \(\square \)

Hereafter, we shall refer to \(\xi \) as the natural projection of \(T(\langle \xi \rangle;\sigma)(\mathcal{M}) \) to \(T_{(\subseteq)}(\mathcal{M}) \).

3.2. Inflated representations

Let \(S \) be a generalized inverse \(*\)-semigroup. Hereafter, denote \(E(S) \) and \(P(S) \) simply by \(E \) and \(P \), respectively. Define a relation \(\preceq \) on \(S \) by:

\[
(3.2) \quad a \preceq b \text{ if and only if } a^*a \leq b^*b,
\]

for \(a, b \in S \). Then clearly \(\preceq \) is a pre-order on \(S \) for which the mpo-congruence from \(\preceq \) is \(\nu = \mathcal{L} \). Hence \(S/\mathcal{L} = S/\nu \), under the naturally induced order \(\leq \) from \(\preceq \), is just the set of \(\mathcal{L} \)-classes of \(S \) under the usual partial ordering of the \(\mathcal{L} \)-classes of a generalized inverse \(*\)-semigroup and so is order isomorphic to the partially ordered \(\nu \)-set \(P \) of \(S \). Hence \(S \) is a partially pre-ordered \(\nu \)-set under \(\preceq \). Then \(\varrho = J^E|_\nu \) and hence \((av)\varrho(bv) \iff a^*aJ^Eb^*b \). Hereafter, for any \(a \in S \), we think \(av = L_{a^*a} \) as \(a^*a \).

For any \(a \in S \), define a mapping \(\rho_a : Sa^* \to Sa \) as follows:

\[
d(\rho_a) = Sa^* (= Saa^*), \quad x\rho_a = xa.
\]

Let \(\rho : S \to \mathcal{GI}(S;\Omega)(\mathcal{M}) \) by \(a\rho = \rho_a \), where the relation \(\Omega \) defined by: for \(x, y \in S \),

\[
(3.3) \quad (x, y) \in \Omega \iff x\rho_e = y \text{ for some } e \in E.
\]

Since \(S \) is a regular \(*\)-semigroup, the representation \(\rho \) is faithful. Moreover, it follows from \cite[Lemma 3.3]{6} that it is a \(*\)-monomorphism.

Lemma 3.4. The set \((S(\preceq);\Omega) \), defined above, is an \(\omega \)-set.
Proof. Let a be any element of S. Then
\[
 x \in Sa \iff x^* x = a^* a x a \leq a^* a \\
 \iff x \leq a \\
 \iff a \in \langle a \rangle.
\]

Thus we have $Sa = \langle a \rangle$. By Lemma 3.2 [7], $\langle a \rangle$ is an ι-single subset.

Next, let (a, b) be any element of Ω. It follows from Lemma 3.1 [7] that $b = ab^* b$ and $a^* a R \mathcal{E} \mathcal{L} b^* b$ for some $e \in E$. Thus $a^* a \mathcal{F} b^* b$, and hence $(av) \mathcal{Q} (bv)$.

Assume that $J_{a^* a} \cap J_{b^* b} = J_{c^* c}$. Then $J_{c^* c} = J_{a^* ab^* b} = J_{b^* ba^* a}$. Also, we have $a^* ab^* ba^* a \leq a^* a$, $b^* ba^* ab^* b \leq b^* b$, and hence $b^* ba^* a \leq a$ and $a^* ab^* b \leq b$. Let $x = (xb^* ba^* a)$ be any element of $\langle b^* ba^* a \rangle$ and let $y = x^* ab^* b$. Then it is clear that $x = yx^* x$ and $y = y^* y$. It follows from Lemma 3.1 [7] that $y \in \langle a^* ab^* b \rangle$ and $(x, y) \in \Omega$. Similarly, for any $y \in \langle a^* ab^* b \rangle$, we have $x = yb^* ba^* a \in \langle b^* ba^* a \rangle$ and $(x, y) \in \Omega$. Hence $(S(\zeta); \Omega)$ is an ω-set. \hfill \Box

Again, we consider $\rho_a : Sa^* \to Sa$. By Lemma 3.4, $d(\rho_a) = \langle a^* \rangle$ and $r(\rho_a) = \langle a \rangle$. For $x, y \in d(\rho_a)$, $x^* x, y^* y \leq a^* a$. Now $x \leq y$ if and only if $x^* x \leq y^* y$ while $xa \leq ya$ if and only if $a^* x xa = (xa)^* (xa) \leq (ya)^* (ya) = a^* y^* ya$. But, since $x^* x, y^* y \leq a^* a$ it follows that $x^* x \leq y^* y$ if and only if $a^* x xa \leq a^* y^* ya$. Therefore $x \leq y$ if and only if $xa \leq ya$. Thus ρ_a is an isomorphism of $\langle a^* \rangle$ onto $\langle a \rangle$, and hence $Sp \subseteq T(S(\zeta); \Omega)(M)$.

Now, we have the following theorem.

Theorem 3.5. Let S be a generalized inverse $*$-semigroup and let ζ be the relation on S defined in (3.2). Then ζ is a pre-order on S with respect to which S is a partially pre-ordered ω-set. Moreover, if Ω is the relation defined in (3.3), then $(S(\zeta); \Omega)$ is an ω-set. The faithful representation ρ, defined above, embeds S as a \mathcal{P}-full generalized inverse $*$-subsemigroup of $T(S(\zeta); \Omega)(M)$.

If ν is the mpo-congruence on S from ζ, then $\nu = \mathcal{L}$ and S/ν is order isomorphic to the partially ordered set P of S. Moreover, $\rho \xi = \tau$, where ξ is the natural projection and τ is the representation which is defined in Theorem 2.5.

Proof. It remains to show that Sp is a \mathcal{P}-full generalized inverse $*$-subsemigroup of $T(S(\zeta); \Omega)(M)$ and that $\rho \xi = \tau$. Let $1_{\langle a \rangle} (a \in S)$ be any projection of $T(S(\zeta); \Omega)(M)$ and let $e = a^* a$. Then $1_{\langle a \rangle}$ and ρ_e are both identity mappings on $\langle a \rangle$. Thus $1_{\langle a \rangle} = \rho_e$ and Sp is a \mathcal{P}-full generalized inverse $*$-subsemigroup of $T(S(\zeta); \Omega)(M)$.

Next, let $\rho_a (a \in S)$ be an element of Sp. Then
\[
 d(\rho') = \{x^* x : x \in Sa^* \} \\
 = \{x^* x : x^* x \in Sa^* \cap P \} \\
 = Sa^* \cap P,
\]
and hence $d(\rho') = d(\tau_a)$. Moreover, for any $x^* x \in d(\rho')$,
\[
 (x^* x)\rho'_a = (xa)^* (xa) = a^* x^* xa = (x^* x)\tau_a.
\]

Thus $\rho'_a = \tau_a$, and hence $\rho_a \xi = \tau_a$. Therefore, $\rho \xi = \tau$, as required. \hfill \Box
REFERENCES

Department of Mathematics, Shimane University, Matsue 690 JAPAN

Current address, T. Ogawa: NTT, 1 - 2 - 1, Shibaura, Minato-ku, Tokyo 105, Japan

E-mail address: imaoka-t@riko.shimane-u.ac.jp and ogawa@sm3.bch.ntt.jp