The principal inverse of the gamma function

Mitsuru Uchiyama (Shimane University)

The Euler form of the gamma function $\Gamma(x)$ is given by

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$

for x > 0. The Weierstrass form

$$\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^{\infty} \left(1 + \frac{x}{n}\right) e^{-\frac{x}{n}} \tag{1}$$

extends it to $\mathbf{R} \setminus \{0, -1, -2, \dots\}$, where γ is the Euler constant defined by

$$\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n\right) = 0.57721 \dots$$

From this it follows that

$$\log \Gamma(x) = -\log x - \gamma x + \sum_{n=1}^{\infty} \left(\frac{x}{n} - \log(1 + \frac{x}{n}) \right), \tag{2}$$

$$\frac{\Gamma'(x)}{\Gamma(x)} = -\gamma + \sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+x}\right). \tag{3}$$

This is called the *psi function* or *digamma function*.

It is clear that
$$\Gamma(1) = \Gamma(2) = 1$$
, $\Gamma'(1) = -\gamma$, $\Gamma'(2) = -\gamma + 1$.

Denote the unique zero in $(0, \infty)$ of $\Gamma'(x)$ by α . It is known that $\alpha = 1.4616 \cdots$ and $\Gamma(\alpha) = 0.8856 \cdots$.

We call the inverse function of the restriction of $\Gamma(x)$ to (α, ∞) the principal inverse function and denote it by Γ^{-1} .

 $\Gamma^{-1}(x)$ is an increasing and concave function defined on $(\Gamma(\alpha), \infty)$.

This work was supported by KAKENHI (21540181).

(1) guarantees that $\Gamma(x)$ has the holomorphic extension which is a meromorphic function with poles at non-positive integers and (3) holds there.

Let Π_+ and Π_- be respectively the open upper half plane and the open lower half plane. A holomorphic function defined on Π_+ is called a *Pick function* or *Nevanlinna function* if it maps Π_+ into itself.

From (3) it follows that $\Gamma'(z)$ does not vanish on $\mathbb{C} \setminus (-\infty, \alpha]$; in fact, $\Gamma'(z)/\Gamma(z)$ is a Pick function. Hence for each point $\omega_0 \in \Gamma(\mathbb{C} \setminus (-\infty, \alpha])$ there is a local inverse of $\Gamma(z)$ in a neighborhood of ω_0 . The main objective of this paper is to show

Theorem 1 The principal inverse $\Gamma^{-1}(x)$ of $\Gamma(x)$ has the holomorphic extension $\Gamma^{-1}(z)$ to $\mathbb{C} \setminus (-\infty, \Gamma(\alpha)]$, which satisfies

(i)
$$\Gamma^{-1}(\Pi_+) \subset \Pi_+ \text{ and } \Gamma^{-1}(\Pi_-) \subset \Pi_-,$$

- (ii) $\Gamma^{-1}(z)$ is univalent,
- (iii) $\Gamma(\Gamma^{-1}(z)) = z \text{ for } z \in \mathbf{C} \setminus (-\infty, \Gamma(\alpha)].$

References

[1] Mitsuru Uchiyama, The principal inverse of the gamma function, PAMS 140(2012) 1343–1348.