On the surface group conjecture and embeddings of surface groups into cyclically pinched one-relator groups

Abstract

Gerhard Rosenberger

Let F be a finitely generated free group, \overline{F} an isomorphic copy of F, $W \neq 1$ a word in F and \overline{W} its copy in \overline{F} . A Baumslag double is an amalgamated free product with free factors F and \overline{F} amalgamated via $W = \overline{W}$.

An orientable surface group of genus 2 is a Baumslag double.

Recall that an orientable surface group S_q , $g \ge 2$, has a presentation

 $S_g = \langle a_1, b_1, ..., a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] = 1 \rangle,$

and a nonorientable surface group N_g , $g \ge 4$, has a presentation

 $N_g = \langle a_1, ..., a_g \mid a_1^2 \cdots a_g^2 \rangle$. A Baumslag double G is hyperbolic if and only if W is not a proper power in F.

The question arises to give conditions for hyperbolic surface groups $S_g, g \ge 2$, and N_q , $g \ge 4$, to be embedded into a Baumslag double G.

<u>Theorem</u>: Let G be a hyperbolic Baumslag double. Then G contains S_2 if and only if W is a commutator [u, v] in F. Further G contains N_4 if and only if $W = x^2 y^2$ for some $x, y \in F$.

Corollary: Let G be a hyperbolic Baumslag double. Then G contains orientable surface groups of each finite genus if and only if W is a commutator [u, v] in F.

Somehow related to the embedding problem is the Surface Group Conjecture: Suppose that G is a non-free, non-solvable one-relator group such that every subgroup of finite index is again a one-relator group and every subgroup of infinite index is a free group. Then G is a surface group.

We discuss recent results concerning the Surface Group Conjecture.