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1. INTRODUCTION. The Sylvester graph is a 5-regular, Δ-free and �-free graph with
diameter 3, such that for any vertex x of the graph, the second neighbourhood of x induces a
union of cycles and the third neighbourhood of x induces a perfect matching. Let Σ be a graph
with these properties. We will use purely combinatorial means to show that Σ is actually the
Sylvester graph. The standard proof of uniqueness relies on the uniqueness of a bigger graph,
namely the Hoffman-Singleton graph (50 vertices), see Brouwer, Cohen & Neumaier [2,
Thm. 13.1.2(ii)], whose intersection of the second neighbourhoods from two adjacent vertices
induces the Sylvester graph. We will however search for smaller structures. One could say that
this is a small case that can be studied with aid of computer(s).1 Our aim is to reduce the
number of cases to such a small number that it will be possible to solve the problem entirely by
hand.

2. DISTANCE-REGULARITY. Let d be the diameter of a graph Γ and Γi(x) (0 ≤ i ≤ d)
the set of vertices at distance i from a vertex x of Γ, also called the i-th neighbourhood of x.
All properties of the Sylvester graph mentioned above are related to the distance partition

{Γ0(x),Γ1(x), . . . ,Γd(x)}, see Fig. 1(a). Set Γ
−1(x) := ∅ =: Γd+1(x), Γ(x) := Γ1(x), let y be

vertex in Γi(x) (0 ≤ i ≤ d) and

ai := |Γ(y) ∩ Γi(x)|, bi := |Γ(y) ∩ Γi+1(x)|, ci := |Γ(y) ∩ Γi−1(x)|, ki := |Γi(x)|,

where |S| denotes the size of a set S. Note that k0 = 1 = c1 and c0 = a0 = 0 = bd. If y ∈ Γ(x),
we say that x and y are adjacent or neighbours and often write x ∼ y.

We can now rewrite the above properties of the graph Σ in the following way:

(i) k1 = 5, (ii) a1 = 0, (iii) c2 = 1, (iv) d = 3, (v) a2 = 2, (vi) a3 = 1

for every vertex x of Σ and every y ∈ Σi(x).

We say that a graph Γ with diameter d is distance-regular whenever there is an intersection
array of constants {b0, . . . , bd−1; 1, c2, . . . , cd} so that for every vertex x of Γ and every y ∈ Γi(x)
(0 ≤ i ≤ d) we have bi = |Γ(y)∩Γi+1(x)| and ci = |Γ(y)∩Γi−1(x)|. Obviously, a distance-regular
graph Γ is regular, k := k1 = b0 = ai + bi + ci and a two-way counting of edges between the sets
Γi(x) and Γi−1(x) gives us ki = ki−1bi−1/ci (1 ≤ i ≤ d).

We can write three of the above conditions for Σ also as: (ii) b1 = 4, (iii) b2 = 2, (vi) c3 = 4 and
note that the graph Σ satisfying (i)–(vi) is precisely a distance-regular graph with intersection
array

{k, b1, b2; c1, c2, c3} = {5, 4, 2; 1, 1, 4}. (1)

From now on, let Σ be a distance-regular graph with intersection array (1). Then k2 = 5·4/1 = 20,
k3 = 20 · 2/4 = 10 and 1 + 5 + 20 + 10 = 36 is the number of all vertices of Σ.

1But be careful! If one wants to produce carelessly the list of all possible graphs on 36 points, then some huge

numbers are in the way: 2(
36

2 ) = 2630. In cryptography it is well known that it is nowadays safe to hide a key in
a set with 280 elements.
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